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This article provides both a theoretical analysis and a numerical method for the inverse source problem of locating multiple passive
3-D coils based on measurements of their superposed magnetic fields. In our context, a 3-D coil consists of three concentric circular
coils being mutually perpendicular, and the term “passive” means that these coils are not connected to an active power source.
Instead, their current is induced externally by a low-frequency alternating magnetic field which is generated by a closed exciter
wire. The underlying inductively coupled system is modeled with regard to the 3-D coils as magnetic dipoles and their localization is
formulated as an inverse problem. Since its ill posedness mainly arises from strong sensitivity to observational noise, an approximate
upper bound for the localization error is derived mathematically by linearization. The Levenberg–Marquardt algorithm is applied
as a method for localization and modified for better performance as well as the ability to estimate the number of 3-D coils in the
localization area. Our method is tested with simulated and real data in order to confirm its capability of locating up to three passive
3-D coils within the front of a wooden shelf surrounded by the exciter wire and eight rectangular loop antennas.

Index Terms— 3-D coil, inverse problem, Levenberg–Marquardt algorithm, magnetic dipole, magnetic source localization.

I. INTRODUCTION

D ISTRIBUTION centers are required to operate as reliable
and error free as possible in order to guarantee a resilient

flow of goods. Fully automated warehouses are, however, very
cost intensive and also inflexible to changes in the distribution
process. Therefore, the human worker remains an integral
part of every supply network. Of course, mistakes can be
made when picking goods from the shelves according to the
customers’ order by hand. In Industry 4.0, this problem is
addressed by supporting the worker with audiovisual technolo-
gies like headsets [1] or Augmented Reality [2].

In this article, we provide the technical foundation for
a smart shelf giving positive or negative feedback whether
some item is picked from the right compartment or not. The
technology is based on the localization of the worker’s hands
within the front plane of the shelf. For this purpose, each of
his wrists is equipped with a so-called 3-D coil consisting
of three small circular coils which are aligned perpendicular
to each other. If supplied with electric current, the 3-D coils
generate a magnetic field that can be measured in order to
determine their positions. The originality of our approach
arises from the fact that the 3-D coils are not connected to
an active power source but inductively supplied with current.
For this purpose, a closed wire is placed around the front of the
shelf and connected to a source of alternating current at low
frequency in order to generate an oscillating magnetic field.
To linguistically distinguish this field from the one generated

Manuscript received August 10, 2019; revised October 25, 2019; accepted
January 17, 2020. Date of publication January 23, 2020; date of cur-
rent version March 18, 2020. Corresponding author: M. Doß (e-mail:
dossmn@iis.fraunhofer.de).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMAG.2020.2968858

by the 3-D coils, we, respectively, name them primary and
secondary magnetic fields. All 3-D coils are tuned to be in
resonance with the primary field’s frequency by capacitors.
Several rectangular loop antennas are placed around the front
of the shelf measuring the secondary field’s magnetic flux
through their surfaces by induction. In the following, we refer
to these antennas as pickup coils [3] and to the closed wire
generating the primary field as the exciter wire. Since the
picking process usually requires both hands, our method has
to be capable of locating at least two 3-D coils at the same
time. However, there is no need to distinguish the right from
the left hand.

The localization of passive 3-D coils was proposed by
the Fraunhofer Institute for Integrated Circuits (IIS) as part
of the goal-line technology GoalRef [4], [5] certified by
the Fédération Internationale de Football Association (FIFA).
For the detection of goal events, a 3-D coil is integrated
into the soccer ball. In [6], a modified version of GoalRef
known as the IndLoc positioning system is used to per-
form full 2-D localization of multiple 3-D coils within a
wooden shelf. The IndLoc localization algorithm is based
on simple fingerprinting and orthogonal codes are used
to separate the magnetic fields generated by the different
3-D coils. In [7], it is analyzed how the localization accu-
racy is affected by the arbitrary orientation of the passive
3-D coil.

In this article, we present an alternative localization algo-
rithm based on methods from nonlinear optimization instead of
fingerprinting. Our method is also capable of locating multiple
3-D coils without separating their signals. By that, the manu-
facturing costs for the 3-D coils are reduced since the use of
additional signal processing devices as given in [6] is no longer
required.
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Apart from the previous works by Fraunhofer, magnetic
source localization plays an important role in many current
research areas. Whenever some object generates a magnetic
field, the latter can be measured in order to determine the
object’s position. Although this basic concept is always the
same, there is a broad spectrum of possible scenarios, and
the differences in the technical details can be very subtle.
First, the magnetic sources vary from permanent magnets [8]
over electrical activities in the human brain [9] to current-
carrying coils [10]. In the last case—which is of special
interest to us—the coils are usually attached to the objects
to be localized. In some applications, these coils are flat
[11] whereas in others multiple coils are combined to a
three-dimensional array [12], [13]. Regardless of their shape,
the electric current is always required to generate a magnetic
field. In [14], this is realized by connecting them to an active
power source. The localization of a resonant magnetic marker
is described in [15]. Every localization algorithm is based on a
physical model describing the relation between the magnetic
source and its field measurements. Coils are usually treated
as magnetic dipoles. From a mathematical point of view,
the actual localization is then performed by solving an inverse
problem which is achieved by optimization algorithms like
Levenberg–Marquardt [16] or unscented Kalman filter [17].
If multiple coils are supposed to be positioned at the same
time, they can be tuned to different frequencies in order to
separate their signals as shown in [18]. By that, the same
localization algorithms as in the case of a single coil apply.

