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Transient Modeling of Induction Machine Using Artificial
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A transient model of an induction machine (IM) is developed in this work using an artificial neural network (ANN) surrogate
model. The model is suitable to be used for direct-on-line IMs. The finite-element (FE)-based model of IM is used to generate the
training, validation, and testing datasets. Different inputs and model configurations are investigated to find an optimal solution in
developing the transient model. The proposed transient model is suitable to be used in digital twin services since it can estimate
the current and torque accurately in real time based on only voltage and measured shaft speed.

Index Terms— Artificial neural network (ANN), digital twin, induction machine (IM), real time, surrogate modeling.

I. INTRODUCTION

ASSESSING performance of an induction machine (IM)
over a startup period of time through its transient behav-

ior is extremely important as most industrial pumps are still
run by direct-on-line induction motors. The modeling of the
steady-state and transient behaviors of the IM for real-time
applications can be done with an analytical model and its
accuracy can be improved by tuning different operational
coefficients from finite-element (FE) computations. However,
conventional equivalent circuit works only with the fundamen-
tal harmonic of the system and thus ignores all the effects of
different spatial harmonics of the machine in the current and
torque behavior. For IMs, the eddy current in the rotor bar and
the saturation of the iron core make it further challenging to
produce an accurate analytical model, especially at the tran-
sient state when the shaft is accelerating [1]. We demonstrate
that an artificial neural network (ANN)-based surrogate model
can learn the startup transient behavior of an IM from FE
simulations and predict it quickly for real-time applications
with almost similar accuracy as an FE model.

ANNs are a data-driven approach that does not necessarily
require information about the model structure. Instead, a suit-
able ANN structure for a specific problem is found within
hyperparameter optimization procedure, which is part of the
surrogate modeling process [2]. ANNs were chosen for the
study over deep and physics-informed neural networks as
ANNs are often faster to develop than the former and easier
to set up than the latter. The use of simpler regression models
was not considered as ANNs offer more flexibility in modeling
nonlinearities. Only a few published articles can be found in
the literature on the application of ANNs for modeling the
transient behavior of IM with FE to the best knowledge of
the authors. These articles are mostly focused on condition
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monitoring [3], optimization [4], [5], and in the improvements
of different analytical equation-based control strategies [6].

The goal of this work is to create an ANN-based IM
model that accurately predicts the transient and steady-state
current and torque. The application for this model is to
monitor and optimize large industrial systems that comprise
several IMs of different sizes and ratings in real time as
a part of digital twin services. We study what inputs are
required for an ANN-based model in different scenarios,
by comparing the ANN performance with multiple input
configurations. The input options include the electric current,
the grid voltage, measured shaft speed, and first backward
finite difference of the shaft speed. In addition, another
objective of this work is to study whether current is essen-
tially required as an input parameter to the ANN model to
predict the transient torque behavior. It is worth mentioning
that in case of direct online machines that are deployed in
the service field, excluding current measurement makes the
ANN model deployment for digital twin services easier and
cheaper.

II. INDUCTION MACHINE MODELING

A 45 kW double-cage induction motor is selected as a
case study for this work, as shown in Fig. 1. Details for this
machine can be found in [1]. The FE dataset for surrogate
model development includes 2-D transient simulations from
standstill condition to different power levels. The initial current
and speed for the simulation are kept at zero, and next, the
rotor is accelerated using a load profile to attain a specific
steady speed, which generates the required power level. In this
dataset, 11 power levels from 10 to 60 kW with 5 kW steps are
selected as steady-state condition. Five of these power levels
are used for training the ANNs, three for validating the ANNs,
and the rest for testing them. The division of power levels to
these three datasets is shown in Figs. 2 and 3, which shows the
torque and current behavior of the machine at different power
levels. The test cases include, in addition to a case with 30 kW
power, both the minimum and the maximum power level to
measure the extrapolation capability of the developed ANN
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Fig. 1. Mesh and magnetic flux density of the case study machine at rated
operation.

Fig. 2. Simulated torque at various target steady-state torque levels from
standstill condition.

Fig. 3. Simulated current (phase A) at various target steady-state torque
levels.

models. Each simulation consists of 80 000 timesteps, i.e., the
total number of samples in the FE dataset is 880 000.

