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An Equilibrated Error Estimator for the 2-D/1-D MSFEM
T-Formulation of the Eddy Current Problem

Markus Schöbinger and Karl Hollaus

Institute for Analysis and Scientific Computing, Technische Universität Wien, 1040 Vienna, Austria

The 2-D/1-D multiscale finite element method (MSFEM) is an efficient way to simulate rotating machines in which each iron sheet
is exposed to the same field. It allows the reduction of the 3-D sheet to a 2-D cross section by resolving the dependence along the
thickness of the sheet with a polynomial expansion. This work presents an equilibrated error estimator based on flux equilibration
and the theorem of Prager and Synge for the T-formulation of the eddy current problem in a 2-D/1-D MSFEM setting. The estimator
is shown to give both a good approximation of the total error and to allow for adaptive mesh refinement by correctly estimating
the local error distribution.

Index Terms— 2-D/1-D multiscale finite element method (MSFEM), eddy currents, error estimator.

I. INTRODUCTION

THE simulation of eddy currents in electrical machines
consisting of many steel sheets with the finite element

method quickly leads to infeasibly large equation systems.
In many machines, each sheet in the active zone is exposed to
the same field, which allows for a great reduction in compu-
tational effort by simulating only a single sheet. If required,
the effect of the end-winding reason can be included via a
network equation as has been done in [1].

However, this reduced problem is still far from trivial. One
method to further simplify the problem while maintaining a
good approximation of the solution is by spacial decomposi-
tion.

The thickness of one sheet is less than a millimeter while
the length and width are in the range of meters. A method to
treat the 2-D cross section and the 1-D thickness of the sheet
as two coupled problems has been presented in [2]. It solves
the two problems iteratively until convergence is reached. The
nature of this coupling has been analyzed in more detail in [3].

In [4] and [5] different approaches have been presented
which isolate the 1-D problem as a pre-processing step in
order to obtain parameters for the 2-D one.

The 2-D/1-D multiscale finite element method (MSFEM)
presented in [6] applies ideas from the MSFEM. It uses classic
finite element functions for the 2-D problem while approx-
imating the dependence on the third axis with pre-defined
polynomial shape functions. The idea is similar to the method
presented in [7], which is based on trigonometrical shape
functions. This enables the solution of the problem within a
single iteration while requiring only a mesh for the 2-D cross
section of the sheet. It is also able to include the insulation
layers between sheets and correctly treat the edge effect [8].
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This article presents an error estimator for the T-formulation
of the 2-D/1-D MSFEM. It is based on flux equilibration and
similar to the error estimator for the T-formulation for the
MSFEM presented in [9]. The theory has been restructured
in order to fit within the 2-D/1-D MSFEM framework. Both
the construction and the evaluation of the presented estimator
require only the 2-D mesh while being valid in the complete
3-D domain.

A numerical example shows that the estimator gives a
good approximation of the error in both a global and a local
sense. This latter property is used to implement adaptive mesh
refinement. This allows for a high accuracy of the 2-D/1-D
MSFEM solution while requiring significantly fewer degrees
of freedom than uniform mesh refinement.

II. T–8-FORMULATION

We use the T–8 formulation for the reference solution of
the eddy current problem as described in [10]. The problem
domain � is split into the conducting domain �c, consisting of
the steel sheet, and the non-conducting domain �0, consisting
of the air regions and the insulation layers. The sheet is
assumed to be axis-aligned with the cross section in the
x-y plane and the thickness aligned with the z-axis. The total
thickness of � is d = dFe + d0 with the thickness of the sheet
dFe and the thickness of the insulation layer d0.

