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The computational costs to determine the eddy currents in nonlinear laminated iron cores could be reduced essentially using
multiscale finite element methods. However, they are still too high for routine tasks in the design of electrical devices. Therefore,
this paper investigates the feasibility of the multiscale finite element method with model order reduction using the discrete empirical
interpolation method to facilitate a convenient solution of the nonlinear problem. We propose structure preserving model order
reduction to avoid the known large errors due to applying the discrete empirical interpolation method to update the nonlinear right
hand side of the fixed point method. Numerical simulations show very satisfactory results.

Index Terms—Discrete empirical interpolation method DEIM, iron sheets, model order reduction MOR, multiscale finite element
method MSFEM, nonlinear eddy current problems, structural MOR.

I. INTRODUCTION

COMPUTATIONAL costs to compute the eddy currents
(ECs) in laminated iron cores can be very high [1]. Our

aim is a fast and accurate computation of the ECs in laminated
nonlinear iron cores. It turned out that the reduction of the
computational costs with the aid of the multiscale finite element
method (MSFEM) is not sufficient.
The complexity of a nonlinear eddy current problem (ECP)
could be significantly reduced by model order reduction
(MOR) in [2]. Proper orthogonal decomposition (POD) is
very successful to construct reduced order models for linear
problems. However, to assemble the nonlinear term of the finite
element (FE) system remains expensive. Therefore, the discrete
empirical interpolation method (DEIM) presented in [3] is
investigated to substantially improve the efficiency of MOR
in the context of MSFEM. MOR with DEIM was successfully
applied to a nonlinear static magnetic field problem in [4] and
to an ECP in [5].
The algorithm in [3] was used to select the degrees of freedom
(DoFs) of the MSFEM for the DEIM. Results of the numerical
example in Sec. III demonstrate that MSFEM and MOR with
DEIM are capable to provide very accurate results. On the other
hand, DEIM is also very sensitive. Very large errors can occur
if the dimension of the snapshot matrix for the right hand side
(RHS) is too small. A gappy-POD approach was proposed in
[5] to eliminate the large errors. Our idea is to apply structure
preserving MOR [6], in short structural MOR (SMOR), which
exploits the MSFEM approach and has low additional costs.
The simulation results show that MOR and DEIM significantly
reduce the memory requirements and computation times of
MSFEM, and SMOR is able to significantly minimize the large
errors.

II. NUMERICAL METHODS

An ECP, such as shown in Fig. 1, is to be solved in the time
domain based on the magnetic vector potential (MVP) A. The

Fig. 1. One eighth of the ECP with 20 iron sheets (d = 0.5mm, d0 =
0.0125mm), not drawn to scale, x = 0, y = 0 and z = 0 represent planes of
symmetry, dimensions are in mm. Filamentary current loops (red, f = 50Hz,
a = 70mm, b = 30mm) are linked with the limbs.

initial boundary value problem reads

curl(ν(A) curlA) + σ
∂

∂t
A = J0 in Ω = Ωc ∪ Ω0

ν curlA× n = 0 on ΓN (1)
A× n = 0 on ΓD,

where ν is the magnetic reluctivity, σ the electric conductivity,
J0 a given current density, Ω the domain of the problem
consisting of a conducting domain (iron) Ωc and a non-
conducting domain Ω0 with the boundary ∂Ω = ΓN ∪ ΓD.

A. Multiscale Finite Element Method

The 1st order MSFEM approach

Ã = A0 + ϕ1A1 + grad (ϕ1w1) (2)

marked by the tilde for the MVP A is used, where A0 ∈
H(curl,Ω), A1 ∈ H(curl,Ωm) and w1 ∈ H1(Ωm) are suit-
ably approximated by FE spaces, see [7] and [8], respectively.
The micro-shape function ϕ1 is a periodic, piecewise linear and
continuous function [1], i.e. ϕ1 ∈ Hper(Ωm). The laminated
domain Ωm consists of iron sheets and insulation layers in be-
tween. Essential boundary conditions are prescribed by means
of A0 exclusively, and only natural boundary conditions are
provided for A1 and w1. To obtain the weak form of MSFEM,
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the approach (2) is inserted into the associated weak form of
(1), see e.g. [1].

