
CMP-167 1

Robust Development of Active Learning-based Surrogates for
Induction Motor
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A robust open-source cloud-based workflow is developed for finite element (FE) data generation for active learning (AL) -based
surrogate modelling. Special attention is paid to making the FE solution procedure as robust and fast as possible without human
intervention by, e.g., implementing special convergence criteria, reliable parallel computation, and variable timestep length. In AL,
a surrogate model automatically improves itself by iteratively querying more FE data. Using AL and large datasets generated with
parallelised cloud FE simulations, we develop a surrogate model to rapidly predict induction machine steady-state torque, torque
ripple, total losses, and current harmonic distortion, as a function of motor frequency, voltage, and slip. Results show that AL
performs better than grid sampling and on average works as well as random sampling, but with some outputs, the results vary less
with AL. In addition, accurate ripple estimation requires a much larger training dataset than the other variables.

Index Terms—Cloud computing, data-driven modeling, finite element analysis, induction motors, machine learning.

I. INTRODUCTION

DATA-DRIVEN MODELS offer new ways of modelling
and simulating electrical machines (EMs). For long, ML

has been utilised in the analysis of field data for fault diagnosis
purposes. Lately, also different surrogate [1] and reduced order
models [2] have been developed. The idea of these surrogate
models is to distil the accuracy of a high-fidelity physics-
based model, e.g., a finite element (FE) model, into a model
that is significantly faster to run. In EM application, surrogate
models can be utilised in, e.g., design optimisation, anomaly
detection in condition monitoring, control, and digital twins
[1]. To develop such a fast and accurate surrogate model based
on physics simulation data, a vast number of simulations could
be needed to run.

If the physical simulation is slow, it is desirable to minimise
the number of such runs. One modern way of doing this is
to allow the machine learning (ML) algorithm to decide new
data points to improve the model instead of using tradition
design of experiments (DoE). This is called active learning
(AL), which is a subtype of machine learning where a learning
algorithm can interactively query new data points from a
user or another software [3]. In electrical machine surrogate
modelling, the data source can be, e.g., an FE model of the EM.
Previously, AL surrogates have been utilised, e.g., in material
design [4], optimisation [5], and engineering [6]. To the best
of our knowledge, our study is the first to apply active learning
surrogates to any electrical engineering application.

In this paper, we develop a workflow using open-source
tools for surrogate development combining active learning,
a finite element solver, and cloud computation. The aim is
to perform the heavy FE computation in containerised cloud,
which can be interfaced from a Python environment run on
a local computer. We demonstrate the workflow with a case
where a surrogate model is developed to predict the average
torque T , torque ripple Trip, total loss Ploss and current total
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harmonic distortion THD for an induction motor in a large
range of operating points determined by supply frequency f ,
voltage U and motor slip s. For that, we implemented two new
convergence criteria directly for the steady-state cycle-averaged
torque and a scheme for variable timestep length. We aimed
for high convergence robustness to have reliable results in all
feasible operating points without human intervention.

The presented surrogate model can be used in, e.g., EM
control to reduce losses, torque ripple, or current ripple, and
to indicate faults and anomalies, if the quantities behave
unexpectedly compared to the surrogate. Moreover, torque and
losses together can be used to optimise a single motor operation
or a large-scale industrial system that uses multiple electrical
machines of different sizes and power, resulting in energy
savings during the whole product lifecycle. THD of the current
in drive-operated machines helps to understand the stability of
the control system in the drive, and in general, indicates the
stability of the machine operations and overall condition of the
machine. Since the high torque ripple can be co-related with
bearing health and high current ripple can be co-related with
high iron losses, bearing health and operational temperature
can be estimated in real-time with estimations of the torque
ripple and THD of the current.

II. INDUCTION MACHINE CLOUD COMPUTING

A. Case study motor

Our AL workflow is based on open-source FE software
Elmer. As a case study, we implement a surrogate model for a
three-phase 11 kW skewed-rotor induction motor nonlinear FE
multi-slice model (Figure 1). The motor has a nominal point
at f = 50 Hz, U = 400 V, and s = 0.0163. Scalar control was
implemented by keeping the U/f ratio constant under 50 Hz
and using flux weakening over 50 Hz. The range for frequency
was 10–100 Hz and for voltage 40–500 V so the voltage range
depends on frequency. The slip had an upper limit for each
frequency and voltage so that the torque did not significantly
exceed the nominal torque of the motor.
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Fig. 1: Multi-slice model of the case study motor with magnetic
flux density and flux line solutions. Both end and side view.

B. Robust FE computation

Since our aim is to make the FE computation a black box
producing desired output from any feasible operating point
without human intervention, we implement methods to make
the FE solution as robust as possible. We aim at a faster FE
solution time for surrogate development. For that, we utilise
the parallel computation capabilities of Elmer for multi-slice
modelling in the most robust way by using one MPI process
for each slice, since using more processes per slice would
not make the surrogate development substantially faster [7].
On the contrary, we choose to solve several Elmer runs of
different operating points in parallel, and that way reach full
parallel efficiency. The Elmer multi-slice FE model has been
experimentally validated, e.g., in [7] with a case close to ours.

