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A Mixed Multiscale FEM for the Eddy-Current Problem
With T ,�–� in Laminated Conducting Media

Karl Hollaus and Markus Schöbinger

Institute for Analysis and Scientific Computing, Vienna University of Technology (TU Wien), A-1040 Vienna, Austria

A novel mixed multiscale finite-element method for the eddy-current problem is presented to avoid the necessity of modeling
each laminate of the core of electrical devices. The method is based on a current vector potential T and a reduced magnetic scalar
potential (RMSP) � and copes with the 3-D problems. The edge effect is considered. Material properties are assumed to be linear.
Hence, the method is developed for the frequency domain. External currents are represented by the Biot–Savart field serving as
excitation. The planes of symmetry are exploited. Numerical simulations are presented, showing excellent accuracy at minimal
computational costs.

Index Terms— Biot–Savart field, current vector potential (CVP), eddy-current problem (ECP), laminated media, mixed multiscale
finite-element method (MMSFEM), reduced magnetic scalar potential (RMSP).

I. INTRODUCTION

AN ACCURATE prediction of the eddy-current distribu-
tion in the laminated iron cores of electric devices is

a challenging task in the design process. Modeling of each
laminate requires many finite elements, leading to extremely
large equation systems. The computational costs to solve these
systems are prohibitively high.

The solution obtained by prescribing a current vector
potential (CVP) T having a single component normal to the
lamination [1] or using an anisotropic electric conductivity [2]
has to be corrected in a post-processing step to consider the
eddy currents due to the main magnetic flux. These approaches
are questionable in the context of nonlinear material proper-
ties. Multiscale finite-element methods (MSFEMs) provide the
solution in one step taking account of both magnetic stray
flux perpendicular to the lamination and main magnetic flux
parallel to the lamination.

The capacity of the MSFEMs is well known [3].
An MSFEM in 3-D for eddy currents in laminated iron cores
based on the magnetic vector potential A has been presented
in [4] recently. A CVP T [5] with a reduced magnetic scalar
potential (RMSP) � can also be used for an eddy-current
problem (ECP) [6], [7]. The T ,�–� formulation is popular
to simulate the eddy currents, for instance, in the core of
transformers.

Often 2-D/1-D-methods are used to simulate the electrical
machines. These methods are based on the assumption that
the influence of the magnetic stray fields in the end region
of the electrical machines can be neglected. This means that
each laminate is exposed to the same electromagnetic field
distribution, and therefore, a simulation of a single laminate
suffices [8], [9]. Such problems are solved elegantly with
2-D/1-D-MSFEMs [10]. However, this kind of methods is not
in the scope of this article.
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Fig. 1. ECP with a laminated core (gray) and a filamentary current (red)
excites the problem, and O is the origin at (0, 0, 0). The planes of symmetry
are x = 0: �Hc and �H0 , y = 0: �Hc and �H0 , and z = 0: �B and �E . Far
boundary: �H0 . For details, see also Sections II-B and IV-A.

The magnetic-flux density parallel to the lamination is
expanded into orthogonal even polynomials, the so-called skin-
effect sub-basis functions, to improve the local approximation
in [11]. A higher order multiscale expansion of electromag-
netic field problems exploiting a single component CVP can
be found in [12]. A mixed MSFEM (MMSFEM) based on
the magnetic vector potential A and the current density J has
been developed in [3] to take account of the edge effect in
particular.

The construction of the mixed multiscale approach for the
novel MMSFEM is presented. Eddy-current losses obtained
by the MMSFEM have been compared with those obtained
by reference solutions of finite-element models considering
each laminate. Numerical examples, as shown in Fig. 1, have
been studied to show the very satisfactory performance of the
MMSFEM with respect to accuracy and computational costs.

II. T ,�–� FORMULATION

The T ,�–� formulation is introduced extremely shortened,
and the associated boundary value problem along with the
weak form for eddy currents is summarized in the following.

A. T ,�–� Formulation

Considering Ampere’s law curl H = J + J0 with an
impressed current density J0, the magnetic-field strength

H = T + T BS − grad � (1)
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in the conducting domain �c can be represented by a
CVP T and an RMSP �, where J0 is replaced by its
Biot–Savart field T BS. The potentials T and � describe the
quasi-static magnetic field in �c. The static magnetic field in
the non-conducting domain �0 can be written as

H = T BS − grad �. (2)

B. Boundary Value Problem With T ,�–�

The ECP to be solved in this article is sketched in Fig. 1.
It consists of laminates �c enclosed by air �0, � = �c ∪ �0.
The laminated domain �m used by the MMSFEM consists
of the conducting laminates �c and the insulation layers in
between.

