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Air Gap and Edge Effect in the 2-D/1-D Method With
the Magnetic Vector Potential A Using MSFEM

Karl Hollaus and Markus Schöbinger
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Eddy currents (ECs) are simulated in a single laminate, representing the whole core of an electrical machine. Despite this drastic
reduction in the complexity of the problem, a 3-D finite-element model turns out to be still too expensive for simulations. To overcome
this difficulty, 2-D/1-D methods are used. This article presents a solution to consider both air gap and edge effect (EE) based on the
multiscale finite-element method (MSFEM) using the magnetic vector potential (MVP) A. Linear material properties are assumed;
therefore, this article is carried out in the frequency domain. The new 2-D/1-D MSFEM is discussed, and various simulation results
are presented.

Index Terms— 2-D/1-D method, eddy-current (EC) problems, edge effect (EE), iron core, lamination, magnetic vector potential
(MVP) A, multiscale finite-element method (MSFEM).

I. INTRODUCTION

EFFICIENT simulations of eddy currents (ECs) in lami-
nated cores with the finite-element method (FEM) are of

great interest in the design of electrical machines. The scales
of the geometric dimensions are extremely different, compared
with Fig. 1. The overall dimensions, the radii R and r and the
length L, are in the range of meters, whereas the thickness
d of the laminates and the air gaps d0 in between are the
fractions of millimeters. Many finite elements are required
for an accurate model, resulting in extremely large equation
systems that are impossible to solve reasonably. However,
a laminated core represents a quasi-periodic structure with the
period p = d + d0 and is thus well suited for the multiscale
FEM (MSFEM).

A simple laminate is shown in Fig. 2. In general, there
is a magnetic stray field Bs penetrating the plane of the
laminate perpendicularly, inducing large EC loops J s on the
one hand and the main magnetic field Bm on the other, which
is parallel to the plane of the laminate and causes ECs Jm

confined to flow in narrow loops. The ECs Jm consist of a
laminar part, i.e., currents are flowing parallel to the plane
of the laminate, and a part that is perpendicular to the plane,
representing the edge effect (EE). It is very common to neglect
the magnetic stray fields in the end region and, therefore,
reasonable to assume that all laminates are exposed to the same
electromagnetic-field distribution. Thus, it suffices to simulate
only one single laminate instead of the whole laminated core.

Brute force 3-D standard FEM (SFEM) models are still
too expensive [1] for routine simulations. To avoid them,
the problem is solved using the ideas of the MSFEM [2]
and the 2-D/1-D methods [3], [4], which are very efficient
for this specific purpose. A significant shortcoming of these
methods based on the magnetic vector potential (MVP) A is
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Fig. 1. Large scale: electrical machine with overall dimensions L , R, and r;
lamination is indicated (left). Fine scale: thickness d of the laminates and the
width d0 of the air gaps or the insulation (right).

Fig. 2. Magnetic fields and ECs in general associated with a laminate (left),
without stray field Bs and currents J s and without EE (right).

the inability to consider air gaps and the EE [5], [6]. Using a
2-D/1-D MSFEM based on a current vector potential considers
the EE just by imposing appropriate boundary conditions [7].

The EE is of great importance in the simulations of nar-
row ferromagnetic strips [8] for material degradation due to
punching [9] and so on. The inclusion of an air gap can
easily be substantiated. The overall dimensions of the elec-
trical machines include the air gaps. Neglecting the air gaps
leads to essentially higher losses for the same total magnetic
flux.

The new 2-D/1-D method with the MVP copes with both
the EE and an air gap and performs excellently. Therefore,
it is a very attractive alternative to brute force 3-D SFEMs.

II. MULTISCALE FINITE-ELEMENT METHOD

A suitable selection of the local basis is essential for a
well-performing MSFEM [10]. Only odd polynomials are
relevant, since the MVP is odd versus z: Gauss–Lobatto
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Fig. 3. MSFs: the gray interval [−1, 1] represents the iron laminate, and
beyond that up to the dashed–dotted line, there is the air gap.

polynomials
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are used as micro-shape functions (MSFs) φi with the mapping
s = 2z/d , where s ∈ [−1, 1] and z ∈ [−d/2, d/2]. Fig. 3
shows how the MSFs fit into the periodic structure with p.
They are extended by zero in [−(d + d0)/2,−d/2] and
[d/2, (d + d0)/2] including the air gap, except φ0

1 and φ1,
which are extended linearly and become ±1 and 0 in {−(d +
d0)/2, (d + d0)/2}, respectively (see Fig. 3). These poly-
nomials facilitate the required tangential continuity of the
unknown MVP, and φ0

1 allows to prescribe essential boundary
conditions.

III. 2-D/1-D METHOD WITH A BASED ON MSFEM

The idea is to write the 2-D/1-D MSFEM approach ũ as a
truncated sum

ũ(x, y, z) ≈
∑

i

Liφi (z)ui (x, y) (2)

based on the space splitting � = �2D × [−(d + d0)/2,
(d + d0)/2], where the values of Li are the linear differential
operators, either the gradient or the identity, and the values
of ui (x, y) are the unknown functions. The tilde marks the
multiscale approach. The approach (2) has two advantages
compared with 3-D-FEMs, namely, that the unknown func-
tions ui depend solely on x and y, which means a weaker
coupling between the unknowns, and it assumes only odd
polynomials in z.

