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The major advantage of reduced magnetic vector potential (RMVP) formulations is that complicated coil structures do not need to
be resolved by a computational mesh. Instead, they are modeled by thin wires, whose source field is included into the simulation model
along Biot–Savart’s law. Such an approach has already been successfully employed in ROXIE for the simulation of superconducting
Large Hadron Collider (LHC) magnets at CERN. This work presents an updated RMVP approach, which significantly outperforms
the original method. The updated formulation is postulated, implemented, verified, compared to the original formulation, and applied
for the simulation of a quadrupole magnet. The promising results of this work encourage further investigation toward an updated
simulation framework for next-generation accelerator magnets.

Index Terms— Accelerator magnets, Biot–Savart law, finite element analysis, superconducting coils.

I. INTRODUCTION

H IGH-TEMPERATURE superconducting (HTS) technol-
ogy is expected to have a significant impact on

next-generation synchrotrons [1]. With this step forward,
however, magnet design is confronted with new challenges
regarding the design of large, high-field and high-quality
magnet systems. Computer-aided design and numerical field
simulation generally play a crucial role in designing and
optimizing accelerator magnet systems, and will do even more
so regarding the next-generation HTS magnet systems. For the
past decades, the simulation software ROXIE [2] proved to be
an indispensable workhorse for designing the low-temperature
superconducting (LTS) magnets of the Large Hadron Col-
lider (LHC). ROXIE combines a hybrid finite-element (FE)
boundary-element method with a reduced magnetic vector
potential (RMVP) formulation [3], [4], leading to fast and
accurate simulations [5], [6]. Herein, the coils are modeled
as thin wires, and their excitation is included as a source
magnetic field, which is calculated by Biot–Savart’s law. The
major advantage of this formulation is that these wires do
not need to be resolved by a computational mesh. Especially
superconducting accelerator magnets, which typically contain
hundreds or thousands of coil windings, greatly benefit from
this approach.

Nonetheless, ROXIE and commercial out-of-the-box simu-
lation tools struggle with the multi-scale nature that is imposed
by HTS tapes, resulting in excessive computation times [7].
The goal of this work is to improve the computational
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efficiency of the RMVP approach and to contribute toward
suitable simulation tools for future HTS magnet design cam-
paigns. To do so, ROXIE’s original formulation is first adapted
to a pure FE model in Section II, and then reformulated in
order to diminish the number of Biot–Savart integrals to be
calculated to quantify the source magnetic field. This leads
to a multistep calculation procedure, which is presented in
Section III and demonstrated for a case study with an eccentric
line current in an iron tube. In Section IV, the updated RMVP
formulation is analyzed regarding accuracy and performance.
Herein, the proposed procedure proves to be clearly superior
to ROXIE’s original formulation. Section V finally showcases
the updated RMVP formulation by applying it to the 2-D
nonlinear magnetostatic simulation of the LHC’s LTS MQXA
quadrupole magnet [8]. All simulations have been carried out
using the freely available FE solver GetDP [9].

II. ORIGINAL RMVP FORMULATION

In this section, the original RMVP formulation from [3]
is recapitulated. The original physical problem that has to
be solved is the magnetostatic problem with a homogeneous
Dirichlet boundary condition, reading

∇ ×
(
ν∇ × A⃗

)
= J⃗ , in V (1a)

n⃗ × A⃗ = 0, on ∂V . (1b)

Herein, A⃗ is the sought-for magnetic vector potential (MVP), ν

is the reluctivity, which is possibly nonlinear, ν = ν(r⃗ , B⃗(r⃗)),
and J⃗ is the current density, which represents the excitation in
this problem. The computational domain V = Va ∪Vi consists
of the coil and air domain Va and the iron domain Vi , and ∂V
is its boundary. Classically, the current excitation is modeled
in the right-hand side J⃗ , e.g., by using winding functions [10].
This procedure requires the explicit discretization of the indi-
vidual wires (or at least half-turns) in the FE mesh.
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In contrast, the RMVP method represents the wires by 1-D
curves, which are not necessarily taken into account in the
FE mesh. This benefits the meshing workload in the overall
simulation process. The MVP is decomposed into

A⃗ = A⃗s + A⃗r (2)

where A⃗s is called the source MVP, and A⃗r the reduced MVP.
A⃗s is obtained by evaluating Biot–Savart’s law [11]

A⃗s =
µ0

4π

∫
L′

I ds⃗ ′

|r⃗ − r⃗ ′|
(3)

for all spatial coordinates r⃗ ∈ V . The source domain L′

represents the line, on which the line current I is located.
In a 3-D model, this would be an arbitrarily complicated 1-D
curve loop in space; while in a 2-D setting, L′ is reduced to a
0-D point, which represents a line current going in or out of
plane. Furthermore, in 2-D, the MVP is assumed to have only
a z-component, A⃗ = Az(x, y)e⃗z , and Biot–Savart’s law (3)
becomes

