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High Frequency Modeling of Granular Soft Magnetic Materials with
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A full-wave electromagnetic field equation in a cross section of a ferrite core, modeled as an array of grains, is solved with
the finite element method utilizing local model order reduction techniques. With the traditional finite element method and a high
number of grains, the resulting system becomes resource-intensive. The reduced approach greatly decreases the amount of degrees
of freedom and the computational time for solving the resulting system.

Index Terms—Domain decomposition, model order reduction, soft magnetic materials.

I. INTRODUCTION

LOCAL model order reduction (LMOR) methods are
methods which can be applied to eliminate excess

amounts of degrees of freedom (DOFs) inside subregions of
a domain [1], [2]. They can be applied to a wide range of
problems such as eliminating the internal DOFs of windings
in magnetoquasistatic problems [3]. The need for special
techniques like LMOR typically arises when the problem has
multi-scale features which, in traditional finite element (FE)
approaches, will result in an extremely high number of DOFs.
In this paper, we will use a randomized basis generation
technique, which differs somewhat from the highly popular
proper orthogonal decomposition (POD) technique which is
used, e.g., in [4], [5].

Manganese-zinc ferrite cores are widely used in high-
frequency power electronics applications because they offer
low losses and high permeability at high frequency [6]. This
kind of material can be modeled as a structure consisting
of a large number of equivalent small sized grains separated
by a thin boundary layer [7]. Modeling ferrite cores while
considering such grain-scale structure is heavily expensive
when standard FE solvers are used. Thus, fast and accurate
solvers are needed to tackle such problems.

A popular way to tackle the multi-scale problem is ho-
mogenization [8]. Homogenization techniques assume that the
field quantities inside a subdomain containing a micro-scale
feature can be assumed homogeneous over the subdomain. It is
however not always evident a priori when such an assumption
is justifiable. Therefore homogenization is not applicable to
all problems of this nature.

In this paper, a ferrite core is modeled while considering
the grain-scale microstructure by taking a single grain which is
modeled and meshed. Next a reduced order model of the grain
is computed. The resulting grain model is then replicated and
the grain domains are connected accordingly using Lagrange
multipliers to form the grain structure. In this approach, the
amount of DOFs is significantly reduced. Hence it can be used
to fill the gap between homogenization methods and traditional
FE analysis when homogenization may not be fully justified.
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Fig. 1. An illustration of the impedance measurement and the dimensions of
a disk-shaped ferrite core (gray area).

The novelty of this paper is to demonstrate the combination
of the natural domain decomposition technique utilizing La-
grange multipliers, emerging from the ferrite’s grain structure,
in combination with LMOR techniques in order to speed up
the simulation of granular magnetic materials. Furthermore,
we demonstrate that the axisymmetric nature of the problem
can be approximated as an affine dependency and hence the
proposed ROM can be precomputed efficiently in the offline
stage and then be used in the online stage with the optimal
computational complexity [9].

II. COMPUTATIONAL MODELS

The problem under study is an impedance measurement of a
disk-shaped ferrite sample, (see Fig. 1) with h = 7.5mm and
R varying based on the dimensions δg, δb (see. Fig. 3) and
the number of individual grains in the array (see Fig. 2, left)
denoted with G. The sample is placed between two conducting
plates. A sinusoidal voltage is applied to the plates and the
device determines the impedance of the sample based on the
voltage, current and the phase difference between the two.

Frequency domain analysis and cylindrical coordinates r, φ
and z are used. Considering the grain-scale microstructure of
the core (see Fig. 2, right), the rectangular cross section in
the r-z plane can be modeled as an array of square grains
shown in Fig. 2, left. A 2-D axisymmetric FE model is
constructed for solving the electromagnetic full-wave equation
in the rectangular cross section of the core where (r, z) ∈
[0, R]× [0, δg+2δb]. The axisymmetric model is well justified
due to the currents flowing through the sample in the r-z
plane, from the top electrode to the bottom. The magnetic
field is considered to have only a circumferential component:
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Fig. 2. Left: A grain array Ωa with boundary conditions for Hφ. Because
the same net current passes through each layer of grains in the z-direction,
only one layer of grains is considered in the simulation. Right: a scanning
electron microscope image of the ferrite material from [10].

