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Method—-of-Moments (MoM) is coupled with PEEC in order to compute Joule and hystheresis losses in the armor, shields and
moisture barriers of a submarine tripolar cable. The large size and complex structure of the linear algebraic system resulting from the
problem discretization demands for a suitably tailored solver. We describe a block—GauB-Seidel preconditioner for Krylov subspace
methods that allows for a matrix—free solver implementation, resulting in a dramatic reduction of computation time and memory

requirements w.r.t. other brute—force modeling approaches.

Index Terms—PEEC, Method-of-Moments, eddy current losses, submarine cables.

I. INTRODUCTION

N offshore wind farms, connections between wind turbines

and substation(s) are realized with medium voltage three-
phase submarine cables, in which each phase conductor is
surrounded by a shield composed of thin conductive wires and
by a metallic moisture barrier (MB) ([2]]). The whole submarine
cable is also protected by an armour made of (magnetic and
conductive) steel wires. The geometry of the cable is depicted
in Figm In previous work [2], [3], [4], [5] it was shown that,
by applying suitable integral formulations and exploiting the
existing symmetries and periodicity, the study of each sub-
component of such a cable can be performed at a very small
fraction of the computational cost of competing methods.

When different sub-components with non compatible sym-
metry groups (e.g. the double-helix geometry of shielding
wires and the helical winding in the armor) are to be coupled,
though, the resulting linear algebraic system is very large and
complex and, as a whole, no longer enjoys the convenient struc-
tural properties of the decoupled sub-systems (e.g. the circulant
matrix property descending from helical geometry [3]]).

In this work we detail the construction of a block—Gauf3—
Seidel preconditioner used for the matrix—free implementation
of a Krylov—Subspace iterative solvers.

By using this approach we manage to fully exploit the
convenient structural properties of diagonal blocks and to
obtain a cheap fast converging iterative solution of our system.

II. NUMERICAL MODELS FOR THE CABLE
SUB—COMPONENTS

The efficient numerical methods for the simulation of each
of the components of the cable have been developed in [2], [3]],
[4], [S] are briefly recalled below for sake of completeness.

A. Armor

The numerical model for the ferromagnetic armor was
presented in [1], [3] and was based on the MoM formulation
described in [9]. According to this approach, the armor wires
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Fig. 1. Representation of the tripolar submarine cable.

are subdivided into a set of straight cylinders and the equivalent
magnetization in the i—th cylinder is expressed as

1 N
M= (I-K;") [ Bst +;B§Y§
where B¢*' is the magnetic flux density due to the phase
conductors and to the other cable components, while K; is a
tensor defined along the armor wires accounting for the equiva-
lent permeabilities in the longitudinal and transverse directions
(cfr. [4, Sec. IV]); B} denotes the magnetic flux density due
to the equivalent magnetization in the j—th cylinder.This latter
can be expressed in terms of the equivalent magnetization M,
as

M _ Mo X; — X
I ar Jaq,

= (n x M;) x do

3
[xi —X|
so as to reduce the problem to a linear algebraic system of the
form

Carm Marm = Barm (l)

where the vector of unknowns M., is formed by the equiva-
lent magnetizations of the cylinders and the forcing term B,
by the magnetic flux densities computed at the barycenters of
the cylinders.
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B. Screen Wires

The numerical model for the screen wires is developed in [2]
and consists of a circuital model of the form

N
RnIn + jw Z Ln,mIm = _ijn

m=1

where R,, and L, ,, are the wire resistances and (mutual)
inductances, respectively, and the forcing term is the magnetic
vector potential along the wires due to to the phase conductors
and to the presence of the other cable components, and I,
denotes the current in the n—th wire. The above system of
equations may be expressed in matrix form as

Csw Isw = Asw (2)

where I, is the unknown vector of wire currents and A,,,
accounts for the total magnetic vector potential along each
wire.

C. Moisture Barriers

The numerical model for the moisture barriers is developed
in [3] based on the PEEC formulation for thin media presented
in [10].

Denoting the vector electric potential on the thin conductive
sheats (which is assumed to have only one component, normal
to the sheats surface) one may write a system of integral
equations of the form

1
= /curlST -curlgT’dQ+

o

Jjwdpg (RFcurlgT) - curlgT” ,

dQdQY =
4T X%// |x — FFx'|

- jw/AO -curlgT’dQ).