Az =
µ0

2π

∫
L′

I ln(
∣∣r⃗ − r⃗ ′

∣∣−1
) dr ′. (4)

Multiple sources are taken into account by superposition.
Eventually, the discrete source MVP

A⃗s(r⃗) ≈

Nedge∑
j=1

⌢a s, j w⃗ j (r⃗) (5)

can be computed on the mesh edges j = 1, . . . , Nedge in
two ways: One can utilize the partition-of-unity property and
calculate the discrete coefficients ⌢a s, j per edge e j directly by
weighting (3) with the j th edge function w⃗ j and integrating
over that edge e j

⌢a s, j =
µ0

4π

∫
e j

∫
L′

I ds⃗ ′

|r⃗ − r⃗ ′|
· w⃗ j ds. (6)

Alternatively, one performs a weak L2-projection of the
Biot–Savart integral onto A⃗s(

A⃗s, A⃗′

s

)
V =

(
µ0

4π

∫
L′

I ds⃗ ′

|r⃗ − r⃗ ′|
, A⃗′

s

)
V

(7)

with test functions A⃗′
s ∈ H(curl; V ) in the Hilbert space [12]

H(curl; V ) := { A⃗ ∈ L2(V ) : ∇ × A⃗ ∈ L2(V )}. (8)

This work uses the built-in L2-projection of GetDP.
The reduced MVP A⃗r is computed by solving the boundary

value problem (BVP)

∇ × (ν∇ × A⃗r ) = −∇ × (ν∇ × A⃗s), in Vi (9a)

∇ × (ν0∇ × A⃗r ) = 0, in Va (9b)

n⃗ × A⃗r = −n⃗ × A⃗s, on ∂V . (9c)

Using a Ritz-Galerkin approach, the weak formulation is
obtained as: Find A⃗r ∈ Hr (curl; V ), subject to(

ν∇ × A⃗r , ∇ × A⃗′

r

)
V = −

(
ν∇ × A⃗s, ∇ × A⃗′

r

)
Vi

(10)

∀ A⃗′
r ∈ Hr (curl; V ), where A⃗′

r is a test function, and

Hr (curl; V ) = { A⃗ ∈ H(curl; V ) : γ∂V ( A⃗) = −n⃗ × A⃗s} (11)

Fig. 1. Two-dimensional case study model: An infinitely long eccentric line
current I in an air domain Va surrounded by an infinitely long iron tube Vi .

is chosen in order to fulfill (9c). Herein

γB( A⃗) = n⃗ × A⃗|B (12)

is the tangential trace operator with respect to a bound-
ary B [12].

The weak formulation (10) is solved by an FE method
employing standard edge shape functions. Lastly, the total
MVP A⃗ is composed of A⃗s and A⃗r following (2). Note that
the Biot–Savart integral (3) must be evaluated in the whole
domain V , whether one is actually interested in the solution
of the whole domain or of only a small sub-domain.

III. UPDATED RMVP FORMULATION

A. Idea and Derivation

The domain V is decomposed into a non-permeable
sub-domain Va (consisting of e.g., air) and a source-free sub-
domain Vi (containing e.g., iron). Thereby, Va is fully enclosed
by Vi , and 0 denotes the interface between those domains.
This configuration is illustrated for a simple 2-D case in Fig. 1.
The BVP (9) is expressed for both domains separately and,
after the introduction of the source MVP, reads

∇ ×
(
ν0∇ ×

(
A⃗a − A⃗s

))
= 0, in Va (13a)

∇ ×
(
ν∇ × A⃗i

)
= 0, in Vi (13b)

n⃗ × A⃗a = n⃗ × A⃗i , at 0 (13c)

n⃗ × H⃗ a = n⃗ × H⃗ i , at 0 (13d)

n⃗ × A⃗i = 0, at ∂V (13e)

where A⃗a and A⃗i are the MVPs and H⃗ a and H⃗ i the magnetic
field strengths in Va and Vi , respectively. Then, an additional
field A⃗m is added to the total MVP in Va , which is the
solution of a so-called image problem as will be described
in Section III-C, such that homogeneous boundary conditions
are enforced at 0, yielding the BVP

∇ ×
(
ν0∇ × A⃗b

)
= 0, in Va (14a)

∇ ×
(
ν∇ × A⃗i

)
= 0, in Vi (14b)

n⃗ × A⃗b = n⃗ × A⃗i , at 0 (14c)

n⃗ × H⃗ b + n⃗ ×
(
H⃗ s + H⃗ m

)
= n⃗ × H⃗ i , at 0 (14d)

n⃗ × A⃗i = 0, at ∂V (14e)

with A⃗b = A⃗a − A⃗s − A⃗m and H⃗ b = H⃗ a − H⃗ s − H⃗ m . Hence, the
sub-domain solutions A⃗b and A⃗i are tangentially continuous
at 0. Their co-normal derivatives (magnetic field strengths),
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however, feature a jump prescribed by H⃗ s + H⃗ m . This jump
can be interpreted as a surface current density in A/m

K⃗ g = n⃗ ×
(
H⃗ s + H⃗ m

)
. (15)

By substituting A⃗g = A⃗b in Va and A⃗g = A⃗i in Vi , the multi-
domain formulation (14) can be transferred to a single-domain
formulation with respect to the so-called reaction MVP A⃗g ,
in which K⃗ g is imposed on the interface 0. This so-called reac-
tion subproblem will be introduced in detail in Section III-D.