H = Hφ(r, z)eφ, where eφ is the unit vector in the φ-
direction. Furthermore, based on Ampère’s law, we can con-
clude that the Hφ at r = R does not depend on z for the whole
outer edge of the sample. Therefore we can consider modeling
only a single z-directional layer of the grain array and we can
scale the results we obtain in the layer for the whole sample
thickness h. The governing equations for the magnetic field
strength H in a 2-D cross section of a disk core are

∇× ((σ + jωε)−1∇×H) + jωµH = 0 , (1)

Hφ(0, z) = 0 Hφ(R, z) =
I

2πR
. (2)

The impedance is calculated as

Z =

∫
V

(
(σ + jωε)

−1 ∥∇ ×H∥2 + jωµ ∥H∥2
)

dV

|I|2
, (3)

where V is the sample disk volume, and || · || denotes the
L2-norm.

In the classical FE model, (1) is discretized with the
Galerkin FEM with nodal elements for Hφ in the whole grain
array. The weak form of the problem is∫

Ωa

1

r
(σ + jωε)−1∇Hφ · ∇ϕ dA

+

∫
Ωa

1

r
jωµHφϕ dA = 0 , ∀ϕ ∈ Φ(Ωa) (4)

in the whole grain array Ωa (see Fig 2, left), where Φ(Ωa)
denotes the set of test functions in Ωa.

III. LOCAL MODEL ORDER REDUCTION

In order to create the ROM for a grain, we consider
only a single grain domain shown in Fig. 3. We use POD
with an oversampling domain [2]. The ROM is parametrized
with respect to the angular frequency ω. Because of the
axisymmetry, each grain is located in different radial positions,
and hence the effect of r is visible in the equations. The r
dependency of the model is non-affine and it therefore needs
to be approximated to obtain an affine decomposition, e.g.,
by using polynomials [9, p.194]. Here, a Taylor polynomial is

Ω⋆

Ωb

Ωg

Γl Γrδg

δb

δb

Fig. 3. The single grain cell. The grains are connected to each other through
Γl and Γr. The oversampling domain Ω⋆ is used only for the creation of the
ROM.

used. The Taylor approximation for 1/r in the centerpoint ri
of the grain i is given by

1

r
=

1

ri
− 1

r2i
(r − ri) +

1

r3i
(r − ri)

2 + . . . . (5)

It turns out that in this case the zeroth order term is sufficient to
produce well matching results. The zeroth order approximation
means that the r-coordinate is actually considered as the con-
stant 1/ri in each grain. Using this approach, the approximated
problem in a single grain i is expressed as

1

ri

∫
Ω

(σ + jωε)−1∇Hφ · ∇ϕ dA

+
1

ri

∫
Ω

jωµHφϕ dA = 0 ∀ϕ ∈ Φ(Ω) , (6)

where Ω = Ωb ∪ Ωg.

A. POD With an Oversampling Domain

In the reference grain cell we use an oversampling domain
Ω⋆ (see Fig. 3) to get a better reduction rate of the DOFs
in the domain. The technique on obtaining the local reduced
basis (RB) consists of setting randomized Dirichlet boundary
conditions on the left and right sides of the grain. If the Dirich-
let data is set directly to Γl and Γr, the resulting RB tends to
have at least as many basis functions as there are DOFs on the
boundary Γl ∪Γr. The purpose of Ω⋆ is to let the randomized
Dirichlet data to develop and smoothen out before entering the
actual domain and hence the captured snapshots correspond to
more naturally occuring exitations on the grain boundaries.
This results in a more condensed RB. The reduction rate
depends on the dimensions of the oversampling domain, which
are chosen heuristically. A thicker oversampling layer results
in less basis functions but increases the error. Typically the
oversampling domain in FE-context is chosen to be in the
order of a few layers of elements. The oversampling domain
is considered to be vacuum.