A. Old 2-D/1-D MSFEM Approach

Our original approach

Ã = φ1(z) grad(u1(x, y))

+ φ3(z)A3(x, y) + φ5(z)A5(x, y) + · · · (3)

with u1 ∈ H 1(�2D) and A3, A5, . . . ∈ H (curl,�2D)
considered neither an air gap nor the EE (see Fig. 4). The
third- and fifth-order terms in (3) represent the higher order
approach, and φ1 is restricted to iron.

Fig. 4. Single laminate with ECs without EE, main magnetic field Bm , and
currents Jm .

Fig. 5. Single laminate with ECs with EE and air gap, main magnetic
field Bm , and associated currents Jm .

Fig. 6. Boundary conditions for u1 and A1, representing a flux tube.

B. New 2-D/1-D MSFEM Approach

The new linear 2-D/1-D MSFEM approach

Ã = φ0
1(z) grad(u1(x, y)) + φ1(z)A1(x, y)

+ grad(φ1(z)w1(x, y)) (4)

with A1 ∈ H (curl, �2D) and u1, w1 ∈ H 1(�2D) uses two
different linear MSFs, φ1 and φ0

1 , which are shown in Fig. 3.
The support for both functions is iron and air. The first term
in (4) prescribes a total magnetic flux, and the second term
splits the total magnetic flux into one flowing in the iron and
one in the air gap, respectively, and corrects the laminar cur-
rents according to the magnetic flux in the iron, compared with
Fig. 5. The third term considers the EE. Due to the selection
of both linear MSFs, φ0

1 and φ1, respectively, the introduction
of the third term becomes feasible (see Table I).

1) Excitation, Boundary Conditions: A total magnetic flux
Φ through the cross section S in Fig. 6 can be prescribed by

Φ =
∫

S
Bm · ey d S =

∫
S

curl Ã · ey d S

=
∫

S
curl

(
φ0

1(z) grad(u1(x, y)) + φ1(z)A1(x, y)
) · ey d S

=
∫ d+d0

2

− d+d0
2

φ0
1,z dz

∫ w

0
u1,x dx =2(u1(w, y) − u1(0, y))=2C.

(5)

Planes of symmetry are discussed in Section IV-A2.
2) Weak Form of the 2-D/1-D MSFEM: An EC problem

in the frequency domain has to be solved using the phasor
convention e jωt . To obtain the weak form of the new 2-D/1-D
MSFEM, the approach (4) represents the trial function, and
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Fig. 7. Laminate with a hole, �2D = [0, 6] × [0, 30]; dimensions
in mm (left). Current densities in the vicinity of the hole in the plane of
symmetry at z = 0.0—3-D SFEM (middle) and 2-D/1-D MSFEM with EE
(right): z-components Re{J z} (above, ±0.15 MA/m2) and Im{J z} (below,
±2.0 MA/m2), f = 1000 Hz.

according to the Galerkin method, the test function

ṽ = φ0
1(z) grad(v1(x, y)) + φ1(z)v1(x, y)

+ grad(q1(x, y)φ1(z)) (6)

is selected. The weak form reads as follows.
Find (u1h , A1h , w1h) ∈ VC := {(u1h , A1h , w1h) : u1h ,

w1h ∈ Uh , A1h ∈ Vh , u1h = ±C and A1h × n = 0 on �D},
such that∫

�
μ−1 curl( Ã) · curl(ṽ) d� + jω

∫
�

σ Ã · ṽ d� = 0 (7)

for all (v1h , v1h , q1h) ∈ V0.
We propose using the finite-element subspaces

Uh ⊂ H 1(�2D) and Vh ⊂ H (curl,�2D), respectively.
The MSFs φi (except φ0

1) are in the space of continuous and
periodic functions Hper(�).

Essential boundary conditions are prescribed on
�D ⊂ ∂�2D .

Since the problem is linear and due to the space-splitting
approach, integrations in (7) over [−(d + d0)/2, (d + d0)/2]
are carried out analytically. For averaging of the coefficients,
which are involved in (7), see [2].

IV. NUMERICAL EXAMPLE

The laminate in Fig. 7 with a hole arranged symmetrically
in the center has been chosen to study in particular the EE. The
material parameters σ = 2.08 × 106 S/m and μ = 1000 μ0
have been selected. Boundary conditions are prescribed such
that a total flux Φ flows into the y-direction.

A. Results

Results obtained by the 2-D/1-D MSFEMs are compared
with reference solutions computed with the 3-D SFEM using
the mixed formulation A, V − A to prescribe suitable boundary
conditions.

The number of degrees of freedom (NDOF) and EC losses
are summarized in Table I. The computational costs are
reduced by the 2-D/1-D MSFEM compared with the 3-D
SFEM by a factor of about 16. The new MSFEM is very
accurate.