Thus, the following boundary value problem for the T ,�–�
formulation is obtained [7].

The quasi-static magnetic field in the conducting domain �c

curl(ρ curl T) + jωμT − jωμ grad �
= − curl(ρ curl T BS)− jωμTBS

(3)
jω div(μT − μ grad �) = − jω div(μTBS) in �c (4)

ρ curl T × n = −ρ curl T BS × n (5)
μ(T − grad �) · n = −μTBS · n on �E (6)

T × n = −TBS × n (=0) (7)
� = �0 (=0) on �Hc . (8)

The static magnetic field in the non-conducting domain �0

− jω div(μ grad �) = − jω div(μTBS) in �0 (9)
−n · μ grad � = b − n · μT BS on �B (10)

� = �0 (=0) on �H0 . (11)

The interface (between �c and �0) condition on �c0

T × n = 0 on �c0. (12)

Indices E , H , or B mean that the tangential components of E
and H or the normal component of B are prescribed, and in
addition, c and 0 denote the surfaces, which are the boundaries
of �c and �0, respectively. The material parameters are
the magnetic permeability μ and the electric resistivity ρ,
respectively, j denotes the imaginary unit, ω is the angular
frequency, and n is the normal unit vector on a surface pointing
outward of the respective domain.

C. Weak Form With T ,�–�

The weak form for the finite-element method is as follows.
Find (T h,�h) ∈ VDh := {(Th ,�h) : T h ∈ Uh , �h ∈

Vh and T h × n = −TBS × n (= 0) on �0c ∪ �Hc , �h =
�0 (=0) on �Hc ∪ �H0}, such that∫

�c

ρ curl Th · curl vh d�+ jω
∫

�c

μ(T h −grad �h) · vh d�

= −
∫

�c

ρ curl TBSh · curl vh d� − jω
∫

�c

μTBSh · vh d�

(13)

jω
∫

�
μ grad �h · grad vh d�− jω

∫
�c

μT h · grad vh d�

= jω
∫

�
μT BSh · grad vh d�− jω

∫
�B

bhvh d� (14)

for all (vh , vh) ∈ V0h , where Uh and Vh are the finite-element
subspaces of H (curl,�c) and H 1(�), respectively.

Fig. 2. Micro-shape function φ2.

Fig. 3. Numerical example, problem not drawn to scale, origin O at (0, 0, 0),
x = 0, y = 0, and z = 0 represents the planes of symmetry. Top view (left)
and front view (right) of one-eighth with four laminates (dimensions are in
mm), and the structure is quadratic in the xy plane; quadratic filamentary
current: a = 70 mm and arranged symmetric with respect to the cross section
of the limb.

III. MIXED MULTISCALE FINITE-ELEMENT METHOD

A. Mixed Multiscale Approach for T ,�–�

Multiscale approaches are based on the fact that the problem
can be observed on the large scale with the overall dimensions
of the laminated core, on the one hand, and, on the other,
on the small scale with the very small thickness of the
laminates d and the width of the insulation layer d0 in between
(see Fig. 3). Thus, it would be obvious to assume the mixed
multiscale approach

T̃ = T 0 + φ2T 2 (15)

�̃ = �0 + φ2�2 (16)

where the mean values T 0 and �0 consider the large-scale
variation of the solution and T2 and �2 with the even periodic
micro-shape function φ2 (see Fig. 2), the highly oscillating
variation of the solution on the small scale.

Therefore, the magnetic field represented in (1) and (2)
could now be written as

H̃ = T 0 + T 2φ2 + TBS − grad �0 − grad(�2φ2) in �m

(17)

H̃ = T BS − grad �0 in �0. (18)

However, investigations and considerations led to the under-
standing that �0 copes with the perturbation of the overall
field due to the laminated core and T0 can be omitted. On the
other hand, grad(�2φ2) has also been neglected, because it
is supported by the irrotational part of φ2T 2 as well as an
odd periodic magnetic field is not expected for the considered
problem in Fig. 3. These assumptions are well substantiated
by the numerical results in Section IV-B.

