
IEEE TRANSACTIONS ON MAGNETICS, VOL. 58, NO. 8, AUGUST 2022 5000306

Effect of Fiber Tracts and Depolarized Brain Volume on Resting
Motor Thresholds During Transcranial Magnetic Stimulation
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Transcranial magnetic stimulation (TMS) is a treatment procedure for some neuropsychiatric disorders, and it has been used for
brain mapping, as well as diagnosis and treatment of neuromuscular dysfunctions. There is a disconnect between TMS modeling and
clinical data: several groups have reported the simulated induced electric field and measured resting motor threshold (RMT) with
inconsistent results in the relationship between RMT and brain scalp distance. This necessitates the use of simulation parameters
that further account for individual differences in neuroanatomy. We recruited ten healthy subjects and obtained empirical RMT,
magnetic resonance imaging (MRI), and diffusion tensor imaging (DTI). We developed anatomically accurate brain models from
MRI and simulated TMS to determine the percent depolarized volume of gray matter (DVG) from TMS-induced electric fields.
Corticospinal fiber tracts were extracted from the primary motor cortex from DTI to obtain fiber tract surface areas (FTSAs) for
each participant. Linear mixed-effects models were used to evaluate the effect of DVG and FTSA on RMT. We report that DVG
correlates with RMT when accounting for corticospinal FTSA.

Index Terms— Magnetic resonance imaging, motor evoked potentials, neuroplasticity, resting motor threshold (RMT), transcranial
magnetic stimulation (TMS).

ABBREVIATIONS

B Magnetic field.
DTI Diffusion tensor imaging.
DVG Depolarized volume of gray matter.
E Electric field.
MRI Magnetic resonance imaging.
RMT Resting motor threshold.
TMS Transcranial magnetic stimulation.

I. INTRODUCTION

F INITE element modeling simulations of TMS using com-
plex head models and coils have been used to better

understand neuromodulation strategies. TMS is a promising
neuromodulation paradigm for brain mapping, diagnostics, and
treatment of neurological and psychiatric disorders [1]–[5].
However, it is limited by high intra- and inter-subject vari-
ability in its effects [1], [6]–[14]. The methods of modeling
derived from magnetic resonance imaging (MRI) have been
used with TMS to tailor stimulation protocols [1], and to
connect individual neuroanatomy to variations in response to
measurement of the brain scalp distance, including a study
by Lotze et al. [17], which found that brain scalp distance
explained some disparity between functional MRI (fMRI) and
TMS brain mapping [15], [16]. Brain scalp distance, however,
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as a single dimensional measurement, fails to account for the
composition of tissue between the scalp and cortex. Induced
electric field strength from the magnetic field generated by
the TMS coil, however, is a 3-D parameter and accounts for
greater complexity of tissue organization [18].

Individual differences in neuroanatomy will influence TMS
response as the induced electric field is dependent on the
brain morphology, and communication along a pathway is
dependent on the fiber tracts leading from the cortex to the
spine [8], [15], [18]–[23]. TMS responses from the motor
cortex can be characterized by the RMT, which has two defin-
itions. From the perspective of neuron depolarization, RMT is
the stimulation intensity in percentage of maximum stimulator
output required to induce cortical electric field strength of
at least 100 V/m [24]. From a motor response perspective,
in a clinical setting, RMT is defined as the stimulus intensity,
also in percentage of maximum stimulator output, that elicits
a motor evoked potential of at least 50 mV in at least five
out of ten consecutive stimuli [25], [26]. These motor evoked
potentials are variable between individuals, and physical dif-
ferences between individuals can affect both motor evoked
potential amplitude and interpretation [27]. These definitions
are linked because electric field strength of at least 100 V/m
is the threshold of consistent depolarization of neurons, which
would lead to the motor evoked potentials. However, the
current simulation work has not investigated the simulated
electric field strength and RMT in the context of individual-
level anatomical variation while considering inter-subject fiber
tracts for differences in corticospinal communication, and
simultaneously compared to the empirical response to TMS.