B. Fixed Point Method

The weak form of the MSFEM of (1) with (2) yields the
non-linear ordinary differential equation system

A(ν(u))u+M
∂

∂t
u = b(i) (3)

with a nonlinear stiffness matrix A(ν), a linear mass matrix
M , both of dimension n × n, and the filamentary current i
in Fig. 1. Applying the fixed point method (FPM) [9] to (3)
moves the nonlinear part to the RHS. The Euler method was
used as time stepping method (TSM). Thus, (3) becomes

A(νFP )u
(k,l) +

1

∆t
Mu(k,l) =

b(i(k)) +A(νFP − ν(u(k,l−1)))u(k,l−1) +
1

∆t
Mu(k−1) (4)

with the constant fixed point reluctivity νFP , the time step ∆t,
the superscript k for the time instant tk = k∆t, which yields
u(k) = u(tk) and the fixed point iteration l. Thus, the nonlinear
algebraic equation system (4) has to be solved iteratively at
each time instant tk.

C. Model Order Reduction

To reduce the effort to solve (4), MOR and DEIM are used.
A snapshot matrix

S = (u(1),u(2), ...,u(m)) (5)

with m solutions of (4) and simultaneously associated snap-
shots of the RHS

F = (f (1),f (2), ...,f (m)) with f (k) = f(tk) (6)

are computed. The dimension of S and F equals n×m. Simply
selecting S for the projection of (4)

ST

(
A+

1

∆t
M

)
Sy = STf (7)

leads to the reduced order model

Ky = g, (8)

where K ∈ Rm×m with m ≪ n. The reduced system (8)
maintains the nonlinearity of the original large system (3).
A POD based on the singular value decomposition (SVD) is
too expensive for large problems and therefore avoided. The
application of the Gram-Schmidt orthogonalization method to
(5) of the numerical problem in Sec. III did not help at all. If
the dimension of the matrix S would be too small, an adaptive
MOR could be considered. This has not been applied in the
present work.
The most expensive part to solve (8) is to update the nonlinear
RHS. To cope with this burden DEIM is investigated for
MSFEM.

D. Discrete Empirical Interpolation Method
The matrix F is used to enable a fast update of f . For

feasibility of the DEIM the approximation

Fc ≈ f (9)

should hold for any RHS f as good as possible. Since (9) is
strongly overdetermined, the algorithm in [3] was chosen in
order to still determine a unique vector c. Simply speaking,
the algorithm recursively searches for m dominant entries in
the column vectors of F resulting in a regular matrix G of
dimension m×m. Thus, only the m entries of f corresponding
to the previous search really have to be determined and the
nonlinear ν(A) of the associated FEs updated. Then, c can be
uniquely calculated with G. The remaining entries of f are
obtained inexpensively by means of (9) with the known c. For
a more detailed explanation we refer to [3].

E. Structural Model Order Reduction
The idea is to enlarge the space spanned by a given snapshot

matrix F without computing more snapshots fi, which would
be expensive. Therefore SMOR has been applied such that a
RHS vector

f = (fA0
,fA1

,fw1
)
T (10)

is decomposed according to the unknown variables A0, A1

and w1 in the MSFEM approach (2) and consequently F can
be written as

F = (FA0 , FA1 , Fw1)
T
, (11)

where T means transposed. Using SMOR leads to the approx-
imation

(FA0
cA0

, FA1
cA1

, Fw1
cw1

)
T ≈ f (12)

with the unknown vectors cA0
, cA1

and cw1
, respectively,

which are uniquely determined with the decompositions (10)
and (11) and using (12) analog to c in (9) with the algorithm in
[3]. Projection of (12) based on the decomposition of SMOR
results in

g = (gA0
, gA1

, qw1
)
T
, (13)

where

gA0
= ST (FA0

cA0
,0,0)

T
,

gA1
= ST (0, FA1

cA1
,0)

T
, (14)

gw1
= ST (0,0, Fw1

cw1
)
T
.

III. NUMERICAL SIMULATIONS AND RESULTS

The numerical example with details is presented in Fig. 1.
The used magnetization curve can be found in [1]. A conduc-
tivity of σ = 2 · 106S/m was selected. The nonlinear iterations
l were stopped as soon as the criterion

ε =
∥u(l)(tk)− u(l−1)(tk)∥

∥u(l)(tk)∥
< 10−3 (15)

was met. This criterion was also used with the DEIM. To
evaluate the feasibility of MSFEM and MOR with DEIM, the
time behavior of the EC losses

p(t) =

∫
Ωc

σ
∂

∂t
A · ∂

∂t
A dΩ (16)

was studied.
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Fig. 2. Losses obtained by SFEM and MSFEM using MOR with DEIM for
different excitations î in A.

Fig. 3. Magnetic flux density B with î=20A at t=15.0ms, MSFEM (left,
scaling: 0 < B < 1.0T), difference between MSFEM and MSFEM with
MOR and DEIM (right, scaling: 0 < |B|< 0.01T).