III. ANN SURROGATE MODEL DEVELOPMENT

Several input configurations are evaluated to find out the
most optimal one for an ANN surrogate model to predict the
torque and current accurately. The models are developed using

TABLE I

INPUT CONFIGURATIONS OF THE TRAINED ANN SURROGATE MODELS,

SHOWING FROM WHICH TIMESTEPS VALUES OF VARIABLES ARE

INCLUDED IN THE MODEL INPUT

gated recurrent units (GRUs) [7], using the Tensorflow Python
library [8]. The units in a GRU network have recurrent con-
nections, i.e., they take their own output at previous timestep
k − 1 as an input at timestep k, in addition to actual input
values. Computations related to the training and the evaluation
of the models presented in this work were done using an Intel
i9-9900K central processing unit.

The model input options include three-phase voltage U
(phases A, B, and C), shaft speed ω, first backward finite
difference of shaft speed �ω (�ωk = ωk−ωk−1), and three-
phase current I (phases A, B, and C) of previous timestep.
The model outputs include three-phase current I and torque T .
The studied input configurations are presented in Table I. The
first input configuration, referred to as M1, includes three-
phase voltage at timestep k, shaft speed ω at timesteps k and
k − 1, and current I at previous timestep k − 1. Such input
configuration allows to use the model in only circumstances
where current measurement is available, which is rarely the
case. The second input configuration, referred to as M2,
has the same configuration as the first one, excluding the
currents. With M2, it is evaluated how much the lack of current
information affects the prediction error of the surrogate model
in this case. The third input configuration, referred to as M3,
includes the first backward finite difference of shaft speed
�ω in addition to the voltages U and shaft speed ω, each at
the current and four previous timesteps, i.e., at k, . . . , k − 4.
Our hypothesis is that adding �ω improves the predictive
performance of the ANN since T is linearly dependent on
the time derivative of the ω. With the M3 configuration,
we experimented with various numbers of timesteps in the
input. Five timesteps showed the best performance in terms of
prediction error and the results obtained with this configuration
are shown in this article.

Both the input and the output values are each independently
standardized by removing the mean and scaling to unit vari-
ance. To prevent information leakage from the training dataset
to validation and testing datasets, the mean and standard
deviation of each variable are computed based on samples
of the training dataset only, and the same values are used to
standardize the samples in the validation and testing datasets.

In this work, Hyperopt Python library [9] is used to optimize
hyperparameters of the ANN (number of layers and units)
and learning algorithm (learning rate and batch size). The
optimization algorithm was given an option to choose between
Adam and Adamax learning algorithms to be used in training
the model. Hyperopt is a sequential model-based optimiza-
tion algorithm, which fits an internal surrogate model to
map the relationship between hyperparameters and a selected
error quantity, with the objective to find hyperparameters that
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TABLE II

HYPERPARAMETER SEARCH SPACE AND OPTIMIZED HYPERPARAMETERS

FOR EACH INPUT CONFIGURATION

minimizes this quantity [9]. Here, the optimization algorithm
minimizes the mean squared error (MSE) computed on the val-
idation dataset, but also the root-mean-squared error (RMSE),
the normalized (N)RMSE, and the mean absolute error (MAE)
are recorded. The NRMSE is computed by dividing the RMSE
by the difference of maximum and minimum values of a
case. The optimization algorithm was set to first explore
25 pseudorandomly selected hyperparameter combinations to
initialize the internal surrogate model, after which the algo-
rithm uses its internal surrogate model to select the next
35 hyperparameter combinations. After each combination, the
internal surrogate model is updated before selecting the next
hyperparameters to try. The hyperparameters, their allowed
values for optimization, and the optimized values for each
input configuration are shown in Table II.

The time required by the hyperparameter optimization was
50, 4, and 10 h with the configurations M1, M2, and M3,
respectively. The differences stem from the optimization con-
verging toward different values, e.g., neural network and batch
sizes, as shown in Table II. These hyperparameters affect the
time required to train a model. The computational efficiency
could be enhanced by parallel computation of the random
iterations in the hyperparameter optimization.

Training of a model starts by defining the neural network
structure and learning related hyperparameters. The number of
training iterations was set to 10 000. The learning algorithm
was set to utilize 30% of the samples in the training dataset
to monitor how the prediction error evolves during training.
An early stopping mechanism was used to stop the training
once the monitored prediction error had not improved from the
currently lowest error in the previous 30 training iterations.

After the hyperparameter optimization, the models were
ranked by their prediction error (RMSE) computed on the
validation dataset and the model with the lowest RMSE was
selected as the final model.