The motor cortex and corticospinal tract’s response to
TMS is of particular interest in motor rehabilitation. Brain
stimulation can prime the corticospinal system prior to motor
training, and thereby improve motor relearning [28]–[30];

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-2000-9841
https://orcid.org/0000-0001-5939-556X


5000306 IEEE TRANSACTIONS ON MAGNETICS, VOL. 58, NO. 8, AUGUST 2022

this has been found in healthy individuals and those with
motor impairment, where repetitive TMS applied to arm or leg
cortical representations of the primary motor cortex increased
corticomotor excitability, voluntary motor control, and motor
learning [9], [22], [31], [32].

The purpose of this study was to investigate the effect of
neuroanatomy on the response to TMS. Several studies have
investigated the relationship between brain scalp distance and
TMS responses with varying conclusions [15], [27], [33]–[35].
In this study, we have investigated the dependence of RMT
on neuroanatomy including fiber tracts, which is related to
functional connectivity in the motor pathway network. RMT
was recorded from human subjects to establish a TMS motor
response, while simulated TMS was applied to individualized,
anatomically accurate head models derived from MRI of the
same human participants. Electric field strength and head
models were used to calculate the percent of DVG, to incor-
porate cortical interconnectivity into the anatomical metric of
electric field strength. Fiber tractography was carried out to
calculate the fiber tract surface area (FTSA), representing the
neural communication architecture along the motor pathway
of interest. DVG and FTSA were compared to the empirically
collected RMT. We hypothesized that RMT would negatively
correlate with DVG, indicating greater TMS response with
more brain volume depolarization. Furthermore, we hypoth-
esized that the relationship between DVG and RMT would
depend on the FTSA.

II. METHODS

A. Participants and Empirical TMS Sessions

Ten individuals (seven females, three males, 23.5 ± 5 years)
participated after screening to ensure safety of the TMS
and MRI protocols and providing informed consent. Eligible
participants were between the ages of 18 and 65 years old.
Severe medical illness and sequelae, existing infection, car-
diovascular disease, significant osteoporosis, metal implanted
devices, personal or family history of seizure activity, and any
acute or current history of neuromuscular or motor dysfunc-
tion were exclusionary. Participants underwent TMS sessions
targeting the motor hotspot of the first dorsal interosseous as
described by Mittal et al. [6]. Each participant had two RMT
measurements in their session, to account for intra-subject
variability (see Section II-C). This study was approved by
the Virginia Commonwealth University Institutional Review
Board (Study ID: HM20018505), Clinical Trial Registration:
ClinicalTrials.gov: NCT04586387 [50].

B. MRI-Derived TMS Simulations and Modeled Parameters

Structural T1- and T2-weighted images and whole brain
diffusion-weighted images were acquired for head model gen-
eration and fiber tractography from diffusion tensor imaging
(DTI), respectively.

Extracted T1- and T2-weighted images from all the sub-
jects passed a SimNIBS pipeline (SimNIBS Developers 2019,
v2.0.1) [15], [33] to create individual segments. Abnormalities
were smoothed using Meshmixer (AutoDesk, Inc., v11.2.37)
(Fig. 1).

Fig. 1. Anatomical variation. Head models from each participant are
visualized (participant ID. 1–10, from top left, across, then to bottom left and
across). Each head model is distinct and made to the MRI of an individual
participant.

Fig. 2. Coil positioning. Left: The simulated coil is placed to induce a
monophasic anterior-to-posterior current on the cortex, maximally over the
region of upper motor control in the primary motor cortex. Right: TMS session
setup for coil placement after adjustments to find the optimal empirical point
of target.

Sim4Life finite element analysis software (Zurich Med
Tech, v6.2.1.4972) was used to compute magnetic field, B , and
induced electric field, E , on the generated head models from
peak intensity stimulation of the primary motor cortex [15],
[16], [18], [36]. The simulated coil matched dimensions of the
Magstim 70 mm figure-of-eight coil [37], oriented to match
the empirical setup (Fig. 2), targeting the precentral gyrus
posterior to the superior frontal sulcus, within the “knob” as
defined by Yousry et al. [38].