The magnetic field strength H is written as

H = T − ∇8 + HBS (1)

with the current vector potential T ∈ H(curl, �c) fulfilling
curl T = J with the current density J, the magnetic scalar
potential 8 ∈ H 1(�) and a prescribed Biot-Savart field HBS.
The strong formulation of the eddy current problem in the
frequency domain is given as

curl ρ curl T + iωµ(T − ∇8 + HBS) = 0 (2)

where ρ = σ−1 is the electric resistivity with the electric
conductivity σ , µ is the magnetic permeability, ω = 2π f the
angular frequency with the frequency f and i is the imaginary
unit.
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Multiplication with a test function and integration by parts,
together with the auxiliary condition div B = 0 for the
magnetic flux density B = µH, lead to the weak formulation:
find T ∈ H(curl, �c) and 8 ∈ H 1(�) so that∫

�

ρ curl T · curl v + iωµ(T − ∇8) · (v − ∇q)

= −

∫
�

iωµHBS · (v − ∇q) (3)

for all v ∈ H(curl, �c) and all q ∈ H 1(�).

III. TWO-DIMENSIONAL/1-D MSFEM T-FORMULATION

This article uses the 2-D/1-D MSFEM approach for the T-
formulation which has been described in detail in [6] and [11].
The 3-D unknown function T − ∇8 is approximated by

T2-D/1-D =

φ0(z)T0,x (x, y) + φ2(z)T2,x (x, y)

φ0(z)T0,x (x, y) + φ2(z)T2,y(x, y)

0

 (4)

where T2 ∈ H(curl2-D, �2-D,c) and T0 = ∇80 with 80 ∈

H 1(�2-D) are defined on the 2-D projection �2-D of �. Here
and in the following, coordinates x , y or z in the index denote
the individual components of a vector-valued function.

This article assumes that the sheets form closed loops
with the magnetic field running parallel to them. Then, the
dependence of T on z is an even function. This allows to drop
the odd orders in a polynomial expansion.

The shape functions φ0 and φ2 are polynomial basis func-
tions of order 0 and 2, respectively. They are chosen so that
only φ0 is non-zero on the boundaries of the sheets. More
details about the definition of the shape functions can be found
in Appendix.

The 2-D rotation operator curl2-D of a 2-D vector function
V = (Vx (x, y), Vy(x, y))T is defined as

curl2-D V :=
∂

∂x
Vy −

∂

∂y
Vx . (5)

The discretization of the space H(curl2-D) is discussed in
detail in [12].

The full magnetic field strength is then given by

H2-D/1-D = T2-D/1-D + HBS. (6)

For later reference, the (3-D) rotation of H2-D/1-D is given
by

curl H2-D/1-D =

−φ′

2(z)T2,y(x, y)

φ′

2(z)T2,x (x, y)

φ2 curl2-D T2

. (7)

Note that the x and y components in (7) yield the laminar
currents, while the z component is relevant for the edge effect
where the currents change direction by flowing perpendicular
to the sheet.

To obtain the weak formulation, (4) is used in (3) for both
the trial function and the test function. Note that H2-D/1-D
only depends on z via the shape functions φ0 and φ2, which
are known a priori. Therefore integration over z can be
carried out analytically. This yields the weak 2-D/1-D MSFEM

formulation: find T2 ∈ H(curl2-D, �2-D,c) and 80 ∈ H 1(�2-D)

so that∫
�2-D

ρφ
′2
2 T2 · V2 + ρφ2

2 curl2-D T2 curl2-D V2

+ iω
(
µφ2

0∇80 · ∇q + µφ2
2T2 · V2

)
+ iωµφ0φ2(∇80 · V2 + T2 · ∇q)

= −

∫
�2-D

iω
(
µφ2

0HBS · ∇q + µφ0φ2HBS · V2

)
(8)

for all V2 ∈ H(curl2-D, �2-D,c) and q ∈ H 1(�2-D) where a
bar denotes that the respective function has been integrated
with respect to z. All pre-computed integrals appearing in this
article are given in Appendix.