In our case, all 3-D coils are tuned to the same resonance
frequency and only their cumulative field is measured.
Hence, our localization algorithm has to be capable of
fitting multiple dipoles simultaneously to the measured data.
Similar algorithms are used in magnetoencephalography
(MEG) to map human brain activity [19]. Also, in [20]–[23]
the electromagnetic radiation of an electronic device is
determined by fitting a set of electric and magnetic dipoles
to measurements of its near field.

This article is structured as follows: first, a model is derived
in Section II describing the inductive coupling between all
components of the system. In Section III, the localization of
multiple passive 3-D coils is embedded into the mathematical
theory of inverse problems which also includes the discussion
of the term “ill posedness” in our context. After these the-
oretical considerations, the Levenberg–Marquardt algorithm
is introduced as a method for localization in Section IV.
The algorithm’s performance and its sensitivity to observa-
tional Gaussian noise are both tested with simulated data in
Section V. The smart shelf from [6] is then used to verify
the functionality of our localization method with real data in
Section VI. Finally, Section VII concludes this article.

II. FORWARD MODEL

Understanding the passive 3-D coils’ inductive coupling
with the primary magnetic field and the pickup coils is funda-
mental for their localization. Our aim is to predict the induced
voltages at the pickup coils as functions of the 3-D coil
positions. In order to do so, the model in [5] is simplified
by treating the 3-D coils as magnetic dipoles. Since we are

Fig. 1. Three orthogonal circular coils forming a 3-D coil with their
respective unit normal vectors n1, n2, n3 (in the same color) and common
center s.
only interested in peak values of voltages and currents in our
calculations, it is sufficient to treat them as real numbers.
Furthermore, vectors are printed bold for better readability.

Let P ⊂ R
3 be the set of admissible 3-D coil positions.

A closed exciter wire E is placed outside P and connected
to a current source with amplitude Iex and low frequency
f in order to generate an oscillating primary magnetic field
inductively supplying the 3-D coils with current. The vector-
valued amplitude of its flux density B1 at position p ∈ R

3 is
described by the Biot–Savart law [24]

B1( p) = −μ0 Iex

4π

∮
E

( p − p′) × d p′

‖ p − p′‖3 (1)

where μ0 denotes the vacuum permeability and d p′ an infin-
itesimal wire element tangential to E at position p′. Note
that this formula only applies to direct current as well as
alternating current of low frequency for which a quasistatic
approximation is possible. A 3-D coil consists of three
mutually perpendicular concentric circular coils which are
assumed to be identical in their area S and their number of
windings N . Each circular coil is tuned to be in resonance
with the exciter frequency f by means of capacitors being
soldered in series to the coil according to Thomson’s formula
[25, Ch. 14.5]

f = 1

2π
√

LC
(2)

where L and C denote inductance and capacitance, respec-
tively, of each circular coil. The geometry of a 3-D coil
is uniquely determined by a common center s ∈ P of its
circular coils as well as their unit normal vectors n1, n2, n3
being perpendicular to the corresponding surfaces S1, S2, S3 as
shown in Fig. 1. The flux density of the primary magnetic field
passing through a 3-D coil is approximated by its linearization
in the center s

B1( p) ≈ B1(s) + D B1(s)( p − s) (3)

where D B1(s) denotes the Jacobian matrix of B1 evaluated
at s. Hence, if S is sufficiently small, we can approximate the
primary field’s magnetic flux �α through the αth circular coil
belonging to a 3D-coil with center s as

�α =
∫∫

Sα

B1( p) · nα d A( p)

(3)≈ S B1(s) · nα + nα
T D B1(s)

∫∫
Sα

p − s d A( p)

= S B1(s) · nα (4)
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taking into account that the surface integral of p − s over the
disk Sα vanishes due to its central symmetry with respect to s.
Due to Faraday’s law of induction the induced peak voltage
at the same circular coil is then obtained as

Uα ≈ −2π f N S B1(s) · nα . (5)

From (2), it follows that the impedance Z of each circular coil
is purely resistive:

Z = R + j

(
2π f L − 1

2π f C

)
= R (6)

where R denotes the ohmic resistance which is assumed to
be the same for all circular coils. Hence, the corresponding
current at resonance can be calculated as

Iα = Uα

R
. (7)

According to [26, Ch. 29.5], we treat each circular coil as a
magnetic dipole with the following dipole moment:

mα = N Iα S nα . (8)

The total dipole moment m(s) of a 3-D coil at position s
is then obtained as the sum of these single dipole moments.
Taking into account that (n1, n2, n3) is an orthonormal basis
for R

3 [27, Ch. 4.4], we obtain the following simple formula:

m(s) =
3∑

α=1

mα

= N S
3∑

α=1

Iαnα

= N S

R

3∑
α=1

Uαnα

≈ −2π f N2 S2

R

3∑
i=1

(B1(s) · nα) nα

= −2π f N2 S2

R
B1(s). (9)

So, in our model the total dipole moment does not depend on
the 3-D coil’s orientation and is already uniquely determined
by its position. Of course, we could also use Taylor poly-
nomials of higher order in the approximation of the primary
field’s flux density (3) or do not approximate it at all in order
to increase the accuracy of our model. However, in this case
the total dipole moment of a 3-D coil would also depend on
its orientation and localization would not be possible without
estimating the orientations of the 3-D coils which is not the
purpose of our method.