The stimulation current strength was set to 5000 A,
corresponding to 100% maximum stimulator output,
at 2500 Hz [18] and the segments of the head model and
air were assigned material properties based on the IT’IS LF
database (IT’IS Foundation, v4.0).

Electrical conductivity of gray matter, white matter, and
cerebrospinal fluid were 0.24, 0.27, and 1.78 S/m, respectively.
The relative permeability of all the materials (to air) was 1.
The magnetic stimulation was calculated based on stimulator
and model material parameters (Fig. 3). Induced electric field
strength at the surface of the cortex, specifically of the gray
matter segment, was interpolated (Fig. 4), and the gray matter
electrical field vectors for each voxel were extracted [18].
The root mean square was calculated to find the electric field
strength at each individual voxel for the gray matter. DVG
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Fig. 3. Simulated magnetic field on cortex (sagittal plane). The magnetic
field generated by the TMS coil was generated within the head model.
Magnetic field strength (B-field) was determined based on the coil parameters,
positioning, and material mediums in the head models. Maximal stimulation
was located over the upper limb motor control region of the primary motor
cortex. White is maximum B-field, 0.528 T, to dark blue, 0 T.

Fig. 4. Induced electric field strength on cortex (sagittal plane). Finite element
simulations of magnetic stimulation delivered to individual head models were
performed to calculate electric field strength based on the magnetic field.
Maximal stimulation is located over the upper limb motor control region of
the primary motor cortex. White is maximum electric field strength, 122 V/m.
to dark blue, 0 V/m.

was found by calculating the percent of voxels above the
threshold of 100 V/m using MATLAB (MathWorks, MATLAB
v 9.7.0.1190202).

Fiber tracts were extracted from DTI using DSI Studio
(Feh, DSI Studio, 2020) based on the anatomical landmarks
(superior frontal sulcus, precentral sulcus, central sulcus, and
precentral gyrus) to the “knob” of the primary motor cor-
tex [38]. A 6 mm diameter region of interest seeded extraction
of fibers [39] (Fig. 5). Fiber coordinates were then imported
into SolidWorks (BIOVIA, Dassault Systèmes, SolidWorks,
SP3.0, San Diego: Dassault Systèmes, 2017) to calculate the
FTSA for each model’s fiber tract.

Fig. 5. Fiber tractography. Corticospinal fiber tracts were extracted from
DTI beginning from a region of interest that encompassed upper limb motor
control in the primary motor cortex.

Fig. 6. Effect of DVG on RMT. RMT was found to correlate with DVG
when accounting for fiber tract geometry in the form of FTSA. Larger tracts
exhibited the expected negative correlation between RMT and DVG given the
equation: RMTV/m = −124.52 ∗ DVG%brain volume + 72.45.

C. Statistical Analysis

Spearman’s correlation tested for associations between
either DVG or FTSA and RMT. Linear mixed-effects models
tested for associations between DVG and FTSA and their
effects on RMT in R (The R Foundation, v3.4.3) [40], [41].
Participants were included in the statistical model due to
having two measurements for each, as a random effect to
account for intra-session, intra-subject variability between
multiple RMT measurements in a single session and from a
single individual.

III. RESULTS

A. Magnetic Fields, B, and Induced Electric Fields, E

Magnetic fields, B , and electric fields, E , were calculated
in all the regions of the brain for the ten subjects. The peak
fields in all subjects were determined below the figure-of-eight
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TABLE I

SIMULATION PARAMETERS FOR EACH PARTICIPANT

TABLE II

RMT FOR EACH PARTICIPANT

coil on the upper limb control area of the motor cortex which
we intended to target. Table I shows the variation of B- and
E-fields of all ten subjects. These values are similar to the
reported B- and E-field values reported in the literature by
other researchers [37], [42]–[44].

B. TMS Response (RMT)

Table II shows the first dorsal interosseous RMT of ten
subjects along with their age and both RMTs for each session.
There was no correlation between RMT and DVG alone (p
= 0.17). There was no correlation between RMT and FTSA
alone ( p = 0.9).