The above equation is discretized by using piecewise linear
basis functions on a triangular surface mesh and leads to an
algebraic system which reads

C’mb Tmb = Amb (3)

where the vector Tmb consists of the values of the potential T’
at the mesh nodes, while flmb represents the nodal values of
the magnetic vector potential due to other cable components.
Notice that, due to the use of 7" as an unknown, system
does not have a unique solution (indeed, the surface current
density is the curl of 7', therefore the latter is defined modulo
a gradient field). Unlike the approach used in [[10] where the
system is solved in a least squares sense, we impose that the
electric vector potential have zero mean value on each sheath
by means of the Lagrange multipliers method, which results in
an augmented system that we write as

Cmb Tmb = Amb (4)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

III. COUPLED FORMULATION

In order to couple the three subsystems (1)), Z) and (@), the
first step is that of separating the different contributions to the
forcing terms in each equation, so that we can represent, with
obvious notation, the magnetic flux density on the armor as

Barm = BO,arm_Osw—armIsw_ mb—armebv (5)
the magnetic vector potential on the screen wires as
Asw = AO,sw_Cav'm—starm_Omb—szmba (6)

and, finally, the magnetic vector potential on the moisture
barriers

Amb = AO,mb*Carm—mbMarm*Csw—mblsw (7)

The resulting coupled linear algebraic system has the form

Ca,rm Csw—arm Cmbfa'rm Marm BO,aT‘m
arm—sw Csw C’mb—sw -[su) = AO,S'LU (8)
Carmfmb Cswf'mb C’mb Tmb AO,mb

which we express in short form as
Cs=1b

The construction of the non—diagonal matrix blocks Cyz_yy
in (8) can be extremely time and memory consuming, but the
evaluation of their action on the unknowns amount to nothing
less but computing the fields generated by the currents and
dipoles in the different parts of the cable. The latter observation
suggests the possibility of solving by means of a staggered
iterative procedure such as, for example, the Jacobi iteration
which consists of letting the forcing terms at the k—th iteration
be given by

Béi?n = BO,arm_Csw—armls(ﬁ,)_ mb—arstfb)

A(‘;Ifu) = AO,sw_Oarm—st(k) _Cmb—szﬁb)

arm

A(k) = AO,mb_CarmfmbM(k) _Cswfmb-[(k)

mb arm sw

so that the system to be solved becomes

Corm 0 0 7] [MY
0 Cuw O |[I&™ [+
0 0 G |gtk+D
0 Cswfarm Cmbfarm Mélﬁ?)n BO,a'rm
Carm—sw 0 Cmb—sw Igﬁ) = AO,sw
Oarm—mb C(sw—mb 0 T(k) AO,mb

mb

or the GauB—Seidel iteration which consists of letting at the
k—th iteration, the forcing terms be given by

B((llf)m = BO,arm_Cswfa'rmILng)_ mbfarmT(k)

mb
A.(s]iu) =4 sw_Carm—stéf;;l)—Cmb_sz(kb)

qu]jl)) = AO,mb_OaTm—mbM(k+1)—Osw_mbf(kJrl)

arm sw
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so that the system to be solved becomes

Carm 0 0 7 [MiY
Carm—sw Csw 0 Is(lvj;Jrl) +
Carmfmb Cswfmb Cmb T(kb+1)
0 Cswfarm Cmbfa’r‘m Méﬁzﬂ BO,arm
0 0 Cmb—sw Igljj) - AO,sw
0 0 0 Trqub) AO,mb

Both methods above are stationary iteration methods of the
form
Ps*+h) — (¢ — P)s® 1+ b

with
Carm 0 0
P = 0 Csw 0 =: PJ
0 0 Comb
for Jacobi and
Carm 0 0
P = Carmfsw Csw 0 = PGS
Carm—mb Csw—'mb Cmb

for GauBl—Seidel. It is a well known condition that methods of
the above form converge if and only if the spectral radius r of
the iteration matrix —P~! (C' — P) is less than one, that is