A. Losses and Fields

The first 10 solutions from the TSM with ∆t = 0.5ms
were selected as snapshots S as well as the corresponding RHS
vectors for F .
EC losses obtained by the standard FEM (SFEM) served as
a reference solution (RS). A comparison with those obtained
by MSFEM and MOR with DEIM are shown in Fig. 2. The
agreement of the losses is very satisfactory. The influence
of the magnetization curve is clearly visible. There is also a
satisfactory agreement of the magnetic flux density B obtained
by MSFEM and MOR with DEIM compared with MSFEM
only as shown in Fig. 3. The same holds for the current density
J , see Fig. 4.

Fig. 4. Current density J with î=20A at t=15.0ms, scaling: −1 ·103 < |J |<
2 · 104A/m, MSFEM (left) and with MOR and DEIM (right).

TABLE I
NO. OF DEGREES OF FREEDOM.

Method(s) SFEM MSFEM MSFEM and MOR
DoFs 1 116,860 103,879 6, 8 or 10

TABLE II
COMPUTATION TIME IN S.

î in A MSFEM 1) MOR with DEIM 2)
5 606 518

10 514 319
15 603 523
20 636 535

1) for a quarter period, 2) for the whole period, ε < 10−4 for î = 5A

B. Computational Costs

The required number of DoFs are summarized in Tab. I.
It shows clearly the reduction of the size of the system of
equations to be solved. The computation time of MSFEM and
MOR with DEIM is less than a quarter of MSFEM only as
shown in Tab. II. The parameter ε in (15) had to be set to
10−4 for î = 5A to obtained a sufficiently accurate solution.
The FPM required a moderate number of iterations as can be
seen in Fig. 5 to solve the nonlinear problem (4).

C. Visualisation of DEIM DoFs

To fix the locus of a DoF in space the center of gravity

rc =

∫
Ω
∥v∥L2r dΩ∫
Ω
∥v∥L2 dΩ

, where r = (x, y, z)T , (17)

of the respective basis function v was computed. The loci of
the DEIM DoFs are shown in Fig. 7. The single DoF 2 in air
belongs to A0, all other DoFs to A1. DoFs of w1 seem not to
be relevant for the used algorithm and given problem.
The distribution of the DEIM DoFs to the components of (2)

remains the same for all excitations î as shown in Tab. III.
The affected DEIM DoFs of A1 vary with the excitation î.
The DEIM patches in terms of the required number of FEs
and DoFs in order to update the material for the DEIM DoFs
can be found in Tab. III, compare also with Fig. 6. The number
of FEs for the DEIM-DoFs is different depending on whether
the FEs are on the boundary of Ωm or not.

Fig. 5. Required nonlinear iterations for the FPM, m = 10 and ∆t = 0.5ms,
different excitations î in A, ε < 10−4 for î = 5A.
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Fig. 6. Sketch of a FE DEIM patch with the FEs FE1 and FE2. The DEIM
DoFs belong to an A0- and an A1-component of the MSFEM approach (2).

TABLE III
NO. DEIM DOFS AND SIZE OF DEIM DOF PATCHES.

î in A A0 A1 w1 FEs DoFs
5 1 9 0 22 1948

10 1 9 0 30 2824
15 1 9 0 36 3476
20 1 9 0 32 3120

ε < 10−4 for î = 5A

D. Snapshots and SMOR

The choice of snapshots is examined in Fig. 8. The poor
results show how critical the choice of m snapshots is in F .
The pronounced large errors occur with only 6 snapshots at
î=10A. The reason is a too small dimension of F . The large
errors are significantly minimized by SMOR with 6 snapshots,
as shown in Fig. 9. However, SMOR also exhibits a slightly
larger error for a higher number of snapshots in F .

CONCLUSIONS

The large reduction in computational cost and the very good
results demonstrate the usefulness of MSFEM and MOR with
DEIM. The sensitivity of DEIM with respect to the number of
snapshots in the RHS matrix F can be significantly minimized
with SMOR at negligible additional cost. However, the field
distributions obtained with SMOR show a larger error than
those obtained with MOR shown in Figs. 3 and 4).
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Fig. 7. Loci of the 10 DEIM DoFs, front view (top, note that some of the
DoFs are hidden by others), top view (bottom). See legend in Fig. 6.

Fig. 8. Losses obtained by MSFEM using MOR with DEIM for different
numbers m of snapshots S, ∆t = 0.5ms, î=10A.

Fig. 9. Losses obtained by MSFEM using SMOR with DEIM for different
numbers m of snapshots S, ∆t = 0.5ms, î=10A.
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