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The parameter identification of energy-based hysteresis models is extremely important regarding the accuracy of simulation results

of, e.g., electrical machines and transformers. This paper aims to propose an extended version to existing parameter identification
techniques in order to correctly depict rotational losses up to high saturation levels. On the basis of measurements obtained by a
rotational single sheet tester (RSST), the measured magnetic field strength is split into its reversible and irreversible part. Using this
information the parameters of an adapted vector hysteresis model are identified by means of a least squares minimization. The model
results are compared to the measurements and show a good agreement concerning the vanishing rotational losses at saturation level
and the behaviour of the magnetic flux density.

Index Terms—Energy-based vector hysteresis, rotational magnetization, rotational losses, hysteresis measurement

I. INTRODUCTION

TO FURTHER improve highly optimized electrical de-
vices such as transformers or electrical machines, the

simulation tools used should be able to correctly describe
local magnetic properties. Concerning this matter, one main
challenge are rotational losses, which can only be determined
if the simulation tool can handle local hysteretic effects. State-
of-the-art vector hysteresis models are, e.g., so-called energy-
based hysteresis (EB) models [1], [2]. To solve real life
problems using EB models, the parameters have to be identified
for each specific material. To perform this task highly efficient
methods exist ([3],[4]), but all approaches lack the ability to
correctly describe rotational losses, which are defined as

wrot :=

∫ 2π

0

∥b(h)∥∥h∥ sin θ dα . (1)

In (1) b is the magnetic flux density, h the field intensity,
θ the angle between those two quantities and α is the angle
of h compared to a reference direction. Measurements show
that the rotational losses are vanishing if the material is in
saturation, which is not true for the original EB model. In
this paper, the parameters of the EB model are identified using
unidirectional measurements and an already existing method to
identify its parameters. Then an adaptation is used to consider
rotational losses which parameters are identified by means of
a splitting of the measured field intensity into its reversible
and irreversible part (h = hrev + hirr) by restating it as a
minimization problem and utilizing numerical optimization to
solve it.

II. RSST MEASUREMENTS

The measurements are carried out using a RSST that
is shown in Fig. 1, and the tested material is a
80mm x 80mm x 1.2mm non-oriented steel sheet. To measure
the h-field, a 3D Hall sensor is employed. For the b-field,
two coils in x- and y-direction are used. Since the aim is
to purely measure losses due to hysteresis, the frequency is
kept very low (f = 1Hz) to avoid any noticeable influences

Fig. 1: Rotational single sheet tester used for measurements

regarding eddy currents. In Fig. 2 and 3, the results of the
measurements for the rotational and for the uniaxial case are
shown respectively. They consist of M = 24 magnetic field
strength levels with its corresponding magnetic flux density
values in the rotational case and for the uniaxial case in x-
direction. In the uniaxial case, only the major loop is shown to
emphasize the anhysteretic curve, calculated from this loop.
The measurements are later used to conduct the parameter
identification, validate the model results, and to perform the
splitting of the magnetic field into its reversible and irreversible
part.
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Fig. 2: by/bx and hy/hx for increasing magnetic field levels
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Fig. 3: Measured hysteresis curve and from this curve calcu-
lated anhysteresis curve for the uniaxial case

III. ENERGY-BASED HYSTERESIS MODEL

In a magnetic sense, the conservation of energy can be
written as [5]

u̇+ d = h · j̇ , (2)

where u is the internal energy, d the dissipation power that
is entirely converted into heat, h the applied magnetic field
strength and j the resulting magnetic polarization. The used
material law can be stated as

j = b− µ0h , (3)

where µ0 is the vacuum permeability. To enforce ferromagnetic
characteristics to the model, the functionals u and d have to
be expressed accordingly. The internal energy is the actual
energy that is done by the applied field and is for this reason a
reversible process. Therefore, only a reversible part hrev of the
magnetic field can contribute, which defines the anhysteretic
curve of the material Jan(hrev). This energy functional can
then be expressed as

u(j) =

∫ ∥j∥

0

Hrev,an(x) dx , (4)

where Hrev,an is the inverse of the anhysteretic function. The
second functional describes the dissipation, and therefore, only
an irreversible field hirr can contribute to this power. It is
analogically defined by the Coulomb friction that should model
the friction that hinders the motion of Bloch walls. This can
be described by the expression

d := κ|j̇| , (5)

where κ is the pinning force that has to be overcome in order to
allow a change in the polarization. To now find an equilibrium,
(2) is differentiated w.r.t j̇ and set to zero. On the first term,
this differentiation yields

hrev =
∂u(j)