7 = Amaz [—P; " (C = Py)]
for Jacobi and
rGs = Amaz |—P5g (C — Pgs)]

for GauB-Seidel, where M,q.[-] indicatates the maximum
absolute value of the eigenvalues of a matrix. Both such
iterations have successfully tested for the computation of losses
in the cable system at 60Hz or below but, unfortunately,
the convergence conditions appear to be verified in practice
only for very low frequency, and often become larger than
the threshold at frequencies as low as 100Hz. An alternative
approach consists of using either of the above preconditioners
for the implementation of a Krylov—subspace iterative solver.
Such method can be implemented in a matrix free form, e.g.
without the need of assembling the system matrix, as long as
one can solve a system where the coefficient matrix is given by
the preconditioner P. We implemented and tested, in particular,
the Bi-Conjugate Gradient Stabilized (BiCGStab) [[L1] method
and report successful results below. Gau—Seidel and Jacobi
preconditioners have been found to both perform well in
numerical experiments, Gau3—Seidel consistently requiring a
(slightly) lower number of iterations to reach convergence at a
very similar cost per iteration. For this reason we only imple-
mented the GauB3-Seidel preconditioner in the final version of
our simulator.

IV. NUMERICAL RESULTS

FigH] shows a comparison between the results obtained
with the proposed formulation and FEM results, the latter
obtained with the help of commercial software [7]], in terms
of losses in armor, shields and moisture barriers (MB). In the
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TABLE 1
MATERIAL PROPERTIES FOR CABLE COMPONENTS

Armor wires

resistivity 1.38x 1077 Qm
relative permeability 300
hysteresis loss angle 60°

Screen wires

resistivity 1.7241 x 1078 Q m
Moisture barriers

resistivity 1.5x 1078 Q@ m

FEM simulations a Transition Boundary Condition is used to
model the geometrically thin moisture barriers. Results are
presented in the frequency range 50 Hz - 1kHz. Operating
frequency for cables of this type is SOHz for installation in
Europe, and 60Hz in USA. Higher frequencies correspond
to the harmonic of the carried currents, and are of interest
for network studies performed by the owners of the offshore
systems. The geometric parameters for the simulated cable
are shown in Fig[IV] while the material parameters are given
in TABLHEIJA good agreement can be noticed between the
proposed formulation and FEM in the frequency range of
interest for the application.

FEM simulations require about 107 degrees-of-freedom and
512 GByte of RAM and are run on a 4 processor Intel Xeon
E7 v2 multi-core with 1.5 TB of RAM. Thin sheet boundary
conditions are applied to model MBs.

Fig[3 shows the convergence performance of preconditioned
BiCGStab iterations for the solution of the problem at hand
which, while it does display a slight degradation at higher
frequencies, always reaches convergence (within 10 times the
realtive truncation error of double precision floating point) in
about 10 iterations.

The coupled formulation (implemented in Octave [8]) re-
quires only less than 10* degrees-of-freedom and less than 1
GByte of RAM.

Computational times reflect the different complexity of the
models, with each FEM simulation requiring 4 hours of com-
putation and each simulation with the proposed method less
than 10 minutes on the same computer.

V. CONCLUSIONS

Method—of-Moments (MoM) is coupled with PEEC in or-
der to compute Joule and hystheresis losses in the armor,
shields and moisture barriers of a submarine tripolar cable.
The large size and complex structure of the linear algebraic
system resulting from the problem discretization demands
for a suitably tailored solver. We implemented a matrix—free
Krylov subspace iterative solver with a block—Gauf3—Seidel
preconditioner to solve the system. Numerical experiments
show very good agreement with more brute—force computation
and a computational cost that is dramatically reduced both in
terms of time and memory requirements. A slight degradation
of the accuracy of results appears at the higher end of the
considered frequency range but the error is still acceptable for
engineering applications. This degradation may be explaine by
noting that, while at low frequency the ratio of sheath thickness
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Fig. 4. Comparison with FEM results.

Fig. 2. Representation of the cross-section of the cable with shield wires,
moisture barriers, and armor wires.
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to skin depth is more than one order of magnitude, this ratio is
reduced to a few units in the KHz frequency range, so that the
assumption of uniform current density in the sheath thickness
becomes less valid in that regime; further research is warranted
for relaxing the uniform current density assumption and thus
improve the model accuracy.
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