That is why the simplified mixed multiscale approach

T̃ = T 2φ2 (19)

�̃ = �0 (20)
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has been used in this article. Thus, the magnetic field in (17)
and (18), respectively, can be written for the MMSFEM

H̃ = T BS + T 2φ2 − grad �0 in �m (21)

and

H̃ = T BS − grad �0 in �0. (22)

B. Weak Form for T̃ , �̃–�̃

The weak form for the MMSFEM reads as follows.
Find (T 2h , �0h) ∈ VDh := {(T2h , �0h) : T 2h ∈

Uh , �0h ∈ Vh and T 2h × n = 0 on �m0 \ �T2 ∪ �Hc , �0h =
�0 (= 0) on �Hc ∪ �H0}, such that∫

�c

ρ curl(T2hφ2) · curl(v2hφ2) d�

+ jω
∫

�c

μ(T2hφ2 − grad �0h) · v2hφ2 d�

= −
∫

�c

ρ curl T BSh · curl(v2hφ2) d�

− jω
∫

�c

μT BSh · v2hφ2 d� (23)

jω
∫

�
μ grad �0h · grad v0h d�

− jω
∫

�c

μT 2hφ2 · grad v0hd�

= jω
∫

�
μT BSh · grad v0h d�− jω

∫
�B

bhv0h d� (24)

for all (v2h , v0h) ∈ V0h , where Uh ⊂ H (curl,�m), Vh ⊂
H 1(�), and φ2 ∈ H 1

per(�m) have been selected.
The interface between �m and �0 is denoted by �m0

and �T2 is the part of �m0, which represents the smooth
surface of the laminated core, compared with Figs. 1 and 3.
The arising coefficients in (23) and (24) have been averaged,
as demonstrated in [3]. Since the micro-shape function φ2 is
the even function shown in Fig. 2 with respect to the center of
the laminate, the highly oscillating second term on the RHS
in (23) does not vanish.

IV. NUMERICAL SIMULATIONS

A. Numerical Problems

Problems consisting of different numbers of laminates have
been investigated, compared with Fig. 3. The thickness of the
laminates and an unfavorable width of the insulation layers
have been selected with d = 0.45 mm and d0 = 0.05 mm.
A conductivity of σ = 2×106 S/m and a relative permeability
of μr = 1000 have been assumed. For the sake of simplicity,
the filamentary current was selected to deal easily with the
linear forms on the right-hand sides of the weak form in (23)
and (24). The rectangular filamentary current generates the
Biot–Savart field T BS, which serves as a source field. Each
straight segment of the rectangular loops has been split into
four sub-segments. Gauss integration with three integration
points was used to approximate

T BSh = μ0 I

4π

∫
s

ds × rSF

�rSF�3 (25)

where I is the peak value of the current selected with 10 A,
rSF the source-field-point vector, and s the integration path.

Fig. 4. Eddy-current losses of the entire problem for 4, 20, and 100 laminates
denoted by NL4, NL20, and NL100, respectively.

To validate the results obtained by the MMSFEM, reference
solutions have been computed with the SFEM using an A
formulation (RSA) and the mixed T ,�–� formulation (RST).
Second-order finite elements have been selected for A and
T and the third-order ones for �, respectively. An analog
selection has been made for the MMSFEMs.

To study the computational costs of the novel MMSFEM
compared with reference solutions with respect to the num-
ber of laminates in the core, problems with 4, 20, and
100 laminates have been simulated. The finite-element model
with four laminates of the MMSFEM uses two layers of
finite elements in the z-direction, compared with Fig. 3,
and the one with 20 laminates adds two layers representing
16 laminates. Finally, the model with 100 laminates adds
further two layers for 80 laminates. Note that the number
of laminates is increased by the factor of 5 from the SFEM
model to the SFEM model, whereas the MMSFEM model
grows with two finite-element layers in each case to empha-
size the performance of the MMSFEM. Planes of symmetry
are considered in all simulations. The same discretization
by finite elements in the xy plane has been used in the
models for the SFEM and MSFEM to ensure a fair com-
parison. Handmade hexahedral finite-element meshes have
been made. To vary the penetration depth, the frequency was
modified.

To avoid the development of a specific solver, all equa-
tion systems stemming either from an SFEM or from the
MMSFEM have been solved by the direct solver PARDISO
[13]. The higher order gradients have been eliminated from
the finite-element spaces of T h and T2h , respectively, using
NGSolve [14].

B. Numerical Results

There is an excellent agreement between the reference
solutions RST and RSA, respectively, and the MSFEM, as can
easily be seen in Fig. 4 and by the relative error in Fig. 5.
The average of the losses of RSA and RST has been used for
the relative losses. The losses obtained by the MMSFEM are
slightly smaller than the reference losses.

For the sake of transparency, all results are summarized
in Table I.

C. Computational Costs

Numerical simulations show that the MMSFEM saves
enormous computational costs with respect to the number
of laminates compared with the corresponding SFEMs (see
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Fig. 5. Relative error of the eddy-current losses for 4, 20, and 100 laminates.

TABLE I

EDDY-CURRENT LOSSES IN mW OF THE ENTIRE PROBLEM

TABLE II

DEGREES OF FREEDOM

Fig. 6. Assembling time (AT) and solution time (ST) (Inverse Pardiso [13]).