IV. ERROR ESTIMATION

The proposed error estimator is based on the theorem of
Prager and Synge and the theory presented in [13]. These
results can be adapted to obtain the following identity which
is the basis for all further calculations:

∥curl T − curl T2-D/1-D∥
2
ρ + ∥σγ − curl T∥

2
ρ

= ∥σγ − curl T2-D/1-D∥
2
ρ (9)

where T is the strong solution of the eddy current problem (2)
and γ an equilibrated flux fulfilling the condition

curl γ = −iωµ(T2-D/1-D + HBS). (10)

The energy norm ∥·∥ρ can be interpreted as a measurement
for the eddy current losses, i.e., for the current density J there
holds

∥J∥
2
ρ =

∫
�

ρJ · J∗
=

∫
�

E · J∗ (11)

where the asterisk denotes the complex conjugate.
The main idea of the theorem of Prager and Synge is to see

γ as a second numerical electric field strength, in addition to
ρ curl TBS. Using its definition (10) it can be shown that the
error of σγ is orthogonal to the error of curl TBS in the scalar
product inducing the energy norm. In this sense, (9) simply
becomes the Pythagorean theorem.

In (9), the first term is the error we are interested in.
Assuming a suitable γ is known, the right-hand side of (9)
can be calculated. Because the error with respect to σγ is
non-negative, the right-hand side is guaranteed to provide an
upper bound for the error.

A variant of (9) for the 2-D scalar T-formulation has been
proven in [9] and for the vector-valued magnetostatic case
in [13]. The proof of (9) is analogous.

The main problem is the construction of a suitable γ which
needs to fulfill (10) on �. At the same time, it needs to be
able to be constructed using only �2-D. If the error estimator
required the full 3-D domain �, it would be much more
computationally expensive than the calculation of T2-D/1-D and
nullify the advantages of using a 2-D/1-D MSFEM. Similarly,
the evaluation of the estimator, as defined by the 3-D integral
on the right-hand side of (9), needs to be doable using only
�2-D.
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This is achieved by using a 2-D/1-D MSFEM approach for
γ as well. More specifically, we set

γ =

φ̂1(z)γ1,x (x, y) + φ̂3(z)γ3,x (x, y)

φ̂1(z)γ1,y(x, y) + φ̂3(z)γ3,y(x, y)

φ0(z)γ0,y(x, y) + φ2(z)γ2,y(x, y)

 (12)

with

φ̂1 :=

∫
φ0 dz and φ̂3 :=

∫
φ2 dz (13)

and the unknowns γ0, γ2 ∈ H 1(�2-D) and γ1, γ3 ∈

H(curl2-D, �2-D) to be determined.
Note that both terms in the estimator on the right-hand side

of (9) are equal to zero inside the insulation. For σγ this
holds because of the multiplication with the conductivity. For
the second term curl T2-D/1-D, all its components contain the
shape function φ2, see (7), which is also set to zero inside the
insulation. Therefore it suffices to consider only the domain
of the conducting material for the construction γ , i.e., γ0, γ2 ∈

H 1(�2-D,c) and γ1, γ3 ∈ H(curl2-D, �2-D,c). A consequence of
this is, that φ′

2 = K φ̂1 holds with the constant K = 2
√

6/d2
Fe.

The rotation of γ is given by

curl γ =


φ0

∂

∂y
γ0 − φ0γ1,y + φ2

∂

∂y
γ2 − φ2γ3,y

φ0γ1,x − φ0
∂

∂x
γ0 + φ2γ3,x − φ2

∂

∂x
γ2

φ̂1 curl2-D γ1 + φ̂3 curl2-D γ3

. (14)

The condition (10) is written out, using both (4) and (14).
Comparing the coefficients with respect to the shape functions
yields the equations

∂

∂y
γ0 − γ1,y = −iωµ

(
T0,x + HBS,x

)
(15)

∂

∂y
γ2 − γ3,y = −iωµT2,x (16)

γ1,x −
∂

∂x
γ0 = −iωµ

(
T0,y + HBS,y

)
(17)