∂j
. (6)

The second term is, due to the magnitude function, not differ-
entiable at j̇ = 0. However, it is a convex function and for
this reason the concept of a subgradient can be used to define
a set A that gathers all possible gradients

A =

{
hirr, ∥hirr∥ ≤ κ if j̇ = 0

hirr = κej̇ if j̇ ̸= 0 .

Using these two expressions, the equilibrium equation that
governs the behaviour of the model is

h− hrev = hirr ∈ A . (7)

It determines the irreversible field hirr in the set A , which is
analogous to the behaviour of a spring-friction slider, where
the elongation corresponding to the polarization of the spring,
is only allowed to change if the friction force of the slider
is overcome. An efficient solution strategy of this equation
is described in [6]. To increase the accuracy of the model,
not only one pinning force is considered, but rather a discrete
volumetric weighted distribution of k so-called pseudoparticles
that all have an assigned value for their weight ωk and
pinning force κk. This helps to better represent the statistical
distribution of the impurities that create pinning centres in the
ferromagnetic material.

A. Issue of the Model regarding Rotational Losses
Measurements show that for a rotating applied field the

losses vanish in saturation of the material. This means that
the dissipation of the system goes towards zero, since all
magnetic domains are aligned with the applied field and no
delay between the b-field and the h-field occurs. The EB
model uses (5) as an expression for the dissipation. In the
case of uniaxial excitation, the behaviour of vanishing losses
in saturation is enforced by the anhysteretic curve in (4), since
in saturation the polarization does not change any more and the
dissipation becomes zero. In contrast to that, in the rotational
case the polarization always changes in the direction, so j̇ is
never zero and for this reason the dissipation cannot vanish.
This phenomenon of the model can be seen in Fig. 4.
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Fig. 4: Comparison of modelled and measured rotational losses

B. Adaptation: Direct Angle Correction
To correct this unphysical behaviour, a possible improvement

to the model might be an adaptation of the angle θhrev,h

between the reversible field and the applied field depending
on the state of saturation [7]. This can be done by defining a
rotation matrix Rk

Rk(ϕk) =

[
cos(ϕk) −sin(ϕk)
sin(ϕk) cos(ϕk)

]
, (8)

that rotates the reversible field towards the applied field for
every pseudoparticle k and is governed by the following
heuristic function,

ϕk = fk(∥jk∥)θkhk
rev,h

k =

(
∥jk∥
jsat

)νk

θkhk
rev,h

k , (9)
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where νk is a design parameter that has to be chosen properly
to fit the behaviour of the material. The angle ϕk that has to be
rotated is the current angle θhrev,h for full saturation (∥j∥ = js).
This results in a vanishing phase lag between the magnetic
field strength and the flux density due to an aligning of the
reversible and applied magnetic field, and therefore no power is
dissipated. This lets the rotational losses drop to zero according
to its description by (1). The function fk(∥jk∥) can also be
chosen differently, as long as it has the same characteristics as
the used one in this work. In Fig. 5 this rotation can be seen
for low and high magnetic field strengths.
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Fig. 5: Correction of the angle for different levels of the
magnetic field strength

IV. SPLITTING OF THE MEASURED MAGNETIC FIELD
STRENGTH

To obtain information about how the reversible and the
irreversible part of the measured magnetic field behave in order
to identify νk, a splitting of these quantities is proposed. The
polarization j is known from the measured fields by using
the material law (3) and j always points in the direction of
hrev, which is defined by the choice of the expression of the
internal energy in (4). Exploring this relation, the magnitude
of the reversible part can be obtained by solving for each time
step tk