Table II). For 5000-Hz simulations, the finite-element order of
T and � has been increased to three and four, respectively, and
the laminates have been split into two finite-element layers for
the A formulation. Computation times are presented in Fig. 6,
using a server with two times eight cores [Intel(R) Xeon(R)

CPU 4110] and 192GB RAM. An MMSFEM is essen-
tially faster than the reference solutions RSA and RST,
respectively.

V. CONCLUSION

The presented MMSFEM is an attractive alternative to the
MSFEM based on a magnetic vector potential A [4]. Contrary
to the MSFEM with A, considering the edge effect does not
require an additional unknown. The edge effect is simply
realized by prescribing the homogenous tangential Dirichlet
boundary conditions of T2.

The novel MMSFEM requires only as many unknowns as
a brute force simulation using T ,�–� with an anisotropic
conductivity in the first step, except that the MMSFEM
provides the eddy currents due to the main magnetic field
including the edge effect. In general, the savings of the
MSFEM compared with RSA and RST grow clearly with the
problem size measured by the number of laminates NL.

ACKNOWLEDGMENT

This work was supported by the Austrian Science
Fund (FWF) under Project P 27028.

REFERENCES

[1] A. G. Jack and B. C. Mecrow, “Calculation of three-dimensional
electromagnetic fields involving laminar eddy currents,” IEE Proc.
A-Phys. Sci., Meas. Instrum., Manage. Educ.-Rev., vol. 134, no. 8,
pp. 663–671, Sep. 1987.

[2] K. Preis, O. Bíró, and I. Ticar, “FEM analysis of eddy current losses
in nonlinear laminated iron cores,” IEEE Trans. Magn., vol. 41, no. 5,
pp. 1412–1415, May 2005.

[3] K. Hollaus and J. Schöberl, “Some 2-D multiscale finite-element for-
mulations for the eddy current problem in iron laminates,” IEEE Trans.
Magn., vol. 54, no. 4, Apr. 2018, Art. no. 7401716.

[4] K. Hollaus, “A MSFEM to simulate the eddy current problem in
laminated iron cores in 3D,” COMPEL-Int. J. Comput. Math. Elect.
Electron. Eng., vol. 38, no. 5, pp. 1667–1682, 2019.

[5] R. Albanese and G. Rubinacci, “Integral formulation for 3D eddy-
current computation using edge elements,” IEE Proc. A-Phys. Sci., Meas.
Instrum., Manage. Educ.-Rev., vol. 135, no. 7, pp. 457–462, Sep. 1988.

[6] T. Nakata, N. Takahashi, K. Fujiwara, and Y. Okada, “Improvements of
the T -� method for 3-D eddy current analysis,” IEEE Trans. Magn.,
vol. MAG-24, no. 1, pp. 94–97, Jan. 1988.

[7] O. Bíró, “Edge element formulations of eddy current problems,” Com-
put. Methods Appl. Mech. Eng., vol. 169, nos. 3–4, pp. 391–405, 1999.

[8] O. Bottauscio, M. Chiampi, and D. Chiarabaglio, “Advanced model
of laminated magnetic cores for two-dimensional field analysis,” IEEE
Trans. Magn., vol. 36, no. 3, pp. 561–573, May 2000.

[9] P. Rasilo, E. Dlala, K. Fonteyn, J. Pippuri, A. Belahcen, and A. Arkkio,
“Model of laminated ferromagnetic cores for loss prediction in electrical
machines,” Electr. Power Appl., vol. 5, no. 7, pp. 580–588, Aug. 2011.

[10] M. Schöbinger, J. Schöberl, and K. Hollaus, “Multiscale FEM for the
linear 2-D/1-D problem of eddy currents in thin iron sheets,” IEEE
Trans. Magn., vol. 55, no. 1, Jan. 2019, Art. no. 7400212.

[11] P. Dular, “A time-domain homogenization technique for lamination
stacks in dual finite element formulations,” J. Comput. Appl. Math.,
vol. 215, no. 2, pp. 390–399, 2008.

[12] O. Bottauscio, M. Chiampi, and A. Manzin, “Computation of higher
order spatial derivatives in the multiscale expansion of electromagnetic-
field problems,” IEEE Trans. Magn., vol. 44, no. 6, pp. 1194–1197,
Jun. 2008.

[13] O. Schenk and K. Gärtner, Pardiso. Boston, MA, USA: Springer, 2011,
pp. 1458–1464.

[14] J. Schöberl. NetGen/NGSolve. Accessed: Aug. 2019. [Online]. Available:
https://ngsolve.org



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