The flux density of the secondary magnetic field generated
by a passive 3-D coil with center s is denoted by B2

s and its
vector-valued amplitude at position p ∈ R

3 is described by
[10]

B2
s ( p) = μ0

4π

[
3( p − s)(m(s) · ( p − s))

‖ p − s‖5 − m(s)
‖ p − s‖3

]
. (10)

Note that this formula is linear in m(s) which corresponds to
the superposition principle for magnetic fields. The latter also

states that the secondary fields of multiple 3-D coils overlap
additively.

Now, let k be the number of pickup coils by which the total
secondary field is measured. Surface and unit normal vector
of the j th pickup coil are denoted by A j and a j , respectively.
The number of windings M is assumed to be the same for all
pickup coils. If a 3-D coil is located at position s, its secondary
magnetic field induces the following voltage at the j th pickup
coil:

U j (s) = −2π f M
∫∫

A j

B2
s ( p) · a j d A( p) (11)

taking into account Faraday’s law of induction. To ensure that
the integral on the right-hand side of (11) is finite, we demand
that the closures of all sets A j do not intersect with the closure
of P .

So far, only one 3-D coil was considered to be in the
localization area at a time. The general case with multiple 3-D
coils of identical design is derived easily: if l 3-D coils are
located at the positions s1, . . . , sl ∈ P , their total secondary
magnetic field induces the following voltage at the j th pickup
coil:

l∑
i=1

U j (si ). (12)

In these calculations, the mutual inductance of the 3-D coils
is neglected, i.e., we assume that the secondary field of one
3-D coil does not induce a current in another. Apart from
the secondary magnetic field, the primary field also induces a
voltage in the pickup coils. However, for a fixed geometrical
setup this can be seen as a constant offset and by subtracting
it from the total voltage we make sure that only the secondary
field is measured. Note that the pickup coils also generate
magnetic fields which are not respected by our model due
to their negligibly small order of magnitude compared to the
primary magnetic field. Both effects are minimized at our setup
by placing the exciter wire along the symmetry axes of the
pickup coils.

The voltages at the pickup coils are treated as components
of a vector-valued function Fl : Pl → R

k defined by

Fl (s1, . . . , sl ) :=
l∑

i=1

⎛⎜⎝U1(si )
...

Uk(si )

⎞⎟⎠ (13)

where Pl denotes the l-fold Cartesian product P × · · · × P .
We refer to (13) as our forward model (for l 3-D coils). Due
to its additivity

Fl (s1, . . . , sl ) =
l∑

i=1

F1(si ) (14)

we have

Fl (s1, . . . , sl ) = Fl (sσ(1), . . . , sσ(l)) (15)

for all permutations σ on the set of indices {1, . . . , l}. This
equation can be seen as the mathematical analog to the
fact that all 3-D coils are identically designed and therefore
cannot be distinguished by their secondary magnetic fields.
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Fig. 2. Illustration of the set P2 for a 1-D position space P: in this case,
the permutation of two 3-D coil positions s1 and s2 is equivalent to reflecting
the respective tuple (s1, s2) across the diagonal of the product space P2.

In order to eliminate these unintended ambiguities, we say
that two l-tuples of positions (s1, . . . , sl ), (s′

1, . . . , s′
l ) ∈ Pl

are equivalent if and only if there is a permutation σ such that

(sσ(1), . . . , sσ(l)) = (s′
1, . . . , s′

l ). (16)

The resulting equivalence relation ∼ is used to factorize the
domain of Fl as

Pl := Pl/ ∼ (17)

where Pl/ ∼ denotes the quotient space [28, Ch. 9]. In other
words, the set Pl contains all combinations of l 3-D coil
positions without respecting their order. If P is 1-D, the factor-
ization of Pl to Pl is equivalent to the postulation s1 ≤ · · · ≤
sl for all tuples (s1, . . . , sl ) ∈ Pl as illustrated in Fig. 2. The
invariance under permutation (15) ensures the well-definedness
of Fl as a function over Pl (see also the universal property of
the quotient space [28, Ch. 9]). In the following, we sometimes
write x ∈ Pl instead of (s1, . . . , sl ) ∈ Pl to make the
notation more compact.

III. LOCALIZATION AS AN ILL POSED INVERSE PROBLEM

Whenever cause is determined by effect, one speaks of an
inverse problem. In this context, the measured voltages at
the pickup coils are regarded as entries of a vector b ∈ R

k

and referred to as real or observational data. On the other
hand, model data is generated as Fl (x) by evaluation of the
forward model. Localization is then achieved by minimizing
the discrepancy between real and model data. If the number
l of 3-D coils in the localization area is known a priori,
the residual

‖Fl (x) − b‖2 (18)

is minimized over x ∈ Pl . Otherwise, this is done for all
l ∈ {0, . . . , lmax}, and the best minimum with the smallest
residual (18) is selected.

