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Modeling Nonlinear Steady-State Induction Heating Processes
K. Roppert , F. Toth , and M. Kaltenbacher

Institute for Mechanics and Mechatronics, Vienna University of Technology (TU Wien), 1040 Vienna, Austria

In this article, an efficient simulation strategy for a fully coupled nonlinear magnetic–thermal problem is presented. The
solution-dependent magnetic subproblem is solved with a harmonic balancing scheme, with the main focus on the correct choice of
the material model (magnetization curve). To further increase the computational efficiency, a non-conforming interface approach is
used, based on the jump operators and penalty terms. This method drastically decreases the meshing time because different mesh
sizes can be combined without taking care of element distortions in transition layers between fine and coarse parts of the mesh.

Index Terms— Eddy currents, electromagnetic induction, finite-element analysis, Maxwell equations.

I. INTRODUCTION

MAGNETIC–THERMAL problems arise in a wide range
of possible applications, e.g., induction heating or ther-

mal analysis of transformers or motors. In this article, we focus
on the efficient simulation of induction heating processes for
thin steel sheets, where the inductors are made of massive
conductive material, and therefore, eddy currents inside the
inductor have to be taken into account by means of global
excitation (total current or voltage).

The classical way would be to consider the full A − V
or T − � formulation with additional constraint equations
to define the voltage or total current through an electric
port [10]. We, on the other hand, use a modified version based
on the work of [6], [8], [9], which enables the decoupling
of equations for A and V and significantly improves the
performance by introducing a precomputation step for V .

Although there exist methods improving the efficiency of
magnetic–thermal simulations in the time domain, see [2],
we consider the nonlinear eddy-current problem solely in
the frequency domain and use the multiharmonic ansatz
approach from [4], together with an alternating time–frequency
scheme [3] to obtain correct reluctivity values in the respective
harmonics.

Since these induction heating applications involve setups,
where a finely meshed, structured region (the sheet) must be
combined with a more complexly shaped (depending on the
inductor winding geometry) air domain, we present a method-
ology for nonconforming interfaces in H (curl,�) function
space, based on the Nitsche’s idea [7] for the time-harmonic
eddy-current problem in A, which also holds for the modified
A − V formulation with some minor assumptions.

II. EDDY-CURRENT PROBLEM

The considered eddy-current problem in its time domain
form

∇ × ν(||∇ × A||) ∇ × A = Ji − γ (T )
∂ A
∂ t

(1)
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Fig. 1. Considered setup of inductor, air, and conducting passive part.

is solved for the magnetic vector potential A, where
ν(||∇ × A||) represents the solution-dependent reluctivity,
based on the commutation curve, Ji is the impressed cur-
rent density, and γ (T ) is the temperature-dependent electric
conductivity.

A. Excitation With Global Quantities

Let us consider the domain, depicted in Fig. 1, with �C as
the conducting (γ > 0) inductor, �P the passive conductive
part, �I the surrounding air (γ = 0), and �+, �− as the
electric ports of the inductor. The boundary of the whole
domain is denoted as ∂� = ∂�I ∪ �+ ∪ �−. Together
with the definition of the appropriate function space Wh ⊂
H0(∇×,�) := {a ∈ H (curl,�) | n × a = 0, on ∂� and Vh ⊂
H 1(�), we can define the classical weak form of A − V
formulation as follows. Find A ∈ Wh and V ∈ Vh such that

(ν∇×A,∇×A�)� + jω(γ A, A�)� + (γ∇V , A�)� = 0

jω(A,∇V �)� + (γ∇V ,∇V �)� = 0

∀A� ∈ Wh , V � ∈ Vh (2)

where (·, ·)� denotes a volume integral with a dot product
between its arguments over domain �. The magnetic boundary
conditions (BCs) are A × n = 0 on ∂� and electric BCs
n × E = n × (−∇V − ∂ A/∂ t) = 0 on �+, �−, which can be
split into two parts

n × ∇V = 0 and n × ∂ A/∂ t = 0 (3)

where the first condition is satisfied for V = const.,
and the second one is already incorporated through the
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magnetic BC. A voltage excitation, with voltage U , in the
A − V formulation (2) can now be accomplished by defining
the following BCs for the electric scalar potential:

V|�+ = U, V|�+ = 0. (4)

In [6], it is shown that the solution of (2) is independent
of V inside �C , as long as the BCs (4) are fulfilled, which
means that we can define an arbitrary H 1(�) extension of V ,
denoted as Ṽ . Since edge elements are used for the discretized
space Wh ⊂ H (curl,�) and nodal elements for Vh ⊂ H 1(�),
we can use the findings of [8] and [9] to decouple the
computation of A and Ṽ . The computation of Ṽ = U Ṽ0,
with unit source BCs Ṽ0|�+ = 1 and Ṽ0|�− = 0, can either be
accomplished by defining a transition layer, e.g., in [9] or by
solving the electrokinetic problem(

γ∇ Ṽ0,∇ Ṽ �
0

)
�C

= 0 ∀Ṽ �
0 ∈ Vh . (5)

After this precompute step, an excitation with global voltage
U at the electric ports can be defined as follows. Find A ∈ Wh

such that for all A� ∈ Wh there holds

(∇×A, ν∇×A�)�+ jωγ (A, A�)�+U(γ∇ Ṽ0, A�)� =0. (6)

One can see that prescribing U is a strong constraint because
the value is directly prescribed, which is the equivalent to
Dirichlet BC in a spatial domain. Showing the vanishing
divergence of the current density J = −γ ( jωA + U∇ Ṽ0) can
be done by investigating the two contributions separately.
Since we are using edge elements, the divergence of the
first term is zero because H (curl,�) is the kernel of the
divergence operator, and the second term vanishes because Ṽ0
solves the homogeneous Laplace equation (5), and therefore,
∇·∇ Ṽ0 = 0.

For prescribing a total current excitation, we need to con-
strain the total current through the electric ports (multiplication
with Ṽ0 in (7) is valid, since it is one at �+ and helps us to use
the divergence theorem in the next step). By using J · n = 0
on 	C and ∇·J = 0 in �C , we can use the divergence theorem
to obtain the constraint equation, enforcing the total current in
a weak sense

I = −
∫

�+
Ṽ0 J · n = −

∫
∂�C

Ṽ0 J · n

= −
∫

�C

J · ∇ Ṽ0 =
∫

�C

γ ( jωA + U∇ Ṽ0) · ∇ Ṽ0. (7)

Finally, we can write the weak form for total current
excitation as follows. Find A ∈ Wh and U ∈ C1 such that
for all A� ∈ Wh there holds

(∇×A, ν∇×A�)�+ jωγ (A, A�)�+U(γ∇ Ṽ0, A�)� = 0

(γ jωA,∇ Ṽ0)�C + U(∇ Ṽ0,∇ Ṽ0)�C = I. (8)

B. Nonconforming Nitsche Interfaces

A substantial performance improvement can be achieved
by using nonconforming Nitsche interfaces for 3-D edge
elements in H (curl,�). Assume a set up of two indepen-
dently meshed domains �1, �2 with their common inter-
face �I = (�1 \ �1) ∩ (�2 \ �2), as depicted in Fig. 2.

Fig. 2. Computational domain with two subregions �1 and �2 with different
discretizations.

