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Investigating Voltage Excitation of the Darwin Model via the
Prescription of Terminal Scalar Potentials
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Developing simulation models for electromagnetic field problems often deals with approximations of the full set of Maxwell’s
equations, to obtain performant methods. This is also the case for the so-called Darwin model, which has the capability of including
resistive, inductive, and capacitive effects without the need of solving full-wave Maxwell’s equations. However, an issue is the difficulty
of prescribing realistic excitations of the model, e.g., via a terminal voltage. In this article, the straightforward prescription of the
scalar potential on electric ports is investigated via Poynting’s theorem, with the outcome that it can be considered as physical
voltage excitation up to frequencies, where the validity of the Darwin model itself is lost.

Index Terms— Computational electromagnetics, Darwin model, finite element (FE) analysis, Maxwell equations, numerical
simulation.

I. INTRODUCTION

THE Darwin approximation of Maxwell’s equations is
of great theoretical and practical importance because it

includes resistive, inductive, and capacitive effects, without
the need for solving a hyperbolic wave equation in the time
domain, respectively, the full set of Maxwell’s equations. This
model, described in Section II, is a quasi-stationary approxi-
mation of the full set of Maxwell’s equations, neglecting wave
phenomena, and therefore, it is only valid up to frequencies,
where wave effects start to become dominant [1]

f � fmax = cmin

d
= c0

d · √μr,max · εr,max

where c0 is the speed of light in vacuum, d is the spatial
expansion of the application (characteristic length), and μr,max

and εr,max are the maximum relative magnetic permeability
and electric permittivity, respectively.

An important step toward a practically feasible method is the
physically correct excitation of the model. The interpretation
of a voltage excitation via electric ports at the surface of the
computational domain is more involved as for the classical
eddy current problem, because (Darwin-) displacement cur-
rents have to be taken into consideration too.

In the following, the proposed formulation in the frequency
domain of the Darwin model is presented in Section II based
on [2], which is an explicitly gauged formulation using the
generalized Coulomb gauge and it results in a symmetric
formulation. Together with this formulation and Poynting’s
theorem, the issue regarding the terminal voltage excitation
of the Darwin model is shown in Section III, where special
attention is paid to make plausible and physically sound
assumptions on the currents at the electric ports. In Section IV,
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the physical voltage excitation via potential at the electric
ports, investigated in Section III, is applied to a finite ele-
ment (FE) implementation of the Darwin approximation in
openCFS [5] on two examples, a simple parallel plate capacitor
and a capacitor in series with a copper coil. The Darwin results
are then critically compared with full-wave solution, simulated
with SIMULIA CST Studio Suite.

II. (A, ϕ , p) FORMULATION OF THE DARWIN MODEL

The Darwin model is an approximation to the full set of
Maxwell’s equations, by neglecting the second time derivative
of the magnetic vector potential ∂t∂t A = 0=̂ − ω2 Â = 0.

The use of a scalar potential ϕ̂ and the magnetic vector
potential Â, as well as the relationships Ê = −∇ϕ̂− jω Â and
B̂ = curl Â, leads to the following (A, ϕ) formulation in the
frequency domain

curl
(
μ−1 curl Â

) + jω γ Â + γ ∇ϕ̂ + jω ε ∇ϕ̂ = Ĵ i (1a)

−div
(

jωγ Â
) − div

(
γ∇ϕ̂

) − div
(

jωε∇ϕ̂
) = 0 (1b)

where γ is the electric conductivity, ω is the angular
velocity, μ is the magnetic permeability, and ε is the permittiv-
ity. Equation (1a) corresponds to the approximated Ampère–
Maxwell equation, which takes only an irrotational part of the
displacement current into account and (1b) corresponds to the
approximated continuity law.

In order to overcome the difficulty of an ill-conditioned and
nonsymmetric system, which (1a) and (1b) lead to, Zhao and
Tang [2] proposed an improved formulation by introducing a
Lagrange multiplier p and an additional constraint to ensure
that jω Â is ε-divergence-free. This leads to the following
formulation in the frequency domain:

curl
(
μ−1 curl Â

) + γ ( jω Â + ∇ϕ̂) + jωε ∇ϕ̂

− jω ε ∇ p = Ĵ i

1

jω
div

(
− γ

(
jω Â + ∇ϕ̂

) − jω ε ∇ϕ̂
)

− div
(

jω ε Â
) = 0

div
(

jω ε Â
) = 0. (2)
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Fig. 1. Computational domain (quarter model).