The case study model has long solution transients even when
a harmonic solution is used as an initial guess. To reduce
solution time, a methodology to geometrically shorten the
timestep length was implemented in Elmer. The simulation was
initiated with 50 timesteps per electrical period and shortened
to 200 timesteps per period during four cycles in the ramp-
up phase, and timestepping continued from there until the
transients caused by the timestep change were attenuated. With
such short timesteps also torque ripple may be studied.

In FE analysis of EMs, an excessive number of timesteps is
typically solved to get sufficient accuracy for all interesting
quantities. For running hundreds or thousands of FE simu-
lations in different operation points, the convergence criteria
have to be selected cleverly and the convergence needs to
be reached in all operating points. In a surrogate generation,
the convergence criteria should directly measure the surrogate
output quantities. We ended up implementing two convergence
criteria to measure the convergence of the torque. The first one
measures when the torque averaged over the cycle has been
converged, monitoring when the difference between the cycle-
average torques of two successive cycles falls below a limit.
The second one measures the variance of the torque inside
each cycle and accepts the result, when the variance is less
than the selected value. These criteria were selected, as we
are especially interested in the steady-state average torque and
the torque ripple of the motor. These criteria were observed to
work as well for getting exact enough results for motor loss
components and for the stator winding current harmonics.

After the solution has converged on our two criteria, one
additional cycle was computed with post-processing activated,
computing the total losses and stator winding current harmonic
components over the work cycle. The core losses were inte-

grated with the Bertotti model, the stator losses from electrical
current, and the bar losses from eddy currents. The THD was
evaluated based on the FFT of the electrical current waveform.

C. Cloud computation

The Elmer simulation was performed in CSC’s Rahti Ku-
bernetes container cloud, enabling easy and quick deployment
of fast computation resources without queueing. A generic
network API was built for Elmer in Rahti and a Python code
was implemented to utilise the API from a local computer. For
each run, new input parameters (f , U , and s) were updated
into Elmer model files and sent to Rahti. After the simulation
was completed, the results were available for download. Each
job utilises eight parallel MPI processes and 10 jobs could be
run in parallel. The computation of one job took 297.5 s on
average. Figure 2 shows an example of the average torque in
selected data points. To benchmark the AL method efficiently,
the Rahti API was used to generate all the datasets described
in the Section III before AL experiments, and samples chosen
by the AL algorithm were picked from one of them called the
pool. In a real setting, one directly connects the AL algorithm
to the Rahti API to query new data.

III. ACTIVE LEARNING SURROGATE

AL provides a data-efficient way to generate an accurate
surrogate model by querying new data from an FE model.
In AL, a surrogate quickly evaluates a large number of input
candidates, of which the most promising, in terms of potential
improvement to the surrogate model performance, are selected
for querying [3], as illustrated in Figure 3. This way, the
number of required data points for training an accurate ML
model can be potentially reduced which is important when the
FE model is computationally slow. In this study, the standard
deviation of model predictions is used to select the inputs.

The initialisation of AL requires an initial dataset for training
the first surrogate, which is here an ensemble of eight neural
networks (NNs) or random forest (RF) models built using the
Scikit-learn Python library [8]. Initial datasets of 8 and 64
samples were generated using grid-like sampling. In addition,
Latin hypercube sampling (LHS) was used to generate two
datasets of 100 samples for validating and testing the surrogate.
To study how much the surrogate’s accuracy improves with
very large datasets, grid datasets of 216 and 729 samples and an
LHS dataset of 1490 samples were generated. AL experiments
started from 8 or 64 samples, querying one sample from a
pool of 729 samples per round until the size of the training
datasets was 64 and 216, respectively. In addition to the given
input variables, polynomial features s× U , s× f , and U × f
were computed and used as input to the surrogate models. All
experiments were repeated five times with both model types,
and each experiment was also repeated using random sampling
instead of AL to compare the performance of the two.

During the sampling process, the surrogate was updated after
each round and hyperparameter optimisation was performed
every eight round using the Hyperopt Python library [9]. The
hyperparameters options included the number of neurons (32-
128), alpha (0.002-0.2), initial learning rate (0.001, 0.02),
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Fig. 2: FE torque in data points in three different 2-d sections of the 3-d parameter space, with the third parameter limited to
a narrow range described above each subfigure. Left: s around 0.015, Middle: U around 400 V, and Right: f around 50 Hz.
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Fig. 3: Active learning process.

learning rate schedule (inverse scaling or adaptive), and batch
size (8, 16, 32, 64, or 128) for NN, and the number of
estimators (20, 40, 80, 120) for RF. In hyperparameter op-
timisation, each model candidate was evaluated using 6-fold
cross-validation.