This approach is based on the Nitsche’s idea [7] to incorporate
Dirichlet boundary conditions into the weak form, which is
also the main idea of discontinuous Galerkin (DG) finite-
element methods. Let us now consider the domain setup from
Fig. 2, where the discretization T 1

h of �1 and T 2
h of �2, with

Th = T 1
h ∪ T 2

h conforms to their interior but non-conforming
across their common interface �I . The global set of facets is
now split into purely interior facets F i

h , interface facets F I
h ,

and essential facets (Dirichlet boundary) Fe
h . By considering

the full DG formulation of (1), eliminating jumps across F i
h

and neglecting the direct prescription of Dirichlet BC (for
better readability), we obtain the following weak form where
the DG terms only remain on the non-conforming interface
facets F I

h . Find A ∈ Wh such that ∀A� ∈ Wh

(ν∇×A,∇×A�)�1,2 + ( jωγ A, A�)�1,2

−
∑

F∈F I
h

	2(ν1∇×A1 × n), [A�]
F

−
∑

F∈F I
h

	2 
(ν1∇×A�
1 × n), [A]
F

+ β
∑

F∈F I
h

〈
ν p2

E

hE
[n× A], [n× A�]

〉
F

=(Ji , A�)� (9)

where 	·, ·
F denote integrals over surface F with a dot
product between its arguments, ν1 is the reluctivity on the
interface side of �1, ν is the averaged reluctivity of both sides
on the interface, pE is the element order, hE is the local length
scale of the element, and β is the penalization parameter.
According to [7], this Nitsche- (penalization-) parameter has
to be chosen “large enough” in order to ensure convergence.
On the other hand, the higher this parameter is chosen,
the more ill conditioned the resulting system matrix is and
when reaching a certain limit, and the solution seems to suffer
from numerical instabilities, observed in Section IV.

This methodology for the classical A formulation can also
be expanded to the A − Ṽ0 global excitation formulations (6)
and (8) with the only restriction that the inductor is not
touching any conducting part (�C ∩ �P = ∅) and the interface
is either located completely in the air domain or at 	C or 	P

but not inside the inductor.

C. Harmonic Balance FEM

In order to solve (1) in the frequency domain, while
retaining its nonlinearity, we expand A, ν(||∇ × A||) and
the excitation quantity with the multiharmonic ansatz into the
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truncated Fourier series

f (x, t) =
N∑

k=−N

f̂k(x) · e jkωt , with f̂−k = f̂ ∗
k . (10)

The efficient solution strategy to solve the large systems is
based on [4]. An important aspect is the correct evaluation
of the reluctivity Fourier coefficient ν̂k , where an alternat-
ing time–frequency scheme (harmonic balancing) is applied,
together with the anhysteretic curve [5] as the model for
the nonlinear reluctivity. Using the anhysteretic instead of
the classical commutation curve increases the convergence
significantly because the latter one has an unphysical flattening
at small field strengths when considering the cycle on the
hysteresis curve (Rayleigh region).

III. THERMAL PROBLEM

The thermal field is simulated with a nonlinear convection
diffusion equation

∂ρc(T )T

∂ t
− ∇ · (λ(T )∇T − ρc(T )T u(t)) = q̇ (11)

where c(T ) represents the temperature-dependent specific heat
capacity, λ(T ) is the heat conduction coefficient, T is the
temperature, and u is the velocity. The volumetric heat source
term q̇ is represented by the Joule losses

q̇ = E · J (12)

with the electric-field intensity E = −∂ A/∂ t , respectively,
E = −∂ A/∂ t − U∇ Ṽ0 for the global excitation formulation.
Due to the large time scale differences between the magnetic
and thermal fields, we can justify to consider the heat source
q̇(t) as time independent, i.e., averaging q̇(t) over one period
of the base excitation frequency. Therewith the flexibility to
consider the nonlinear thermal problem in time as well as in
steady-state domain is obtained.

IV. NUMERICAL EXAMPLES

In the following, two numerical examples are presented,
highlighting the importance and benefits of the methods,
presented above. The inductor is made of copper with electric
conductivity 5·107 S/m and relative reluctivity νr = 1. For the
sheet, an electric conductivity of 9.17431·105 S/m is used and
a measured anhysteretic curve with linear relative reluctivity of
0.03 and saturation flux density of 1.6 T. In Fig. 3, the general
dimensions of the setup are given.