With this mathematical formulation of our localization
problem several questions arise in a natural way: Does a
solution always exist and if yes, is it unique? How sensitive
is the localization of observational errors? All this can be
summarized by the term well posedness which goes back to
Hadamard [29]. According to him, a problem is said to be
well posed if it satisfies the following three properties.

1) Existence: There is always at least one solution.
2) Uniqueness: There is always at most one solution.
3) Stability: The solution depends continuously on the data.

If just one of these three conditions is not fulfilled, the problem
is called ill posed. The well/ill posedness of magnetic field
localization is discussed in the following.

A. Existence

To make sure that (18) always attains its minimum in
Pl , we have to assume that the localization area P is a
compact subset of R

3. This constraint is reasonable in our
context since it only requires P to be bounded and closed.
The first Hadamard condition then follows from the extreme
value theorem [30, Th. 4.16].

Theorem 1: Let K be a compact space and ϕ : K → R

a continuous function. Then there exists x ∈ K such that
ϕ(x) = inf ϕ(K ).

More precisely, we choose ϕ(x) = ‖Fl (x) − b‖2 and
K = Pl . The compactness of Pl follows from Tychonoff’s
theorem and the fact that the quotient space of a compact space
is still compact [28, Ch. 17]. ϕ is continuous as a composition
of continuous functions (for the continuity of Fl see also the
universal property of the quotient space [28, Ch. 9]).

B. Uniqueness

Since our forward model is nonlinear and not surjective in
general, minima of (18) are not always unique. This can be
seen from the following simple example: consider the 1D-
localization of a single passive 3-D coil along the x-axis by
means of two identical circular pickup coils both lying in the
xy-plane at the same distance from the x-axis. If the primary
magnetic field is homogenous along the x-axis and pointing
in the z-direction, the forward model (13) can be written as

F1(s) =
(∫

A1

C
‖ p−s‖3 d A( p)∫

A2

C
‖ p−s‖3 d A( p)

)
(19)

with some constant C > 0. Plotting the image of F1 as a
subset of R

2 indicates the existence of a measurement b ∈ R
2

for which (18) attains its minimum at three different 3-D coil
positions s∗, s∗∗, s∗∗∗. Fig. 3 illustrates the example.

C. Stability

From a geometric point of view two operations are per-
formed when minimizing the residual (18): first, the obser-
vational data b ∈ R

k are projected onto the image of the
forward model in the sense that the projection b∗ ∈ Fl (Pl)

has minimum Euclidean distance to b. Then every x∗ ∈ Pl

with the property Fl (x∗) = b∗, i.e., every preimage of
the projection, is a solution of the inverse problem. Thus,
the solution only depends continuously on the data if both
projection and mapping to the preimage are continuous. In the
previous example, we have already seen that discontinuities in
the projection are possible: near b the projection of the data
onto F1(P) jumps between b∗, b∗∗, and b∗∗∗. However, it can
be shown that preimages always depend continuously on their
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Fig. 3. Counterexample for the second Hadamard condition: consider the
1-D localization of a single passive 3-D coil along a straight line P with
homogenous primary magnetic field by means of two circular pickup coils
A1 and A2 as shown in the upper half of the figure. The model data for this
setup is visualized by plotting the image of (19) as a subset of R

2. Due to its
geometry, there exists a measurement b having minimal Euclidean distance
to F1(P) at three different image points b∗, b∗∗, b∗∗∗. The corresponding
preimages s∗, s∗∗, s∗∗∗ are the solutions of the inverse problem.

images if the forward model is continuous and injective. This
statement is a basic theorem from topology [28, Ch. 17].

Theorem 2: Let K be a compact space and F : K → R
k

a continuous injection. Then F is a homeomorphism onto its
image.

Note that the forward model Fl is only injective if regarded
as a function over Pl , and if the pickup coils provide enough
information on the secondary magnetic field. For this purpose,
they should not be placed redundantly and their number k has
to be large enough compared to l. A rigorous mathematical
proof of the forward model being injective is beyond the scope
of this article.

D. Discussion and Further Remarks on Error Propagation

We found that the inverse problem of locating multiple
passive 3-D coils is actually ill posed in general, but the
ill posedness arises only from ambiguities of the projection
onto the image of the forward model. If such ambiguities do
not exist, the problem is well posed.

However, the third Hadamard condition is often interpreted
more freely in the literature. Instead of just demanding con-
tinuity, the problem is also required to be well conditioned.
In our context, this means that small observational errors do
not affect the estimated 3-D coil positions too much. Methods
from linear algebra are applied in the following in order to
quantify this error propagation. For this purpose, we consider
Fl (s∗

1 , . . . , s∗
l ) to be the error free measurement if l 3-D coils

are located at s∗
1 , . . . , s∗

l . The forward model is regarded as
a function on Pl ⊂ R

3l and approximated by its first-order
Taylor polynomial at x∗ = (s∗

1 , . . . , s∗
l )

