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This work addresses the topic of magnetic linear position detection, a common method used in modern industries to determine
linear displacement by magnetic means. One major shortcoming of this method is the inherent airgap instability, which puts strong
constraints on mechanical construction tolerances and limits resolution and sensitivity. We propose a method to improve the airgap
stability by adding a second magnet, which makes the field and by extension the system output (locally) independent of the distance
from the source. It is shown that the measurement error for 1-D systems can be reduced by a factor of ∼14 and for 2-D systems
by a factor of ∼5 by application of this method for a realistic example.

Index Terms— Airgap stability, field shaping, linear position, magnetic position detection, magnetic sensing.

I. INTRODUCTION

MAGNETIC position and orientation detection systems
determine the relative motion of mechanical parts.

A permanent magnet is mounted on one part and a magnetic
field sensor on the other, so that the relative motion can
be calculated from the modulation of the magnetic field.
In this way, depending on the requirements of the application,
1-D [1], [2], 2-D [3] translations, rotations [4]–[7] or even
the combination of translation and rotation [8]–[10] can be
measured. Such sensor systems are widely used in modern
industrial applications due to their excellent properties in terms
of cost, robustness, and non-contact. An overview to the vari-
ety of different types of magnetic sensors and their measuring
methods is given in [11]–[14] and it is furthermore described
for which applications they can be used in terms of field
amplitudes [13], [14]. Sophisticated magnetic sensing ideas
based on optical fibers with magnetic nanoparticles or flexi-
ble piezoelectric techniques have been explored in this con-
text [15], [16]. With the clever implementation of one or more
magnetic sensors, new opportunities are constantly opening up,
such as magnet-based joysticks [10], space applications [17],
geophysical studies on smartphone applications [18], perma-
nent magnet motors [19] and have begun to replace existing
mechanical, electronic and optical technologies. Today, there
are more than 100 applications for magnetic position sensor
systems in the automotive sector alone [20]–[22].

Magnetic linear position sensing is one common represen-
tative, with prominent applications like automotive shift forks,
gas and brake pedals, detection of shifting shafts, flexible arms,
lifting systems, in the gearbox, and many others. In this case,
a permanent magnet moves along a straight line with a sensor
mounted centrally above in a distance g termed the airgap. The
range of the system is given by the stroke s with the magnet
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position x ∈ [−s, s] [see Fig. 1(a)]. Such systems have been
investigated, improved and optimized in the past in [23]–[26]
by different sensor alignments and improved magnet shapes.

The magnetic field at the position of the sensor is given by
B(x) and the sensor output β(B) is assumed to be proportional
to it, β ∝ B, which is characteristic for the commonly used lin-
ear Hall sensors. The system output signal ζ(β) is determined
from the sensor output and the position is calculated from it

x → B → β → ζ ⇒ x . (1)

For a typical linear position system, based on the magnet
configuration from Fig. 1(c), the field B(x) is shown in
Fig. 1(b) as a function of the position for a 12 × 5 × 5 mm3

magnet with magnetization μ0 M = 1000 mT and an airgap
of g = 5 mm. Due to the symmetry, there are only two
non-zero field components, Bx(x) with even and Bz(x) with
odd behavior. While there are several other ways to choose
magnet configurations [see Fig. 1(c)–(e)], in each case there
is an even and an odd field component, Beve and Bodd, on which
the linear position sensing schemes rely.

If only a 1-D sensor is available, it must detect Bodd for a
linear and unique relation between position and output

ζ1D = βodd. (2)

The potential range of such a system is then given by the cen-
tral, monotonous linear part of the curve. A more sophisticated
scheme can be used with a 2-D sensor

ζ2D = atan2(βodd, βeve) (3)

where atan2 denotes the common two-argument arctangent
function (see [25]). While the 2-D method features a higher
level of signal stability, precision, and measurement range
when compared to the 1-D counterpart, the latter is still used
for its cost-efficiency. Any 1-D or 2-D sensor can be used
to measure the field components [12], however, in industrial
applications where moderate precision is sufficient, Hall-type
sensors are a common choice [20].

Finally, a sensor system is characterized by its sensitivity S.
It is given by the change of the system output with variation
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Fig. 1. In (a) moveable magnet system beneath a sensor is illustrated. It may
consist of (c)–(e) different magnet assemblies, which all generate an even and
an odd component of the magnetic field as shown in (b).