IV. PERFORMANCE OF ANN SURROGATE MODELS

The results of ANN model development following the
workflow presented in Section III are presented in this section.
The same workflow was used to develop a model with each
input configuration. The results shown in this section are
computed with a test dataset that was used solely for testing
the selected final model with each input configuration.

The performance of the three different ANN models in
predicting the torque and the current transient behavior of
the test cases is shown in Table III. The ANN that is trained
with current from the previous timestep in input (M1) has
achieved an acceptable RMSE of 26 N · m on the test case,

TABLE III

TORQUE AND CURRENT PREDICTION ERROR OF THE ANN SURROGATES

WITH THREE INPUT CONFIGURATIONS WITH THE TEST DATASET

while without the knowledge of previous timestep current
value (M2), the RMSE is 107.4 N · m. The ANN with input
configuration M1 has also predicted three-phase current at
current timestep with an RMSE of 1.3 A, while the ANN-
M2 has an RMSE of 8.9 A. This shows that the ANNs are
unable to capture the torque (Tk) and current (Ik) behavior
based on voltage and raw shaft speed values only. However,
when the first backward finite difference of the shaft speed
is added to the model input (M3), the torque and current
RMSEs are decreased to 23.7 N · m and 3.1 A, respectively.
The MAE for the ANN-M1 and ANN-M3 is almost equal
(15.58 and 15.68 N · m, respectively). This result demonstrates
the importance of feature engineering in data-driven model
development.

Torque predictions with the three models on an extrapolation
test case with 60 kW power level are shown in Fig. 4. During
the acceleration, i.e., the first 750 ms after the machine has
started, the predictions of the two best models follow the FE
simulation result accurately. At 1500 ms, the machine reaches
the steady state, and there, the M3 model with �ω in the input
can predict the torque harmonics better than the model with
current in the input. Similar behavior can be seen at the steady-
state operation, where the ANN-M3 predicts the torque more
accurately than the model with current in the input (M1).

Current predictions of the ANN-M3 similarly follow the
FE simulation result accurately, as shown in Fig. 5. Naturally,
the model with previous timestep current Ik−1 can predict the
current Ik more accurately than the models without the current
in the input. Still, the current prediction accuracy of model
with difference of shaft speed in the input approximates the
current relatively well.

The torque results support our hypothesis that �ω in the
input helps to predict the torque. In addition, the current is also
co-related to torque by magnetomotive force. Hence, the co-
relation of the shaft speed difference with torque also enables
it to correlate with current. Therefore, the M3 model, even
without prior knowledge of current from previous timesteps,
is still able to predict the current accurately. This capability of
the data-driven ANN model shows that it can overcome the
complexity of modeling the eddy current effect of the rotor
bar of IM.

The ANN model with the previous timestep current in
input (M1) has predicted one sample in 34 μs on average,
whereas the corresponding times for M2 and M3 were 12 and
25 μs, respectively. These correspond to approximately 30 000,
84 000, and 40 000 samples per second. Although M2 was the
fastest with the least parameters, M3 is preferred due to its
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Fig. 4. Torque predictions of ANNs with different input configurations. Test case with a power of 60 kW.

Fig. 5. Current (phase A) predictions of ANNs with different input
configurations. Test case with a power of 60 kW.

better accuracy. The computation times were measured in a
Python environment.

The required time to compute one timestep is 12 ms with the
FE simulation used in this work and 8 μs with the analytical
model as referred in [1]. Therefore, the computational time
is reduced by a factor of 500 with the ANN (M3) when
compared to the FE simulation. This shows that an ANN
surrogate model can achieve an accuracy close to an FE model
and a speed that is comparable to that of an analytical model.

V. CONCLUSION

The results demonstrate that an ANN can accurately and in
real time predict the torque and current transient behavior of an
IM. An ANN with voltage, shaft speed, and previous timestep
current can predict torque behavior accurately, but the current
measurement is rarely available. In this study, we have shown
that by precomputing the first backward finite difference of
the shaft speed and using it as an input to the ANN together
with the voltages and the shaft speed, the ANN is capable of
predicting the torque and current transient behavior without
knowledge of the currents. In addition, the developed model
was shown to extrapolate to both lower and higher power level

than it was trained on. The next step is to validate the results
using experimental data to either train a new model from
scratch or adapt the developed model using transfer learning.
In future, this kind of model can be further extended to
optimize the operation of several industrial motors in real time.
Also, different loss computations and fault analysis models can
be built on top of the proposed ANN model.
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