Fl (x) ≈ Fl (x∗) + D Fl (x∗)(x − x∗) (20)

where D Fl (x∗) denotes the Jacobian matrix of Fl evaluated
at x∗. Now let b̃ ≈ Fl (x∗) be a noisy measurement. Then the
minimum point x̃ of

‖Fl (x∗) + D Fl (x∗)(x − x∗) − ˜b‖2 (21)

is a good approximation for the actual solution of the inverse
problem for ˜b. Minimizing (21) is actually a linear least
squares problem and therefore easily achieved by means
of the Moore–Penrose pseudoinverse D Fl (x∗)+ of D Fl (x∗)
[27, Ch. 7.3]. This yields the following estimation for the
propagated absolute localization error:

‖x̃ − x∗‖2 = ‖D Fl (x∗)+(˜b − Fl (x∗))‖2

≤ ‖D Fl (x∗)+‖2‖˜b − Fl (x∗)‖2. (22)

So, the spectral norm ‖ · ‖2 of D Fl (x∗)+ is an approximate
upper bound for the amplification factor of measurement errors
near x∗. Regarding ‖D Fl (x∗)+‖2 as a function of x∗ makes it
possible to detect the regions where major localization errors
have to be expected (see Section V).

IV. LOCALIZATION ALGORITHM

In this section, a method for the localization of one or more
passive 3-D coils is presented. In order to determine the 3-D
coils’ positions, we have to minimize the residual (18) which
corresponds to solving a nonlinear least squares problem. For
this purpose, we choose the Levenberg–Marquardt algorithm
[31] due to its good results in practice [16], [32]. It calculates
the minimum of (18) as the limit of a sequence {xn} which
is constructed iteratively by means of linearization. More
precisely, xn+1 is obtained from xn by minimizing

‖Fl (xn) + D Fl (xn)(x − xn) − b‖2
2 + λ‖x − xn‖2

2 (23)

over x ∈ R
3l with an adaptive damping parameter λ > 0.

Finding the minimum of (23) is a linear least squares problem
and therefore easily possible. The penalty term λ‖x − xn‖2

2 can
be understood as a Tikhonov regularization enforcing xn+1
to be close to xn. Appropriate values for λ do not have to
be chosen manually but are updated automatically after each
iteration as follows: iteration steps with ‖Fl (xn+1) − b‖2 >
‖Fl (xn) − b‖2 are rejected and repeated with a bigger value
for λ. On the other hand, λ is updated with a smaller value
if the cost function (18) actually decreases as predicted by its
linearization in xn. This adaptive choice of the damping para-
meter enables Levenberg–Marquardt to make smaller iteration
steps when necessary.

The initial value x0 must be chosen manually. Note that
even for x0 ∈ Pl the sequence {xn} is not guaranteed to
stay in Pl . However, this can be enforced by defining the
values of Fl outside Pl as infinity. Since our forward model is
rather complex, the Jacobian D Fl (xn) in (23) is not computed
analytically but approximated by a finite difference scheme.
For deeper insights into the algorithm’s performance numerical
tests are performed in Section V.
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Fig. 4. 2-D localization setup with the pickup coils A1, . . . , A8 and the test
positions t1, . . . , t10 in the localization area P .

V. LOCALIZATION WITH SIMULATED DATA

Our aim is to use Levenberg–Marquardt as a method for the
2-D localization of multiple passive 3-D coils within a wooden
shelf. With this in mind, a simulation is carried out in the
following in order to evaluate its performance and analyze the
propagation of simulated Gaussian noise. The geometry of the
setup can be described as follows: the exciter wire is a closed
polygonal curve with the vertices (0 m, 0 m), (0.79 m, 0 m),
(0.79 m, 0.79 m), (0 m, 0.79 m) around the localization area
P = [0.01 m, 0.78 m] × [0.01 m, 0.78 m] and the surfaces of
the pickup coils are:

A1 = [−0.0085 m, 0.0085 m] × [0.061 m, 0.39 m]
A2 = [−0.0085 m, 0.0085 m] × [0.40 m, 0.729 m]
A3 = [0.061 m, 0.39 m] × [0.7815 m, 0.7985 m]
A4 = [0.40 m, 0.729 m] × [0.7815 m, 0.7985 m]
A5 = [0.7815 m, 0.7985 m] × [0.40 m, 0.729 m]
A6 = [0.7815 m, 0.7985 m] × [0.061 m, 0.39 m]
A7 = [0.40 m, 0.729 m] × [−0.0085 m, 0.0085 m]
A8 = [0.061 m, 0.39 m] × [−0.0085 m, 0.0085 m] (24)

(see Fig. 4) where the square brackets denote closed subin-
tervals of R, and × is the Cartesian product. Even though
higher exciter frequencies f result in stronger signals at
the pickup coils and therefore a higher signal-to-noise ratio,
they also degrade the performance of our system due to
increasing parasitic capacitive and inductive effects from
surrounding obstacles. In addition, the shelf needs to meet
the regulatory standards by the Federal Communications
Commission (FCC). Therefore, we choose f = 119 kHz.
The remaining model parameters are Iex = 1 A, lmax = 4,
S = 1.72·π cm2, R = 1�, and M = N = 20.