TABLE I

EC LOSSES AT f = 100 Hz

Fig. 8. Current densities in the vicinity of the hole in the plane at
z = 0.18 mm—the 3-D SFEM (left), the 2-D/1-D MSFEM without EE
(middle), and the 2-D/1-D MSFEM with EE (right): x-components Re{J x }
(above, ±0.1 MA/m2) and Im{J x } (below, −3.0−0 MA/m2), f = 1000 Hz.

Further results with and without the EE, i.e., considering or
neglecting the third term in (4), are presented below.

1) EE: Fig. 7 shows the EE by means of the z-component
of the current density J . For a fair comparison, the scaling of
the colors is such that the corresponding figures use the same
maximum and minimum. The ability to reproduce the EE by
the 2-D/1-D MSFEM with EE is very good. A comparison of
the x-component of the current densities with and without EE
is shown in Fig. 8. It is easy to see that the method without
EE completely fails. However, the new method with EE copes
with the EE very well.

2) Planes of Symmetry: The plane z = 0 is always a plane
of symmetry in the context of 2-D/1-D models considered
by the MSFs. The present problem exhibits two additional
planes of symmetry, x = 0 and y = 0, as shown in Fig. 9.
Making use of them, only one quarter has to be simulated.
Red boundary conditions are new or modified compared with
the entire problem. Exploiting the symmetry works very well,
as demonstrated in Fig. 9. Simulations have shown that the
first three or four significant digits of the EC losses agree.

V. HIGHER ORDER 2-D/1-D MSFEM

Losses obtained by the 2-D/1-D MSFEMs have been com-
pared with those by the 3-D SFEM in this section.

A. Linear 2-D/1-D MSFEM

There is a clear difference in the relative error of the losses
between the 2-D/1-D MSFEMs with and without EE, i.e., with
and without the third term in (4), as can be easily seen
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Fig. 9. Boundary conditions for u1, A1, and w1, �D ∪�N = ∂�2D ; hole is
included in �2D = [0, 3] × [0, 15] (left). Current densities in the vicinity of
the hole at z = 0.0, 2-D/1-D MSFEM with EE, entire problem (middle), and
one quarter (right): z-components Re{J z} (above, ±0.1 MA/m2) and Im{J z}
(below, ±2.0 MA/m2), f = 1000 Hz.

Fig. 10. Relative error of the EC losses versus the frequency of the linear
2-D/1-D MSFEMs with and without EE.

in Fig. 10. Both methods allow only a linear approximation.
That is why the overall errors start to grow already at low
frequencies due to the decreasing penetration depth.

B. Higher Order 2-D/1-D MSFEM Approach

To overcome the restriction to low frequencies in
Section V-A, higher order odd terms (3rd and 5th) are added
to the linear approach (4), leading to the higher order 2-D/1-D
MSFEM approach

Ã = φ0
1(z) grad(u1(x, y))

+ φ1(z)A1(x, y) + grad(w1(x, y)φ1(z))

+ φ3(z)A3(x, y) + grad(w3(x, y)φ3(z))

+ φ5(z)A5(x, y) + grad(w5(x, y)φ5(z)) + · · ·. (8)

The associated test function is constructed, and the weak
form is derived analogously to the first-order 2-D/1-D
MSFEMs (6) and (7), respectively. Higher order 2-D/1-D
MSFEMs perform clearly better than the linear ones at higher
frequencies, as demonstrated in Figs. 11 and 12. The higher
the order, the better the 2-D/1-D MSFEMs perform. Consider
that the EE provides essentially more accurate losses in a
wide frequency range. The peak of the relative error in
the third-order 2-D/1-D MSFEM occurs, because the sign
changes at about 30 kHz. This would become visible using
a linear scale for the relative error. The relative error of

Fig. 11. Relative error of the EC losses versus the frequency of the higher
order 2-D/1-D MSFEMs without EE.

Fig. 12. Relative error of the EC losses versus the frequency of the higher
order 2-D/1-D MSFEMs with EE.

Fig. 13. Computational costs in terms of unknowns. The order of Uh and Vh
were two and one, respectively, compared with (7).

the fifth-order 2-D/1-D MSFEM changes the sign above the
observed frequency range.

C. Computational Costs

The NDOF is much smaller than that of the 3-D SFEM
(see Fig. 13). Note that the coupling of the unknowns in
the 3-D SFEM is much stronger too. The 3-D SFEM uses
a mesh that is relatively fine to evaluate the relative errors in
Sections V and VI accurately. Then NDOF can be reduced by
the 2-D/1-D MSFEMs essentially.

VI. CONCLUSION

A new 2-D/1-D MSFEM, based on the MVP, has been
presented, which is capable of considering both EE and air
gaps between laminates. Increasing the order of the 2-D/1-D
MSFEM copes very well with arbitrary penetration depths.
Thanks to space splitting, the computational savings are enor-
mous and the accuracy is excellent. The 2-D/1-D MSFEM can
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obviously be extended to solve nonlinear problems, to this end,
compared with [2] and [7].
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