γ3,x −
∂

∂x
γ2 = −iωµT2,y (18)

curl2-D γ1 = 0 (19)
curl2-D γ3 = 0. (20)

From (19) and (20) it follows that γ1 = ∇81 and γ3 =

∇83 with 81, 83 ∈ H 1(�2-D,c). With this, the remaining
equations can be rewritten as

∂

∂y
γ0 −

∂

∂y
81

∂

∂x
81 −

∂

∂x
γ0

 = −iωµ(T0 + HBS) (21)


∂

∂y
γ2 −

∂

∂y
83

∂

∂x
83 −

∂

∂x
γ2

 = −iωµT2. (22)

Note that (21) and (22) do not uniquely define all com-
ponents of γ . Every solution yields a valid error estimator,
but the overestimation [given by the second term on the left-
hand side of (9)] may become arbitrarily large. As can be

seen from (9), minimizing the overestimation is equivalent to
minimizing the estimator, because the error is independent of
γ . For this purpose additional conditions are imposed.

Because the estimator is small if σγ is a good approxima-
tion of curl T2-D/1-D, a comparison of (7) and (12) suggests
that

∇81 ≈ Kρ

(
−T2,y

T2,x

)
(23)

∇83 ≈ 0 (24)
γ0 ≈ 0 (25)
γ2 ≈ ρ curl2-D T2 (26)

should hold.
In this article we solve (21) under the constraint

∥σγ0∥
2
ρ +

∥∥∥∥σ φ̂1∇81 − φ′

2

(
−T2,y

T2,x

)∥∥∥∥2

ρ

→ min (27)

and (22) under the constraint

∥σφ2γ2 − φ2 curl2-D T2∥
2
ρ +

∥∥σ φ̂3∇83
∥∥2

ρ
→ min. (28)

This does not yield the optimal minimizer of the estimator
because the interdependence of the components is neglected.
However, the numerical example shows that this suffices to
achieve an acceptable amount of overestimation. The main
advantage of this approach is that instead of one big min-
imization problem one only has to solve two smaller ones.
This is both faster in itself and can even be done in parallel.

The weak formulation for the problem (21) and (27) reads
as: find γ0, 81 ∈ H 1(�2-D,c) and a Lagrange multiplier λ1 ∈

Hλ (�2-D,c) so that∫
�2-D,c

σφ2
0γ0χ0 + σ φ̂2

1∇81 · ∇χ1

+ λ1 ·


∂

∂y
χ0 −

∂

∂y
χ1

∂

∂x
χ1 −

∂

∂x
χ0

 +


∂

∂y
γ0 −

∂

∂y
81

∂

∂x
81 −

∂

∂x
γ0

 · κ1

=

∫
�2-D

K φ̂2
1

(
−T2,y

T2,x

)
· ∇χ1 − iωµ(T0 + HBS) · κ1 (29)

for all χ0, χ1 ∈ H 1(�2-D,c) and κ1 ∈ Hλ (�2-D,c), where,
according to the de Rham complex, the Lagrange multi-
plier space Hλ (�2-D,c) is given as the space H(div, �2-D,c)

restricted to divergence-free functions.
Similarly, the weak formulation for the problem (22)

and (28) reads as: find γ2, 83 ∈ H 1(�2-D,c) and a Lagrange
multiplier λ2 ∈ Hλ (�2-D,c) so that∫

�2-D,c

σφ2
2γ2χ2 + σ φ̂2

3∇83 · ∇χ3

+ λ2 ·


∂

∂y
χ2 −

∂

∂y
χ3

∂

∂x
χ3 −

∂

∂x
χ2

 +


∂

∂y
γ2 −

∂

∂y
83

∂

∂x
83 −

∂

∂x
γ2

 · κ2

=

∫
�2-D

φ2
2 curl2-D T2χ2 − iωµT2 · κ2 (30)

for all χ2, χ3 ∈ H 1(�2-D,c) and κ2 ∈ Hλ (�2-D,c).
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Fig. 1. One twelfth of a fictitious machine, consisting of steel sheets (gray)
and air domains (left blank). Positive and negative sources are drawn in red
and blue, respectively. All measurements are in mm. The thickness of the
sheet is d = 0.5 mm with a fill factor of 0.95.