The ill posedness of our inverse source problem in this
specific setting is evaluated by regarding the approximate
upper bound for the localization error (22) for l = 1. The
forward model is implemented in Python (Version 3.6) and
‖D F1(x, y)+‖2 is plotted as a function of (x, y) ∈ P . Fig. 5
shows that sensitivity to observational noise increases with
the distance to the pickup coils. Assuming a noise level
of 0.01 mV one has to expect a localization error of about
3 cm near the center of P .

Fig. 5. Color plot of ‖D F1(x, y)+‖2: as discussed in Section III-D our
inverse problem is very ill conditioned in the dark area.

The Python library SciPy includes an implementation of
Levenberg–Marquardt to be found at

scipy.optimize.least_squares(method=’lm’)

which is used for our computations with the termination
criteria ftol=1e-10 [change of the cost function (18)],
xtol=1e-10 (change of the variable x), and gtol=1e-10
(norm of the gradient). For further investigations, we select ten
test positions covering a broad spectrum of possible scenarios

t1 = (0.43 m, 0.42 m) t2 = (0.31 m, 0.48 m)

t3 = (0.34 m, 0.24 m) t4 = (0.5 m, 0.21 m)

t5 = (0.21 m, 0.136 m) t6 = (0.2 m, 0.16 m)

t7 = (0.17 m, 0.17 m) t8 = (0.05 m, 0.37 m)

t9 = (0.57 m, 0.72 m) t10 = (0.75 m, 0.75 m) (25)

(see Fig. 4) and generate model data as

bi1,...,il := Fl (ti1, . . . , til ). (26)

Note that Levenberg–Marquardt should return the exact
test positions when minimizing ‖Fl (x) − bi1,...,il ‖2. This
is indeed the case, e.g., for b2,4,9 and the initial value
x0 = (0.395 m, . . . , 0.395 m) ∈ R

6. However, taking a
closer look at the required iteration steps in Fig. 6 shows that
Levenberg–Marquardt prioritizes the 3-D coils closer to the
pickup coils and thus tends to find them in a certain order
instead of simultaneously. As a result, the forward model
is evaluated unnecessarily often. We address this lack of
efficiency by starting with the localization of only one 3-D
coil and increasing their number step by step until the actual
number of 3-D coils is reached. This also has the advantage
that model evaluations are less expensive at the beginning.
Consider Algorithm 1 for more details. If l is not known
a priori, this algorithm can be modified easily so that it
determines both the number and the positions of the 3-D coils.
For this purpose, the 3-D coil number is increased as long
as this results in an improvement, i.e., the minimum of (18)
for l + 1 is smaller than its minimum for l (see Algorithm 2).
By that, it is also possible to detect whether there are no 3-D
coils in the localization area at all.
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Algorithm 1 Localization With Known l

Input: measurement b, 3D-coil number l
1 x0 = (0.395 m, 0.395 m) ∈ P;
2 for i = 1, ..., l do
3 find the minimum x∗ of ‖Fi (x) − b‖2 for x ∈ Pi

using Levenberg–Marquardt with initial value x0;
4 set x0 = (x∗ | 0.395 m, 0.395 m) ∈ Pi+1 ;
5 end
6 return x∗ ∈ Pl ;

Output: 3D-coil positions x∗

Fig. 6. Iteration steps of the Levenberg–Marquardt algorithm minimizing
‖F3(x) − F3(t2, t4, t9)‖2 over x ∈ P3.

TABLE I

CAPABILITY OF LEVENBERG–MARQUARDT TO RECONSTRUCT THE

EXACT 3-D COIL POSITIONS FROM MODEL DATA

Both algorithms are now tested with some of the model data
defined in (26). Their performance is evaluated by counting
how many evaluations of the forward model are required until

Algorithm 2 Localization With Unknown l

Input: measurement b
1 x0 = (0.395 m, 0.395 m) ∈ P , r = ‖b‖2, x∗ = None;
2 for i = 1, ..., lmax do
3 find the minimum x̃ of ‖Fi (x) − b‖2 for x ∈ Pi

using Levenberg–Marquardt with initial value x0;
4 if r < ‖Fi (x̃) − b‖2 then
5 return x∗;
6 end
7 set x∗ = x̃, r = ‖Fi (x∗) − b‖2,

x0 = (x∗ | 0.395 m, 0.395 m) ∈ Pi+1;
8 end
9 return x∗;

Output: 3D-coil positions x∗

TABLE II

PROPAGATION OF SIMULATED GAUSSIAN NOISE IN INDIVIDUAL AND

SIMULTANEOUS LOCALIZATION

termination. The results are shown in Table I. Both algorithms
terminate in every test case and the global minimum of (18)
is found for all model data generated by less than three 3-
D coils. In the test cases (t8, t9, t10) and (t1, t2, t3, t4) both
algorithms get trapped into a local minimum. Instead of the
respective exact test positions they return

(0.050 m, 0.370 m), (0.421 m, 0.604 m), (0.756 m, 0.761 m)

(27)

and

(0.351 m, 0.494 m), (0.303 m, 0.371 m), (0.427 m, 0.195 m),

(0.500 m, 0.286 m) (28)

rounded to three decimal places. Whereas in the first of these
two test cases the results for t8 and t10 are still quite accurate,
there is no obvious relation between the test positions and the
calculated ones in the second test case. Finally, the forward
model is evaluated notably often in some cases when the 3-D
coils are too close to the pickup coils or too close together.
This indicates that Levenberg–Marquardt has to make very
small iteration steps in order to converge.