This approach implies a symmetric complex matrix system
after FE discretization; see [2] and [3] for further details. In the
following, the impressed current density Ĵ i is neglected in
favor of a more concise notation.

III. VOLTAGE EXCITATION

In the classical (A − V ) formulation of the eddy current
problem, the voltage between two electric ports can easily
be interpreted as the difference in the electric scalar potential
V and by prescribing V at the ports, and voltage excitation
can be realized. When using the Darwin approximation, this
interpretation must be investigated, which will be discussed in
the following. Contrary to the formulation in (2), the following
derivation is written in the time domain, due to a more concise
notation; however, it holds true also for the complex case in
the frequency domain.

Let us consider the computational domain, depicted in
Fig. 1. The goal is to investigate the physical interpretation of
prescribing the scalar potential ϕ at the electric ports �1 and
�2 as a Dirichlet boundary condition (BC). The remaining BCs
for A, ϕ, and p are chosen as: trτ (A) = 0 on ∂	, natural BCs
for ϕ on ∂	 \ {�1 ∪ �2}, p = 0 on ∂	 \ �sym, and natural
BCs for p on �sym. The port BCs on �1 and �2 on the
boundary of the computational domain can then be physically
interpreted as electric circuit element BCs.

Since the electric field is not conservative, the definition
of a voltage u = ∫

C E · τ depends on the curve C and is not
feasible to describe voltage excitation. If, however, the voltage
is defined via the power P = u i , Poynting’s theorem can be
used to identify what the prescription of a scalar potential ϕ on
the electric ports implies, following the idea from [6]. Let us
recall Poynting’s theorem on the whole computational domain
	 and bounding surface ∂	 as

(H, ∂t B)	 + (E, ∂t D)	 + (E, J)	 = −�E × H, n�∂	 = P

(3)

where n is the outer normal to ∂	 as well as (·, ·)	 and �·, ·�∂	

denotes a volume and surface integral with a dot product
between both arguments, respectively. Furthermore, ∂t denotes
the time derivative operator and P the change in inner energy
per unit time.

Poynting’s theorem implies that the energy state of the
system can be changed by either boundary or volumetric
power sources. Inserting approximated Darwin–Ampère and

Faraday’s law as well as the two potentials A and ϕ and using
Green’s identities, (3) takes the form

−�ϕ J, n�∂	 − �ϕ ε ∂t∇ϕ, n�∂	 = P. (4)

Due to J = γ E and the fact that the only conducting parts
at the boundary of the whole computational domain 	 are the
electric ports �1 and �2, both surface integrals reduce to the
surface of the electric ports, because ∇ϕ ·n = 0 and γ = 0 on
∂	\{�1 ∪ �2}.

Assuming the prescription of spatial independent scalar
potential at the ports ϕ|�k = ϕk for k ∈ {1, 2}, it further reduces
to

−ϕ1 �J, n��1︸ ︷︷ ︸
current ic

− ϕ2 �J , n��2︸ ︷︷ ︸
−ic

−
2∑

k=1

�ϕ ε ∂t∇ϕ, n��k

= (ϕ2 − ϕ1) ic − ϕ1 �ε ∂t∇ϕ, n��1︸ ︷︷ ︸
displacement current id

−ϕ2 �ε ∂t∇ϕ, n��2︸ ︷︷ ︸
−id

= (ϕ2 − ϕ1) (ic + id) = (ϕ2 − ϕ1), i = u, i = P (5)

from which the current ic via the transport of free electric
charges and the Darwin-displacement current id can be iden-
tified, whereas in the classical eddy current case, only ic can
occur.