The matrix form of (6) in Ω = Ωg ∪ Ωb ∪ Ω⋆ is

1

ri
S⋆ h⋆ = 0 . (7)

from which 1/ri can be neglected, hence it will not affect the
obtained reduced basis. Note that the matrix S⋆ depends on
the angular frequency ω. The equation can be split as S⋆

ii S⋆
il S⋆

ir
S⋆

li S⋆
ll 0

S⋆
ri 0 S⋆

rr

 h⋆
i

h⋆
l

h⋆
r

 = 0 . (8)
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Next h⋆
i is solved in a single grain with different frequencies

ω and random boundary values on Γ⋆
l and Γ⋆

r as

h⋆
i = −S⋆

ii
−1

(S⋆
ilh

⋆
l + S⋆

irh
⋆
r ) . (9)

From h⋆
i we extract only the values of DOFs inside Ωb ∪ Ωg

and add them to the snapshot matrix X. The reduced basis U
is then obtained by orthogonalizing X using a modified Gram-
Schmidt algorithm introduced in [11]. Next, we check if the
basis is good enough by computing the approximation error
for a precomputed set of solutions HQA, i.e.,∣∣∣∣hp − UUHhp

∣∣∣∣
2
< ϵtol , ∀hp ∈ HQA . (10)

The set HQA is obtained by randomly choosing a set of samples
of ω, h⋆

l , h⋆
r and computing the corresponding solutions in

Ωb ∪Ωg. Since the quality assurance samples are not the same
as the snapshot samples, they offer an objective measure for
the level of error of the ROM in each iteration. If condition
(10) is false, we compute a new snapshot, add it to X,
recompute the reduced basis U and recheck. When condition
(10) is met, we consider the reduced basis ready.

This approach differs from the usual way the POD basis
is computed, which uses the singular value decomposition
(SVD). After sampling the parameters and computing the
snapshots, SVD is applied and only the significant singular
vectors are chosen into the reduced basis. In SVD based
approaches, one needs to have a set of snapshots computed
completely before generating the reduced basis. If new snap-
shots are added, one needs to recompute the basis for the
whole snapshot set. This is computationally expensive espe-
cially when there are multiple parameters to be sampled.

In the approach presented in this paper, we extend the basis
gradually until it is good enough. Therefore we do not need
any a priori information on the location or amount of the
snapshot parameters. The randomized approach is best suited
when the ROM has many parameters or the associated high-
fidelity FE problem is very time-consuming to solve.

B. Assembling the Reduced System

To utilize the affine decomposition in the grain array level
we introduce matrices K and T as

[K]kl =

∫
Ω

(σ + jωε)−1∇ϕk · ∇ϕl dA , (11)

[T]kl =
∫
Ω

µϕk ϕl dA , (12)

where ϕk ∈ Φ(Ω) and ϕl ∈ Φ(Ω) are FE trial and test func-
tions, respectively. Next, we introduce the reduced matrices

K̃ = UHKU , T̃ = UHTU . (13)

The matrices K̃ and T̃ are reused for all different frequencies.
The resulting frequency dependent reduced system matrix in
grain i can now be computed as

S̃i =
1

ri

(
K̃ + jωT̃

)
. (14)

Next a block-diagonal matrix S̃ = diag
(

S̃1, · · · , S̃G

)
is

defined. The matrices Rr and Rl pick the entries of the DOF

vector of the internal regions of Ωb ∪ Ωg corresponding to
Γr and Γl respectively. We denote the matrix which maps the
values of the DOFs in Γr to Γl as Dlr. This matrix is used to
ensure the continuity of the field between grains. The meshes
of Γl and Γr are made conforming.

The total reduced system is then[
S̃ B̃

H

B̃

] [
x̃
λ

]
=

[
F

]
, (15)

where

B̃ =


DlrRrU RlU

. . .
DlrRrU RlU

RlU
RrU

 (16)

consists of the couplings between the grains and equations
to set the boundary conditions, x̃T =

[
h̃T
1 · · · h̃T

G

]
, and

λT =
[
λT
1 · · · λT

G λT
0 λT

R

]T
, where λ0 and λR are

the Lagrange multipliers used to set the boundary conditions
on the left boundary of the first grain, and the right boundary
of the last grain, respectively. The blocks consisting of zeros
are left empty for clarity. The vector F =

[
· · · FT

0 FT
R

]T

consists of the aforementioned boundary values. Matrices K̃, T̃,
and B̃ can all be precomputed in the offline phase, and they are
reused for different frequencies in the impedance computation.

A high-fidelity model and the ROM were implemented
in Python utilizing GMSH’s Python API [12]. To solve the
resulting equation systems, both models are using SuperLU
through the SciPy library.