We use a simple Monte Carlo method to investigate how
the number of 3-D coils being located at the same time
affects the propagation of observational errors: Gaussian noise
ε ∼ N (0, σ 21) is added to the model data bi1,...,il and the
corresponding inverse problem is solved with Algorithm 1.
From 400 such samples the mean absolute localization error
is estimated in each test position belonging to bi1,...,il . For this
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Fig. 7. Propagation of simulated measurement errors: 400 randomly
generated Gaussian noise vectors with standard deviation σ = 0.01 mV are
added to each of the model data b4, b2,4, b4,5, b2,4,5 , and the corresponding
inverse problems are solved with Algorithm 1. Only the estimated 3D-coil
positions deviating from test position t4 are plotted.

sensitivity analysis, we select the test positions t2, t4, t5 and
consider the model data b2, b4, b5, b2,4, b2,5, b4,5, b2,4,5. With
respect to the noise level at the real setup we set σ = 0.01 mV.
In order to verify the validity of the approximate upper bound
for the localization error from Section III, the right-hand
side of (22) is evaluated for ‖˜b − Fl (x∗)‖2 = 0.01 mV
and compared to the Euclidean norm of the mean absolute
localization errors in each test position. The results are shown
in Table II and Fig. 7. As expected, the localization errors
increase with the test positions’ distance to the pickup coils.
It is remarkable that the simultaneous localization of two 3-D
coils from bi1,i2 + ε is not necessarily more—or even less—
sensitive to noise than their individual localization from bi1 +ε

and bi2 + ε. However, for all test positions the maximum
mean localization error occurs when the three passive 3-D
coils are located simultaneously from b2,4,5 + ε. The right-
hand side of (22) turns out to be a powerful tool for predicting
the localization error’s order of magnitude. However, in some
test cases the sampled localization error is less consistent
with the predicted one than in others which indicates that the
model is not very well approximated by its linearization in the
respective test positions.

VI. LOCALIZATION WITH EXPERIMENTAL DATA

Both localization methods from Section V are now applied
to a wooden shelf equipped with the IndLoc positioning
technology by the Fraunhofer Institute for Integrated Circuits.
The exciter wire and eight pickup coils are placed around
the square front of this shelf as shown in Fig. 8. A reader
connected to a PC via ethernet both supplies the exciter wire
with electric current and processes the received signals. For a
more detailed description of the setup see [6]. Fig. 9 shows
a 3-D coil being placed in one of the 16 equally sized com-
partments of the shelf. All 3-D coils have 1.7-cm radius and
are tuned to the resonance frequency 119 kHz by capacitors.
To make sure that we only measure the secondary magnetic
field generated by the 3-D coils, the offset is determined after
removing all objects from the localization area and subtracted
from the signals. Despite their identical design the pickup

Fig. 8. Wooden shelf with 16 compartments surrounded by an exciter wire
and eight pickup coils around its square front. The exciter wire goes through
the white plastic elements and the pickup coils are winded around them.

Fig. 9. 3-D coil consisting of three orthogonal identically winded circular
coils which are tuned to resonance by capacitors (covered by a turquoise heat
shrink tubing).

coils have to be calibrated in phase and magnitude to receive
comparable signals. For this purpose, we divide each signal by
a reference signal which is generated by a ferrite object being
held directly at the respective pickup coil. As a negative side
effect of this calibration the signals are rescaled and therefore
not directly comparable to our model data. Consequently, also
the forward model from Section V needs to be rescaled with
a constant factor γ which is determined empirically as the
arithmetic mean of the following quotients:

bi
j

F1(ci ) j
, i = 1, . . . , 16, j = 1, . . . 8 (29)

where ci denotes the center of the i th shelf compartment,
F1(ci ) j the j th entry of the model data F1(ci ) and bi

j the
real measurement at the j th pickup coil if a single 3-D coil
is placed in the center of the i th shelf compartment as shown
in Fig. 9. This yields the following value for our setup being
multiplied to Fl :

γ ≈ 17.82 (30)

(see Fig. 10). Note that the values of ‖D F1(x, y)+‖2 in Fig. 4
have to be divided by γ in order to be consistent with the
rescaled model.

Based on (22) and [7], the total dipole moment of a 3-D coil
is assumed to be invariant under rotation. In order to empir-
ically verify whether this approximation is justified, a 3-D



DOß et al.: LOCALIZATION OF PASSIVE 3-D COILS AS AN INVERSE PROBLEM 7200410

Fig. 10. Histogram of all 128 ratios defined in (29) with mean value 17.82 and
standard deviation 3.075.