TABLE I

SYSTEM PARAMETER NAMES AND TYPICAL VALUES

of the observable (here magnet position x)

S(x0, z0) := dζ

dx
(x0, z0). (4)

A more detailed analysis of 1-D and 2-D sensing schemes,
sensors, and systems can be found in [25] and [27]. In Table I
below, we show a list of system parameters and their typical
sizes for state-of-the-art Hall-based industrial linear position
systems.

II. PROBLEM

Linear magnetic position sensor systems are currently used
in many different applications and have been analyzed and
improved in the past with respect to their functionality and
cost optimization [23]–[27]. However, one of their major
still unsolved problems is their inherent instability to airgap
variations �g. Industrial and automotive systems are only
competitive if they are cost-efficient and fabrication tolerances
are expensive to control. In automotive shift-fork systems
airgap variations of up to ±20% are common. Such variations
are usually calibrated out in an end-of-the-line process which
ultimately results in large variations of the sensitivity. In addi-
tion, dynamic airgap variations of few percent over lifetime
and during system operation must also be accounted for.

The sketch in Fig. 2 shows how an airgap variation leads to
a inaccurate output signal ζ(x0, z) instead of ζ(x0, g), which
further results in a wrong position estimation x̃0 for the real
position x0. In first order, the position error �x := x0 − x̃0,
which results from airgap variation, is directly connected to
the system output error �ζ := ζ(x0, g) − ζ(x0, z) through the
nominal sensitivity S(x0, g). We can therefore write

�x(x0, z) = �ζ(x0, z)

S(x0, g)
(5)

Fig. 2. Sketch of the system response. The airgap variation leads to a
measurement error �x , which is determined by �ζ and the local slope
S(x0, g) of the function ζ(x, g).

Fig. 3. (a) Airgap dependence of the field and (b) resulting position error
�xmax for 1-D and 2-D sensor schemes.

at position x0. For convenience we have expressed everything
through z, which is connected to the airgap variation through
z = g + �g. Clearly �x(x0, g) = 0 for all positions
x0 ∈ [−s, s].

To demonstrate the effects of airgap variations, we show
the magnetic field of the example system from Section I for
different airgaps in Fig. 3(a). The maximal position error
�xmax := maxx0∈[−s,s] �x(x0, z) as a function of the airgap
variation �g is given in Fig. 3(b) for s = 5 mm. The inherent
higher stability of the 2-D scheme is clearly visible. The
reason for this observation is that the system output signal of
a 2-D sensor expression (3) contains the ratio of βodd and βeve

and is independent of the amplitude of the measured magnetic
field, which strongly depends on the airgap. However, since not
only the amplitude but also the field angle varies as a function
of the airgap, a small deviation remains in the 2-D system.
In contrast, the output of the 1-D system (2) suffers drastically
from the varying field amplitude.

III. PROPOSAL

To improve airgap stability in linear position systems,
we propose to make the magnetic field B(x, z) or rather
the system output ζ(x, z) locally independent of the airgap
by combining the fields of several simple magnets in the
spirit of [25], [28]. A sketch of the main idea is outlined
in Fig. 4. There, the quick decay of the magnetic field of
a small, close magnet is superposed with the slow decay of a
large, distant magnet with reversed magnetization. By suitable
arrangement of the two magnets (or magnet systems) we can
achieve stationary points zs of the field components in airgap
direction, dB/dz(x, zs) = 0. Ideally, this is achieved for both
components simultaneously and all positions x so that the
system output becomes locally airgap independent

dζ

dz
(x, zs) = dζ

dB
· dB

dz
(x, zs)︸ ︷︷ ︸
=0

= 0. (6)

The system output error is closely connected to the derivative
of ζ in z-direction

�ζ(x, z) = ζ (x, g) − ζ (x, z) � dζ

dz
(x, z) · �g (7)
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Fig. 4. (a) Antiparallel permanent magnet arrangement leads to (b) ben-
eficial field superposition. For well-chosen dimensions, the sketch in (b) is
approximately valid for both Bx and Bz and all x simultaneously (possibly
with reversed sign).

Fig. 5. Sketch of the magnet system variation parameters.

so that property (6) translates directly to the position error (5).
Note that stationary points of field B are sufficient, but in

the 2-D case not necessary for the desired stationary points of
the system output ζ . While it is difficult to achieve stationarity
for all positions x at the same time, it is enough to sample the
“low slope area” near zs to improve stability [see Fig. 4(b)].