IV. RESULTS AND DISCUSSION

The ROM was verified against traditional FE simulations.
The grain dimensions and material parameters are shown in
Table I. The properties of the ROM obtained for the grain are
presented in Table II. The performance was compared in four
cases with 100, 200, 1000, and 2200 grains. All computations
were run in a Lenovo ThinkPad T14 with an i7-1165G7 CPU
and 32GB of RAM. The simulated impedance can be seen in
Fig. 4 left. Fig. 4 right shows the error in a single grain in
the grain array with respect to it’s r-position. As expected the
highest error, 2.54%, is near the symmetry axis. Fig. 5 shows
field plots of the magnitudes of Hφ and it’s curl ∇ × H =
J+ ∂D

∂t . At 1MHz there is a resonance effect happening, which
can be seen in the distribution of the magnetic field.

To analyze the reduction of computational resources, let us
first analyze the number of DOFs in the ROM and the high-
fidelity model. Let M denote the number of DOFs in a single
grain, Mb denote the number of DOFs on Γl ∪ Γr, and N
denote the number of DOFs in the ROM of the grain. The full
FE-model would contain (M −Mb)G+Mb DOFs. The ROM
contains NG+(G−1)Mb+2Mb DOFs. The numbers of DOFs
for the three considered cases are presented in Table III. The
single grain problem was reduced approximately by a factor
of five, but the full grain array problem only by approximately
the factor of three. This is because the full system includes also
the Lagrange multipliers needed to couple the grains together.
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TABLE I
DIMENSIONS AND MATERIAL PARAMETERS OF THE GRAINS.

parameter value
δg(µm) 11.0
δb(nm) 68.4
σg(S) 28.7
σb(µS) 15.0

parameter value
µg (2100 + 0.20j)µ0

µb (1.00 + 17.8j)µ0

εg (1.40 + 3.50j)ε0
εb (21.5 + 4.40j)ε0

TABLE II
PROPERTIES OF THE REDUCED ORDER MODEL FOR THE GRAIN.

ROM property value
DOFs per grain 81

Reduced DOFs per grain 14
size reduction (%) 82.7
ROM offline (sec) 0.31

The frequency range of the simulations was 1 kHz−10MHz
from which we sampled 84 frequencies. A ROM valid for a
larger frequency range requires more snapshots and therefore
produces a larger reduced basis for the ROM. Also, utilizing
the affine decomposition for additional parametric dependen-
cies, e.g., σg, σb, εg, εb, µg, µb will increase the dimension of
the reduced basis further.

The computational times in Table II and Table III exclude
the meshing times which grow larger for grain arrays with a
high number of grains. In the ROM it is only required to mesh
one grain, including the oversampling domain.

Table III shows the computed relative root-mean square
error (RRMSE) of the impedance given by the full FE and
reduced FE models for the four different cases. The accuracy
of the obtained ROM is high, but reducing the number of basis
functions further from 14, in order to, e.g., trade accuracy for
speed, causes a complete breakdown of the model.

V. CONCLUSION

A randomized LMOR technique was applied to model
a ferrite disk using an axisymmetric 2-D model consisting
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Fig. 4. Left: impedance computed with a full FE model and the LMOR model.
Right: the RRMSE of |Hφ| w.r.t the position of the grain when G = 1000.

TABLE III
THE NUMBERS OF DOFS BETWEEN THE HIGH-FIDELITY MODEL AND THE

ROM WITH DIFFERENT NUMBER OF GRAINS IN THE ARRAY.

G 100 200 1000 2200
ROM DOFs total 2309 4609 23009 52809

full DOFs total 7209 14409 72009 158409
size reduction (%) 68.0 68.0 68.0 68.0
ROM online (sec) 0.48 0.94 8.43 14.3

ROM total (sec) 0.79 1.25 8.74 14.6
full total (sec) 1.44 4.21 19.57 38.0

RRMSE (%) 0.01 0.02 0.15 0.57

Fig. 5. The field plots of |Hφ| and ||∇ × H|| in the ferrite disk using the
reduced and full models in the G = 1000 case.

of simplified ferrite grains. The LMOR technique reduces
the number of DOFs and speeds up the computation of the
impedance of the sample for a frequency sweep. The technique
seems promising whenever there is a naturally emerging way
to split the problem domain into repeating subdomains. It may
be useful to speed up parameter optimization or the forward
problem of an inverse problem where repeated solving of the
system with varying parameters is required.
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