The model error was evaluated using root mean squared
error (RMSE) in the experiments and the results in Section
IV represent the average and standard deviation of RMSE of
the five repetitions. The RMSEs were calculated using the test
dataset to measure the generalization ability of the model.

IV. SURROGATE MODELLING RESULTS

The prediction RMSEs of models trained with different
datasets in Table I show that with 216 samples, active learning
outperforms grid sampling (traditional DoE) except when NN
is used to model Trip. However, other results show that RF
is better suited for modelling Trip, and NN achieves lower
RMSE with T , Ploss, and THD . The results with grid and
LHS datasets of 729 and 1490 samples, respectively, show that
significant improvements in RMSE can be achieved with very
large datasets.

Figures 4, 5, 6, and 7 represent the evolution of the average
and standard deviation of RMSE as more data is added to
the training dataset. They also confirm that RF works best for
Trip and NN for the rest. A comparison of AL and random
sampling (labelled R in the figures) shows that there is only a
little difference when modelling T and Ploss. With T (Figure
4), the RMSE decrease slightly faster with AL but in the end,
it is the same as with random sampling. However, it should
be noted that the standard deviation of RMSE is much larger
with random sampling than with AL.

With Ploss (Figure 5), the RMSE with random sampling
remains slightly lower throughout the sampling process than
with AL. The predictions of the best model for T and Ploss
with datasets of 64 samples are visualised as coefficient of
determination (R2) plots in Figures 8 shows that the error is at
a sufficient level. R2 is the percentage of variance in the output

TABLE I: RMSEs of models trained with different datasets.

A64a G64b A216 G216 G729 L1490c

T NN 1.83 1.89 1.32 5.72 0.40 0.38
[Nm] RF 10.41 9.90 6.50 8.18 3.87 2.81

Ploss NN 50.67 66.46 34.95 92.38 14.05 10.47
[W] RF 167.56 210.12 126.99 187.63 83.09 55.81

Trip NN 1.92 4.09 2.36 2.18 1.68 0.80
[Nm] RF 1.37 1.28 0.99 1.18 0.96 0.44

THD NN 1.44 1.26 0.67 1.51 0.43 0.33
[-] RF 1.83 1.49 0.96 1.31 1.01 0.43
a Active learning. b Grid sampling. c LHS.

that is explained by the inputs. The standard deviation of Ploss
RMSE is approximately equal with both random sampling and
AL.

Since the RMSE of Trip and THD was not sufficient with
datasets of 64 samples, the AL process was repeated for them
starting from 64 samples and sampling until 216 samples
were reached. The results for Trip (Figure 6) show that the
RMSE decreases from 1.45 Nm to 0.7 Nm on average. Its
RMSE decreases rapidly when AL starts but then the standard
deviation of RMSE increases and the average RMSE stalls
before decreasing again at around 155 samples. The results for
THD (Figure 7) show that the RMSE decreases from 1.28 Nm
to 0.99 Nm on average but there are three sudden increases in
the RMSE during the AL. The reason for such behaviour is to
be studied more closely in future work.

The R2 plots (Figure 9) show that even with 216 samples,
the variance of Trip predictions is still relatively high, whereas
the NN achieve low error for THD . However, Table I and
Figure 9 show that modelling Trip accurately requires a large
number of training data points. Its RMSE decreases by a factor
of 2.7 when the amount of training data is increased by a factor
of 6.9 (A216 vs. L1490).
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Fig. 4: Evolution of the torque prediction error (8–64 points).
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Fig. 5: Evolution of the loss prediction error (8–64 points).
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Fig. 6: Evolution of the torque ripple error (64–216 points).
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Fig. 7: Evolution of the THD error (64–216 points).

The CPU times to predict one sample with an NN and an
RF model were 0.54 ms and 0.32 ms, which correspond to
predicting 1866 and 3110 samples per second, respectively.
Therefore, the speed was approximately 0.5–1 million times
greater than the FE simulation. In the surrogate model gener-
ation, FE simulations dominate the time consumption, which
is determined by the number of required training data points.
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V. CONCLUSION

We presented a novel active learning workflow for gener-
ating FE data for surrogate model development in a robust
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Fig. 9: Predicted torque ripple and current THD.

and rapid way without human intervention. Induction motor
torque, torque ripple, loss, and stator winding current THD
estimation results were presented, where active learning was
recognised to improve the surrogate accuracy, at least with a
low amount of data. However, the difference to the random
sampling was not substantial, which might be due to the test
case with only three-dimensional parameter space, but the
reason should be further investigated. Modelling torque ripple
accurately required a substantially larger training dataset than
the rest of the outputs, and it was also the only studied output
variable that could be predicted more accurately with an RF
than with an NN model. However, it was noticed that the use
case needs to be quite complex in order to active learning to
outperform traditional DoE in the required FE simulation time.
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