A. 2-D Model

The first numerical experiment is to compare the Joule
losses in the sheet between a model with Nitsche interfaces
between the sheet and air domain and a conformlly meshed
model. In this setup, the conductivity and the reluctivity are
discontinuous across the interface, and the influence of the
penalization parameter on the Joule losses is investigated.

In Fig. 4, the effect of the Nitsche- (penalization-) para-
meter is investigated, and we observe the expected behavior
discussed above, where the error is decreasing up to a certain

Fig. 3. 3-D half model and 2-D setup with dimensions in millimeters.

Fig. 4. Relative error between Joule losses with NC Nitsche interface and
conforming mesh with the fixed mesh size.

Fig. 5. Phase shift cos(ϕ) between global voltage and current and electrical
efficiency ηel depending on the excitation frequency.

threshold of the parameter and then suffers from numerical
instabilities. Based on Fig. 4 and other parameter studies,
we can conclude that choosing the Nitsche parameter in the
range between 100 and 1500 seems to be a good choice for
many applications in 2-D as well as 3-D, with a similar setup
as depicted in Fig. 3.

Since an excitation with global quantities is used, the phase
shift between total current and voltage can be evaluated and
an optimal working point in terms of electrical efficiency can
be observed, which is depicted in Fig. 5.

In order to investigate the influence of the nonlinear reluc-
tivity on the temperature field, three different multiharmonic
simulations with different numbers of considered harmonics in
the multiharmonic ansatz (10) were carried out and compared
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Fig. 6. Comparison of harmonic balancing solution with different numbers
of considered harmonics.

Fig. 7. Sheet temperature for impressed current (left) and global current
excitation (right), with more physical edge overheating (highlighted in red).

to a linear harmonic simulation (see Fig. 6). In general,
the nonlinearity has minor influence on the temperature, which
is a particularity of transverse flux induction heating devices,
even when the flux density in the sheet reaches far into
saturation, which is the case in this example.

B. 3-D Model

A characteristic of transverse flux induction heating devices,
as depicted in Fig. 3, is that it is difficult to obtain a homo-
geneous temperature distribution across the sheets transverse
coordinate, due to edge effects, caused by the inductor head.

In particular, for 3-D simulations with close multi-turn
inductors, it is essential to use global excitation because
skin and proximity effects significantly change the resulting
magnetic field and, therefore, also the temperature of the sheet,
which can be seen in Fig. 7. At the outer edges of the sheet
(beneath the inductor head), a distinct overheating can be
observed, depicted in Fig. 8, which is common for this kind of
induction heating devices but only occurs for the simulation
with global excitation, due to the eddy-current distribution.

Also for the 3-D simulation, non-conforming interfaces,
based on (9), were used, where the sheet is meshed with
the structured hexahedral (hex) elements and the air domain
with tetrahedrons (tet). For this combination, the penalization
parameter in (9) has to be chosen slightly higher than that for
hex–hex or tet–tet interfaces; in our case, it was set to 2600.

Plotting the temperature across the transverse direction of
the sheet, the different temperature behavior, especially at the
edges, becomes even more evident, depicted in Fig. 8.

Fig. 8. Sheet temperature along the transverse coordinate from Fig. 7, at the
downstream edge.

V. CONCLUSION

A specialized A − V formulation for excitation with global
electric quantities was presented, which decouples the com-
putation of A and V when using edge and nodal elements
respectively. This increases the computational performance,
compared to the classical A − V formulation because the
electric scalar potential can be precomputed by solving a
Laplace equation (electrokinetic problem), which is straight-
forward and can be highly parallelized and the system for A
is better conditioned. Furthermore, a non-conforming Nitsche
interface formulation was presented for edge elements in
H (curl), which helps to significantly decrease the preprocess-
ing time (meshing) because no conforming transition layers
between different element types or mesh sizes have to be
constructed.
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