Fig. 2. Starting mesh (left) and the adaptively refined mesh after ten iterations
(right).

Once all components are calculated, the total estimator can
be evaluated on the 2-D mesh as

∥σγ − curl T2-D/1-D∥
2
ρ

=

∫
�2-D,c

σ φ̂2
1∇81 · ∇8∗

1 + σ φ̂2
3∇83 · ∇8∗

3

+ σ φ̂1φ̂3
(
∇81 · ∇8∗

3 + ∇83 · ∇8∗

1

)
− φ̂2

1

(
∇81 ·

(
−T2,y

T2,x

)∗

+

(
−T2,y

T2,x

)
· ∇8∗

1

)
− φ̂1φ̂3

(
∇83 ·

(
−T2,y

T2,x

)∗

+

(
−T2,y

T2,x

)
· ∇8∗

3

)
+ ρφ̂2

1

(
−T2,y

T2,x

)
·

(
−T2,y

T2,x

)∗

+ σφ2
0γ0γ

∗

0

+ σφ0φ2
(
γ0γ

∗

2 + γ2γ
∗

0

)
+ σφ2

2γ2γ
∗

2

− φ0φ2
(
γ0 curl T∗

2 + curl T2γ
∗

0

)
− φ2

2

(
γ2 curl T∗

2 + curl T2γ
∗

2

)
+ ρφ2

2 curl T2 curl T∗

2. (31)

The integrand can also be used locally to identify the finite
elements with the highest contribution to the total error.

Fig. 3. First row: the absolute value of J drawn for the reference solution
(left), the 2-D/1-D solution early in the refinement (middle) and at the end
(right). Second row: the absolute value of B drawn for the reference solution
(left), the 2-D/1-D solution early in the refinement (middle) and at the end
(right). Third row: the local error early in the refinement (left) and the
associated estimator (middle). The right figure shows the error at the end
of the refinement. All figures in one row use the same relative color scheme.
Only half of the domain is shown to preserve space.

V. NUMERICAL EXAMPLE

Consider the fictitious machine shown in Fig. 1. Using
rotational symmetries, only one twelfth of the entire machine
has to be simulated. For the steel sheet a magnetic permeability
of µ = 1000µ0 and an electric conductivity of σ = 2.08 MS
is prescribed. The frequency is 50 Hz. The sources are not
resolved in the finite element mesh and only included via their
Biot-Savart fields.

All calculations were done using the open-source soft-
ware Netgen/NGSolve [14]. This package has a python
interface which naturally supports the input of the required
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Fig. 4. Relative error, measured in the norm of the eddy current losses,
relative to the required degrees of freedom, for both adaptive and uniform
mesh refinement as well as the estimated relative error for the adaptive
approach.

formulations (3), (8), (29) and (30), and the evaluation of
arbitrary integrals like (31).

The calculations start with the coarsest possible mesh for
the given geometry, see Fig. 2. In each iteration, the estimator
is evaluated for each individual finite element. Then, all
elements where this evaluation yields at least half of the
maximum encountered estimator, are refined. In this process
some adjacent elements might get refined as well in order to
avoid hanging nodes.

As can be seen, the refinements are concentrated at the inner
edges (due to the edge effect), at the corners (where the fields
peak, see also Fig. 3) and at the inner and outer boundaries
(where the boundary conditions need to be resolved correctly).
Note also that almost no refinement happens along the vertical
symmetry line where the fields are perfectly parallel and easy
to resolve.

A qualitative evaluation of the estimator is shown in Fig. 3
where both the error and the estimator are depicted after two
mesh refinements. All errors were calculated with respect to a
numerical reference solution which has been calculated on a
finely resolved 3-D mesh with higher order finite elements.
It can be seen that the estimator correctly identifies the
regions where the error is concentrated, further justifying the
refinements.