IV. METHOD

We compare 1-magnet (state-of-the-art) and 2-magnet (pro-
posal) systems with 1-D and 2-D sensors, respectively.
For good magnetic stability the 2-magnet system is con-
structed as indicated in Fig. 5 with magnet dimensions
a1, b1, c1, a2, b2, c2 and distance d . This work is based on a
multivariate optimization of these magnet system parameters
to reduce the position error as much as possible. For com-
parison with optimal 1-magnet systems a similar optimization
with a1 = b1 = c1 = 0 is performed.

One must take care in the optimization process that the
sensitivity does not tend to small or even negative values. This
would violate the fundamental requirement that the system
output ζ is a bijective map of the observable of interest.

A. Cost Function

The optimal system is found by global minimization of a
cost function F which expresses the desired system qualities.
We choose a weighted position error

�x(x0) :=
(∫ g+�g

g−�g
w(z) · |�x(x0, z)|2 dz

)1/2

(8)

introducing the Gaussian weight function w(z) with μ = g
and σ = �g/3 to account for realistic stochastic deviations
of industrial systems. A corresponding cost function can then
be defined as the maximal weighted position error over the
whole range

Fp := max
x0∈[−s,s]

�x(x0). (9)

At the same time, the quality of a sensor system is strongly
related to its sensitivity (4) which can be represented through
another cost function Fs that could, for example, be given
by the minimal sensitivity over the whole range. A total cost

function F can then be written as a convex combination of
these two terms, i.e.,

F := (1 − λ)Fp − λFs (10)

with λ ∈ [0, 1]. Minimization of F leads to minimized position
error and maximized sensitivity at the same time, where λ
specifies the balance between Fp and Fs .

In this work, we set λ = 0 and neglect the sensitivity term
Fs because the sensitivity must always be related to sensor
resolution and noise behavior and we do not want to focus on
one specific sensor type.

B. Scaling Invariance
A system where the sources are only ideal hard magnets is

invariant with respect to the scaling of the spatial dimensions.
This means that transformations of the form

(x, y, z) �−→ k1 · (x, y, z) (11)

with k1 > 0 on the whole system (i.e., stroke, airgap, magnet
dimensions) result in the same magnetic field at the scaled
sensor position. Furthermore, the scaling of the magnetization
amplitude

M �−→ k2 · M (12)

has no influence on the optimization problem, as the fields are
directly proportional to it, |B| ∝ M .

The optimization is independent of the scaling, i.e., for dif-
ferent system sizes and materials the same optimum solution
is found up to the scaling factor k1 for geometric parameters
and k2 for field and magnetization. With (11) and (12) we can
define a characteristic length l0 and magnetic field M0 and
express all spatial variables, magnetizations and fields as
dimensionless multiples of these parameters. Eventually, l0 and
M0 can be used after solving the optimization problem, to set
a system size and a material for practical applications.

C. Reasonable System Constraints
When dealing with realistic problems the end-user has spe-

cific requirements which must be included in the optimization
process. These “reasonable system constraints” include:

1) the detection range or length of the stroke s;
2) the airgap g and airgap tolerance �g;
3) a required resolution given by choice of sensor and

sensitivity S;
4) the construction space with maximal magnet system

dimensions xmax, ymax, zmax typically limited to ∼s;
5) the construction costs reflected in magnet volume V and

magnetic material (magnetization M).
For our demonstration in Section V we choose l0 = 1 mm,

μ0 M0 = 1 mT and a set of reasonable constraints in Table II
that reflect standard system parameters for a linear position
system.

D. Simulation Method
The fields are calculated by an analytical method using

the magpylib package [29] which is based on the expressions
from [30]–[32]. The speed of the analytical solution (effective
sub-microsecond computation times) enables highly efficient
multivariate parameter variation which is not feasible with
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TABLE II

REALISTIC SYSTEM PARAMETERS AND CONSTRAINTS

TABLE III

BOUNDS AND OPTIMIZATION RESULTS OF THE MAGNET SYSTEM

PARAMETERS SHOWN IN FIG. 5

TABLE IV

SENSITIVITY S(0, g) FOR ALL CONFIGURATIONS

common numerical methods like finite element (FE) or bound-
ary element (BE). The error of the analytical solution is below
1% field amplitude and 1◦ angle for magnet L/D ratios of the
order of 1 (cubical magnet dimensions) when compared to FE
results of hard magnets with linear demagnetization slopes of
μr < 1.05 [10].