∥hrev(tk)∥ = arg min
∥hrev(tk)∥

∥Jan(∥hrev(tk)∥)− jmeas(tk)∥2 ,

(10)
where jmeas(tk) is the magnitude of the measured polarization
for the current time step tk and Jan(∥hrev∥) is the anhysteretic
function obtained by uniaxial measurements of the sample.
Then the reversible part can be obtained by multiplying the
magnitude by the current normalized direction vector of the
polarization ej

hrev = ∥hrev∥ej (11)

and the irreversible part is evaluated by using

hirr = h− hrev , (12)

where h is known by the measurements. Using this technique,
the actual phase lag θhrev,h between the reversible part and the
magnetic field can be used to adapt the EB model such that
the rotational losses are depicted properly. The contribution of
all field components for an increasing excitation can be seen in
Fig. 6 and the measured angle in Fig. 7. It can be recognized
that the angle indeed vanishes. However, the reversible part of
the field does not dominate near saturation. For this reason, an

adaptation via an angle correction might be better suited than
making the irreversible field vanish directly [8].
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Fig. 6: Obtained reversible and irreversible part of the magnetic
field strength by applying the splitting
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Fig. 7: Obtained angle from the splitting between the measured
magnetic field strength and reversible field

V. PROPOSED PARAMETER IDENTIFICATION

The parameter identification of the EB model is done in
three steps. First, the anhysteretic function Jan(∥hrev∥) is
calculated using the major loop of the hysteresis curve. To
use this behaviour in the EB model an analytical function for
example using the arctan(), the tanh(), the Langevin or the
double Langevin can be used. The parameter of the chosen
function can be identified via a least squares minimization.
However, in this work a spline interpolation of the measure-
ments is performed to be independent of analytical functions,
that are not capable to match every material perfectly. The
second step is to identify the set of weights and pinning forces
(ωk, κk). They are obtained by using the method introduced
in [9], where a method is described that is able to derive the
pinning field probability density function ω(κ) from uniaxial
measurements. This distribution is then discretized using k
pseudoparticles to obtain a value for every weight and pinning
force. The last step is to identify the parameter νk for each
pseudoparticle (see (9)) to get the function fk(∥jk∥) such that
θhrev,h matches the measured characteristics. This is done by
restating the identification as a minimization problem. As an
objective function, the following least squares error between
the measured and simulated angles is used

ν = arg min
ν∈[1,∞)N

M∑
l=1

(θhrev,h,meas,l − θhrev,h,sim,l(ν))
2 , (13)
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where M is the number of measured magnetic field levels. This
problem is solved via a proper numeric optimization algorithm.
In this case, the function fminunc() from MATLAB [10] is
used. The results concerning the angle θhrev,h, rotational losses
wrot and the b-field can be seen in Fig. 8, 9 and 10, respectively.
They show that by using the information of the measured
angle θhrev,h it is possible to choose νk such that the simulated
rotational losses match the characteristics of the measured one,
and the simulated magnetic flux density fits the measured one
with some minor deviations.
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Fig. 8: Comparison between measured and modelled angle
between magnetic field strength and the reversible field
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Fig. 9: Comparison between the measured and modelled rota-
tional losses
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Fig. 10: Comparison between measurements and model results
regarding the x-and y-component of the b-field

VI. CONCLUSION

In this paper, the unphysical behaviour of energy-based hys-
teresis models towards rotational losses is described. To correct
this issue, an improvement that adapts the angle between the
reversible part of the magnetic field and the total applied
magnetic field is proposed by introducing a rotational matrix
that rotates the reversible part towards the applied field for high
states of saturation. The behaviour of the rotation is governed
by an analytical function fk(∥jk∥) with parameters to be
identified. To choose these parameters, a method is presented
that is able to split the measured field into its reversible and
irreversible part. This information can be used to obtain the
behaviour of the measured angle between the reversible part of
the magnetic field and the total applied magnetic field. On the
basis of this angle, the parameters can be identified. The results
show that for the used soft magnetic material it is possible
to correctly adapt the angle and the rotational losses on the
basis of the splitting of the measured field quantities. Further,
it is shown that the behaviour of the b-field also agrees with
measurements, with only some minor discrepancies. For future
work, this procedure is tested on more materials which can also
be anisotropic.
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