Finally, as a quantitative evaluation Fig. 4 shows the relative
error

∥curl T − curl T2-D/1-D∥
2
ρ

∥curl T∥
2
ρ

(32)

of the 2-D/1-D MSFEM solution compared to the required
degrees of freedom (nDoF) in the finite element problem for
both adaptive refinement and uniform refinement. Of course,
in a practical application, only the absolute error in the
numerator of (32) can be estimated. Note also that the total
error

∥curl T − curl T2-D/1-D∥
2
ρ

=

∫
�

ρ(curl T − curl T2-D/1-D) · (curl T − curl T2-D/1-D)∗ (33)

is the integral over the local errors, i.e., it only becomes small
if the fields are close to each other everywhere. This can also
be seen in Fig. 3 where it is shown that the error becomes
negligible compared to the starting error everywhere inside
the domain.

As can be seen, the adaptive refinement leads to a great
increase in the rate of convergence. After the final refinement
the relative error for both the uniform and the adaptive method
is below 0.5%. However, the adaptive method uses only about
a tenth of the degrees of freedom. This makes the calculations
drastically more computationally efficient. Furthermore, it can
be seen that the estimator gives a good approximation of the
behavior of the error with only a small overestimation.

VI. CONCLUSION

An a posteriori error estimator has been presented for the
2-D/1-D MSFEM T-formulation of the eddy current problem,
based on the theory of flux equlibration. The estimator also
utilizes a 2-D/1-D MSFEM approach in order to prevent its
calculation costs to dominate the solution of the problem.
Numerical examples show that it gives reliable estimates of
the error in both a global and a local sense. This makes it an
efficient tool for adaptive mesh refinement to increase the rate
of convergence of the 2-D/1-D MSFEM solution.

APPENDIX
SHAPE FUNCTIONS

Assuming that the sheet thickness is aligned with the z-axis,
the definition of the shape functions uses the auxiliary scaling
variable s := (2z/dFe), which transforms the arbitrary interval
[−(dFe/2), (dFe/2)] into the normalized interval [−1, 1]. The
shape functions used in this article are given as

φ0(s) = 1 (34)

φ̂1(s) =
dFes

2
(35)

φ2(s) =
1
2

√
3
2

(
s2

− 1
)

(36)

φ̂3(s) =
dFe

√
6

8
s
(

s2

3
− 1

)
(37)

see also Fig. 5. In the insulation layer, φ0 and φ2 are extended
by the constants 1 and 0, respectively. The functions φ̂1 and
φ̂3 only appear in the definition for the estimator, which is
only defined within the sheet.

In order to write the required integrals concisely, let κ be
a generic material parameter that is equal to κFe in the sheet
and equal to κ0 in the insulation. In the application κ takes the
place of σ, ρ or µ as needed or it can be omitted by implicitly
setting κFe = κ0 = 1. The integrals required for (8), (29), (30),
and (31) are given by

κφ̂2
1 =

d3
FeκFe

12
(38)

κφ2
2 =

dFeκFe

5
(39)

κφ
′2
2 =

2κFe

dFe
(40)
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Fig. 5. Used shape functions φ0, φ̂1, φ2, φ̂3. Note that φ̂1 and φ̂3 are scaled
to dFe = 1 for better visibility.

κφ0φ2 = −

√
6dFeκFe

6
(41)

κφ̂2
3 =

17d3
FeκFe

840
(42)

κφ̂1φ̂3 = −

√
6d3

FeκFe

60
. (43)

The terms containing φ2
0 are a special case and one has

to differentiate between the integral over the entire domain
including the sheet and the insulation and the integral over
just the sheet. Therefore

κφ2
0 = κFedFe + κ0d0 in (8) (44)

κφ2
0 = κFedFe in (29), (30) and (31). (45)
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