However, this straightforward evaluation of (4) implicitly
makes the assumption that the ratios of conducting currents
and displacement currents are the same at the electric ports

�J , n��2 = −�J , n��1

�ε ∂t∇ϕ, n��2 = −�ε ∂t∇ϕ, n��1 (6)

which cannot be conclusively justified from a physical point of
view. This issue can be solved by making mathematically rig-
orous and plausible assumptions on the whole computational
domain 	 and its boundary ∂	, which fulfill the preconditions
of a weak divergence theorem, e.g., according to [4]. To fulfill
the conditions for this theorem (sometimes also referred to as
weak Gauß theorem), the domain must be 	 ⊆ R

n (used
here for n = 3) open and bounded with a Lipschitz boundary,
which is the case for all the domains that are used in this
work (not necessarily C1 but definitely Lipschitz). This now
allows to describe the relationship between the port currents
i�k = �J + ε ∂t∇ϕ, n��k

as follows, using the Darwin approx-
imated continuity law (1b):

0 =
∫

	

div
(

J + ε∂t∇ϕ
) = �J + ε ∂t∇ϕ, n�∂	

= i�1 + i�2 . (7)

Applying this result on (4) leads to

−ϕ1 i�1 − ϕ2 i�2 = (ϕ2 − ϕ1) i�1 = u i = P. (8)

Here, i�k = ick + idk contains the current ick = �J , n��k

resulting from the transport of free electric charges and
the Darwin-displacement current idk = �ε ∂t∇ϕ, n��k

. This
result looks very similar to the one in (5) but with the
major difference that the ratios of conducting currents and
Darwin-displacement currents do not need to be identical on
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both electric ports. To conclude, it can be stated that the pre-
scription of electrical scalar potentials at the ports corresponds
to an actual physical voltage excitation.

However, there are frequency-dependent differences in the
order of magnitude between the conducting current and
Darwin-displacement current. For low frequencies, the time
derivative multiplied with the, for practical applications,
very small electric permittivity ε results in a negligible
Darwin-displacement current idk term, compared with the con-
ducting currents ick , and approximately, only resistive and
inductive effects are present. Increasing the frequency such
that the latter becomes dominant, an additional capacitive
behavior and non-zero displacement currents occur, which
are clearly visible in the frequency analysis of the numerical
examples (see Figs. 3 and 6).

IV. NUMERICAL VERIFICATION

A. Parallel Plate Capacitor

In the first example, a parallel plate capacitor with a dielec-
tric material between its plates is considered, as depicted in
Fig. 1. The diameter of the feed lines and capacitor plates
is dfeed = 0.5 mm and dplate = 12 mm, respectively, both
made of copper with an electric conductivity of 5.7·107 Sm−1.
Both the feed lines have a length of lfeed = 5 mm, and the
height of the dielectric is hdielec = 1 mm with εr = 10000.
This leads to an analytic approximation of the capacity for
low frequencies Ca = εrε0π(dplate/2)2/hdielec = 10.0139 nF,
which will be used later on as a reference for impedance in
the low-frequency region.

The aim of this example is first to verify the implemented
Darwin model in the frequency domain with a full-wave
solution and second to test the postulated voltage excitation
of the Darwin model from Section III. For this purpose, the
full-wave solution using CST Studio Suite was used as a refer-
ence with the same geometrical dimensions, mesh resolution,
and solution domain as for the Darwin model, including a
mesh refinement in the conducting regions to resolve the skin
penetration depth with approximately five elements. A current
excitation via the electrical ports �1 and �2 was specified in
CST, and the complex impedance was evaluated at different
frequencies, which was compared with the results from the
Darwin model with a prescription of ϕ1(t) = 1 V sin(ωt) and
ϕ2(t) = 0 V. To evaluate the impedance of the Darwin model,
the surface integral of the total current was computed as

îtotal =
∫

�1

(
γ Ê + jωε D̂

) · n (9)

where the notation ˆ(·) is used to denote a complex quantity
from a harmonic simulation. Inserting the magnetic vector
potential Â, the scalar potential ϕ̂, and the Darwin approx-
imation ∂t∂t A=̂ − ω2 Â = 0, we arrive at the (Darwin-)
approximated total current ˆ̃itotal through the electric port

îtotal ≈ ˆ̃itotal =
∫

�1

(−γ
(∇ϕ̂ + jω Â

) + jωε∇ϕ̂
) · n. (10)

In Fig. 2, the comparison between the absolute value of
impedance computed via the Darwin total current according

Fig. 2. Comparison of absolute value of the impedance for the Darwin model
with full-wave results, evaluated for the plate capacitor. The shaded region
depicts an unphysical domain resonance due to n × E = 0 BCs in CST.