C. Effect of DVG on FTSA on RMT

DVG and FTSA values are presented in Table I. There was
no association between RMT and DVG alone (p = 0.17).
There was no association between RMT and FTSA alone (p
= 0.9).

D. Association Between DVG and FTSA

A linear mixed-effects model including the interactions
between DVG and FTSA revealed an association between

RMT and DVG (p < 0.001). RMT negatively correlated with
DVG, but only at high FTSA. The correlation became less
negative as FTSA decreased, until a positive correlation was
observed at the lowest FTSA range. These relationships can
be seen in Fig. 6.

DVG and FTSA were positively correlated ( p = 0.013).

IV. DISCUSSION

The objective of this preliminary study was to investigate the
association between modeled DVG above a threshold electric
field and empirical TMS responsiveness (i.e., RMT). The sec-
ondary objective was to determine the influence of fiber tract
geometry (FTSA) on the empirical TMS responsiveness to
brain depolarization. The hypothesis that RMT would correlate
negatively with DVG was partially supported; this relationship
was found with a negative correlation between RMT and DVG,
but only when accounting for fiber tract geometry, with larger
fiber tracts (high FTSA).

The interaction between DVG and fiber tract geometry
suggests that the expected relationship between brain depo-
larization and TMS evoked motor response is dependent on
the connectivity within the cortex and overall neuroanatomy.
Previous studies also support that the relationship between
brain depolarization and TMS evoked motor response, which
is dependent on the connectivity within the cortex and neu-
roanatomy. Rossi et al. [45] discussed age-related influences
on TMS intensity variation between individuals, with neu-
roanatomical differences between children and older individ-
uals being one driver in the intensity variation. Cantone et
al. [27] showed that individual physiological differences affect
the amplitudes of motor evoked potentials elicited by TMS,
further highlighting the impact of individual neuroanatomy.
TMS studies paired with electroencephalography have shown
that induced activity spreads along motor networks [46], and
cortical connectivity and hemodynamics can be modulated by
repetitive TMS paradigms [47], i.e., it would expect more
depolarized brain results in a motor response with less required
stimulation as the brain is more sensitive to stimulation as a
whole. This did occur in the present study in the presence of
higher FTSA, as FTSA was a metric of cortical connectivity.
High DVG and low RMT would be expected in a more
responsive anatomical architecture due to greater connectivity,
while larger fiber tracts would be expected to effectively
transmit this from the cortex as greater cortical connectiv-
ity promotes TMS response [46]. The association between
DVG and FTSA supports that both parameters would indicate
aspects of neural connectivity, DVG electromagnetically, and
FTSA synaptically. Thus, when both the DVG and FTSA
are large, RMT is decreased. RMT depends on DVG in a
predictively linear fashion if FTSA is considered. However,
when fiber tracts are smaller, the relationship between brain
depolarization and motor output requires further investigation.

V. CONCLUSION

This was a preliminary study with some limitations, and
future work is needed. This study is limited by a small sample
size that included no subjects with brain disorders. The effects
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of neuropathology on the relationships investigated would be
essential to ascertain before developing treatment paradigms
and future studies should include greater sample sizes and
pathologically diverse groups to investigate the influence of
neurological disorder on these relationships. However, the
addition of diagnostic variables to a proof-of-concept study
would make it difficult to characterize the interaction of these
parameters at baseline. Furthermore, electric field strength is
a time-varying parameter, but was evaluated using a quasi-
static solver for finite element analysis, due to computational
limitations. The analyses presented are associative only, rather
than causational. Future work should investigate causal mech-
anisms and further clarify the directionality of the uncovered
associations. Last, DTI was used for proof of concept, but
future study with more sophisticated methods, such as neurite
orientation dispersion and density imaging [48] or fixel-based
analysis [49], would allow for greater insights of effects of
individual variability in neuroanatomy.

Our results show that the effects of TMS are governed by
cortical organization due to anatomy and fiber tract geometry.
Further investigation is needed to understand the mechanistic
drivers of the relationship between depolarized brain volume
and RMT at different fiber tract sizes.
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