V. RESULTS

The optimization procedure described in Section IV is
carried out to find optimal configurations for 1-D and 2-
D systems with one or two magnets. Optimization bounds and
results are given in Table III.

For each of the four cases, the resulting sensor output is
shown in Fig. 6. Two effects can be observed there: On the
positive side, the 2-magnet systems show increasing airgap
stability confirming the original proposal. However, one has
to pay for this stability with reduced field amplitudes and
sensitivities. This is directly visible in the figures and is given
quantitatively in Table IV.

In Fig. 7 we shown the actual position error of the sensor
output �x as a function of the position x and the airgap
variation �g. The lower level of position error within the
working area (10 mm × 2 mm rectangle in the figure) is
clearly visible.

Finally, we compare the weighted position error �x(x0)
from (8) as well as the maximal position error �x(x0, z)
for z ∈ [g − �g, g + �g] for all four configurations in
Fig. 8(a) and (b). The 2-magnet systems are visibly improved
over their 1-magnet counterparts.

VI. DISCUSSION AND OUTLOOK

In this article we show how to design an airgap stable linear
position sensor system by adding a second magnet which
stabilizes the field. Here stabilization means a reduction of
the position error resulting from airgap variation. It was shown
that the proposed method works for both, 1-D and 2-D sensor
systems. For our model problem with airgap variation of

Fig. 6. Sensor output of optimum configuration in four different cases.
(a) 1-magnet, 1-D sensor. (b) 2-magnet, 1-D sensor. (c) 1-magnet, 2-D sensor.
(d) 2-magnet, 2-D sensor.

Fig. 7. Position error �x for all four configurations. The red rectangle marks
the working area (±�g airgap variation) of the sensor system. (a) 1-magnet,
1-D sensor. (b) 2-magnet, 1-D sensor. (c) 1-magnet, 2-D sensor. (d) 2-magnet,
2-D sensor.

Fig. 8. Quantitative comparison of weighted position error �x and maximal
position error �xmax of the four optimized systems with ranges of ±5 mm
and airgap variations �g of ±1 mm.

±1 mm, 5 mm nominal airgap and a range of 10 mm, this can
lead to a reduction of the maximal weighted position error by
a factor of ∼14 for 1-D systems and by a factor of ∼5 for
2-D systems within our chosen system requirements. It must
be noted that these factors depend on the chosen system.
Further improvements are possible which is also visible in
Table III by the fact that the optimization returns boundary
values. In general, we find that position error reduction by
one order of magnitude in 1-D and a factor of 3–5 in 2-D is
easily achieved for the typical linear position systems outlined
in Table I.
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The major downside of the proposed method is the reduction
of field amplitude, which translates directly to the sensitivity
and potential resolution. However, our results are just a proof
of principle where we have demonstrated a novel airgap
stabilization mechanism for magnetic systems. With additional
constraints and the choice λ > 0 in (10), the balance between
stability and field amplitudes can be adjusted at will.

While the proposed method is based on only two cuboid
magnets, it is easily extended to more complex magnet struc-
tures as proposed in [25]. With the chosen spatial dimensions,
we have investigated realistic size relationships in applications.
Moreover, as mentioned in Section IV-B, the computation is
scale invariant, so that other airgaps can be covered by simul-
taneously adjusting the magnet dimensions. The fundamental
concept of stationary points in the magnetic field profile can
of course be applied to other length ratios, magnet shapes,
component alignments, etc. as well

Finally, we note that the odd component of a single magnet’s
field already has natural stationary points with a high level of
airgap stability. However, these extrema lie very close to the
magnet surface (assuming cuboids) so that if the system is
scaled up to achieve desired airgaps, the magnet size exceeds
our reasonable system constraints. Further investigation and
exploitation of this effect is planned.

VII. CONCLUSION

Linear positioning systems are state of the art in many
technical applications. Since they are mass-produced, the
industrial requirements for them are mainly cost efficiency and
robustness. With the idea of adding a small second magnet
to the system, we could show that the common problem of
airgap variation due to mechanical tolerances during instal-
lation can be massively reduced. Our approach shows how
such a problem can be formulated, studied and solved as a
mathematical optimization problem. The authors believe that
potential further improvements to magnetic sensor systems can
be studied in an analogous manner.
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