Fig. 3. Depiction of the different current components for the parallel plate
capacitor setup, simulated with the Darwin model. The red dashed line depicts
the same maximum frequency limit as in Fig. 2.

to (10) and the full-wave current îtotal from (9) is displayed.
Furthermore, an estimate can be given according to [1] for the
maximum frequency fmax which indicates that for f ≥ fmax,
wave phenomena are dominant and cannot be neglected. This
frequency threshold can also be considered as an upper bound
for the frequency range in which the Darwin model itself can
provide valid results. A common rule of thumb is that for
the conservative estimation f ≤ fmax/10, wave effects can be
neglected. However, since the Darwin model incorporates a
part of the displacement current, Fig. 2 also shows satisfying
results for fmax/10 < f < fmax. Furthermore, the frequency
dependency of the conducting and Darwin-displacement cur-
rents is depicted in Fig. 3. This clearly shows that the dis-
placement currents, more precisely the Darwin-displacement
currents, become more dominant and significant for increasing
frequencies, as described in Section III.

B. Capacitor With Coil

In the second example, the parallel plate capacitor from
Section IV-A is connected to an air coil in series, in accordance
with Fig. 4, embedded in an air domain. However, in contrast
to Section IV-A, in this example εr = 1000 is used, which
leads to an analytic approximation of the capacity for low
frequencies Ca = εrε0π(dplate/2)2/hdielec = 1.00139 nF.
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Fig. 4. Model of a common series resonant circuit, embedded in an air
domain, which is not depicted due to better visibility.

Fig. 5. Comparison of absolute value of the impedance for the Darwin model
with full-wave results, evaluated for the series resonant circuit according to
Fig. 4. The shaded region depicts an unphysical domain resonance due to
n × E = 0 BCs in CST.

Fig. 6. Depiction of different current components for the capacitor with coil
setup, simulated with the Darwin model. The red dashed line depicts the same
maximum frequency limit as in Fig. 5.

Similarly as described in Section IV-A, the total current
îtotal and (Darwin-) approximated total current ˆ̃itotal are eval-
uated, according to (9) and (10), respectively. Fig. 5 depicts
the comparison of impedance using voltage excitation with
ϕ1(t) = 1 V sin(ωt) and ϕ2(t) = 0 V and the evaluated

currents îtotal and ˆ̃itotal, respectively. Here, Fig. 5 shows
good concordance of the absolute value of impedance for
f ≤ fmax/10 and a small deviation in the frequency range
fmax/10 < f < fmax. Therefore, it must be noted that
CST simulation uses current excitation and imposes BCs
n × E = 0, and on the other hand, the Darwin model uses
voltage excitation and BCs as described in Section III. Nev-
ertheless, the Darwin model leads to meaningful results up to
fmax and also the frequency behavior of the total current parts
(conducting and Darwin-displacement currents) as described
in Section III can be observed in Fig. 6.

V. CONCLUSION

A physically correct and realistic excitation is important for
applications of all types of Maxwell’s equations. In this work,
it was rigorously shown that the prescription of terminal scalar
potentials in the Darwin model can in fact be considered as
physical voltage excitation under certain assumptions regard-
ing the computational domain. At this point, it is important to
mention that the derivation in Section III, using Poynting’s
theorem, only works for domains, where the electric ports
�1 and �2 are located at the outer boundary of the global
domain (�1 ∪ �2 ⊆ ∂	) and that the boundary of the domain
is a Lipschitz boundary. As stated in Section I, the Darwin
model is valid up to frequencies where wave effects become
dominant, which was also shown in both numerical examples
in Section IV. This is also the frequency range, where the
potential difference at the electric ports can be interpreted as
a physical voltage.

In future work, this derivation should be carried out for more
than two electric ports and for a total current excitation, which
is sometimes more practically relevant, especially if results are
compared with measurements later on.
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