Fig. 11. Empirical examination of the secondary magnetic field’s invariance
under rotation of the 3-D coils: a 3-D coil is placed at the center of the
sixth shelf compartment with ten different orientations and the corresponding
signals at the pickup coils are visualized as a box plot.

coil is placed in the middle of the sixth shelf compartment and
randomly rotated ten times. Fig. 11 shows the discrepancies of
the resulting measurements. The same procedure is repeated in
the compartments one, two, and five obtaining a series of 32 ×
10 measurements in total. From these values, it is calculated
that the standard deviation of the signals measured by one
pickup coil roughly corresponds to 13 % of the respective
mean signal value. The discrepancy between this rather large
percentage and the invariance of the signals under rotation
of the 3-D coils as predicted by our model arises from the
primary magnetic field’s linear approximation (3) as well as
the approximation of each 3-D coil as a magnetic dipole (see
also [7] for a more comprehensive analysis). Despite this
model error, our method still provides reasonable estimates
for the 3-D coil positions. More precisely, the ten different
3-D coil orientations in the compartments one, two, five, and
six result in mean absolute localization errors of 1.2, 1.6, 2.0,
and 3.6 cm, respectively. Better results are obtained if the
signals are treated relatively as percentages of the total signal
measured by all eight pickup coils together even if information
gets lost by that. For this purpose, the cost function (18) is
replaced by ∥∥∥∥ Fl (x)

‖Fl (x)‖1
− b

‖b‖1

∥∥∥∥
2

(31)

where ‖b‖1 = ∑8
i=1 |bi | denotes the 
1-norm. With this

relative residual the ten different 3-D coil orientations in the

TABLE III

LOCALIZATION ERRORS AND NUMERICAL EFFORT WITH REAL DATA

compartments one, two, five, and six result in mean absolute
localization errors of 0.9, 0.8, 1.2, and 0.2 cm, respectively.

Now a maximum of three passive 3-D coils is placed
centrally in different compartments of the shelf as shown
in Fig. 9 and both algorithms from Section V are applied in
order to estimate their number and positions. With this a priori
knowledge, we set lmax = 3. The mean absolute localization
error is determined over all test scenarios with a fixed number
l of 3-D coils being in the shelf at the same time. For l = 1,
this is done in all 16 compartments. For the cases l = 2 and
l = 3, we restrict ourselves to 32 and 39 combinations of two
and three compartments being equipped with a 3-D coil at
the same time. More is also not necessary due to the fourfold
symmetry of the shelf. Whereas Algorithm 1 works with both
cost functions (18) and (31), Algorithm 2 requires absolute
signal values since

F1(s)
‖F1(s)‖1

= F2(s, s)
‖F2(s, s)‖1

= F3(s, s, s)
‖F3(s, s, s)‖1

(32)

holds for all s ∈ P which is a consequence of (14). The results
are presented in Table III. Apparently, Algorithm 1 is more
precise when using relative signal values. Since Algorithm 2
also estimates the number of 3-D coils in the localization area,
it requires more evaluations of the forward model. However,
the estimated number of 3-D coils is always correct. Even
though the mean absolute localization error for l = 3 is almost
three times larger than the radius of the 3-D coils, their posi-
tions are always estimated within the right compartment of the
shelf. Note that the discrepancy between real and model data
does not only arise from measurement noise but also from the
fact that our forward model is a simplification of reality. In this
context, we recall that the 3-D coils are treated as magnetic
dipoles and the calculation of their dipole moments is based
on the approximation of the primary field by its linearization
in their centers. Also the inductive coupling between the
individual 3-D coils is neglected as well as the magnetic fields
generated by the pickup coils. This explains why the localiza-
tion errors in Table II tend to be smaller than in Table III.

VII. CONCLUSION
In this article, it was shown that multiple passive 3-D

coils whose electric currents are induced externally by a low-
frequency magnetic field can be located without separating
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their signals. The Biot–Savart law was used to describe the
primary magnetic field and the 3-D coils were approximated
as magnetic dipoles whose dipole moments are invariant under
rotation. This enabled the formulation of their localization as
an inverse problem which turned out to be ill posed for two
reasons: first, the underlying optimization problem has more
than one solution if the pickup coils do not provide enough
information, and second, the localization suffers from strong
sensitivity to observational noise. With regard to the latter
an approximate upper bound for the propagated localization
error was derived by linearizing the inverse problem and
applying the Moore–Penrose pseudoinverse. By that, espe-
cially regions further away from the pickup coils were detected
to be problematic. The Levenberg–Marquardt algorithm was
introduced as a method for localization. Gradually increasing
the number of 3-D coils in its initial value improved the
algorithm’s performance and made it possible to estimate the
actual number of 3-D coils in the localization area. Tests were
performed in order to verify the algorithm’s functionality as
a method for 2-D localization within the front of a wooden
shelf by means of eight pickup coils. In a numerical simula-
tion Levenberg–Marquardt was able to reconstruct the exact
3-D coil positions from model data but the localization of

four 3-D coils at the same time turned out to be impractical.
A Monte Carlo sensitivity analysis showed that locating two
3-D coils simultaneously instead of individually can affect the
propagation of simulated Gaussian noise both in a positive and
in a negative way. At the real test setup the orientations of the
3-D coils turned out to have more impact on the measurements
than expected. Even if localization is still possible, its accuracy
can be improved by transforming the absolute signals into
relative values. However, this is only possible if the number
of 3-D coils in the localization area is known. In both cases,
we were able to locate up to three passive 3-D coils at the
same time with an accuracy of just a few centimeters which is
roughly the size of a 3-D coil or 1:50 of the shelf’s edge length.
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