This approach resembles the sub-domain FEM based on
a perturbation technique, where a missing continuity at the
interface of two sub-domains is also restored via a jump in
the tangential magnetic field strength expressed as a surface
current density source [13].

B. Ansatz and Biot–Savart Sub-Formulation

As a result of the previous section, the total MVP A⃗ is
decomposed into

A⃗ =

{
A⃗g + A⃗s + A⃗m, in Va

A⃗g, in Vi
(16)

where A⃗s is called the source MVP, A⃗m the image MVP,
and A⃗g the reaction MVP. A⃗s is obtained by evaluating Biot–
Savart’s law (3) for all spatial coordinates r⃗ ∈ Va that are of
interest, but at least for r⃗ ∈ 0. This is the major advantage
to the original RMVP approach [3], where A⃗s needed to be
calculated in the whole domain V .

C. Image Sub-Formulation

The image MVP A⃗m is the solution of the BVP

∇ × (ν0∇ × A⃗m) = 0, in Va (17a)

n⃗ × A⃗m + n⃗ × A⃗s = 0, on 0. (17b)

This sub-formulation originates from using the method of
images [11]. In this context, A⃗m represents the field that needs
to be added to A⃗s in Va in order to enforce electric boundary
conditions at 0. In other words, the MVP subtotal A⃗s + A⃗m is
the equivalent of a Green’s function obeying a homogeneous
Dirichlet boundary condition at 0 [11].

Using a Ritz-Galerkin approach and n⃗ × H⃗ m for the tangen-
tial component of the image magnetic field strength, the weak
formulation is obtained as follows:

Find A⃗m ∈ H(curl; Va), n⃗ × H⃗ m ∈ H−1/2(curl; 0), subject
to (

ν0∇ × A⃗m, ∇ × A⃗′

m

)
Va

+
(
n⃗ × H⃗ m, A⃗′

m

)
0

= 0 (18a)(
A⃗m, n⃗ × H⃗ ′

m

)
0

+
(

A⃗s, n⃗ × H⃗ ′

m

)
0

= 0 (18b)

∀ A⃗′
m ∈ H(curl; Va), ∀n⃗ × H⃗ ′

m ∈ H−1/2(curl; 0), where A⃗m is
the discrete image MVP, A⃗′

m and n⃗×H⃗ ′
m are corresponding test

functions, and H−1/2(curl; 0) is a trace space [12]. Here, the
boundary condition (17b) is weakly imposed by (18b), yielding
a saddle point problem [14]. In this way, the quantity n⃗ × H⃗ m ,
which will be needed for the calculation of A⃗g , is already at
hand. The weak sub-formulation (18) is eventually solved by
an FE method employing standard edge shape functions.

D. Reaction Sub-Formulation

The reaction MVP A⃗g is obtained by solving the BVP

∇ × (ν∇ × A⃗g) = J⃗ g in V (19a)

n⃗ × A⃗g = 0, on ∂V (19b)

with J⃗ g = K⃗ g δ0 , where K⃗ g is the surface current density (15)
and δ0 the delta distribution function defined by∫

V
f δ0 dV =

∫
0

f dS ∀ f. (20)

Here, H⃗ s = ν0∇ × A⃗s and H⃗ m = ν0∇ × A⃗m are the source
and image magnetic field strengths, respectively. Visually, the
current excitation in Va has been shifted onto the interface
surface 0. The weak formulation of (19) reads:
Find A⃗g ∈ H0(curl; V ) subject to(
ν∇ × A⃗g, ∇ × A⃗′

g

)
V

=
(
n⃗ × H⃗ s, A⃗′

g

)
0

+
(
n⃗ × H⃗ m, A⃗′

g

)
0

(21)

∀ A⃗′
g ∈ H0(curl; V ), where A⃗′

g is a test function, and

H0(curl; V ) = { A⃗ ∈ H(curl; V ) : γ∂V ( A⃗) = 0} (22)

is chosen in order to fulfill (19b). The weak sub-
formulation (21) is solved by an FE method employing
standard edge shape functions. Finally, the total MVP A⃗ is
composed of A⃗g , A⃗m , and A⃗s following (16).

E. Treatment of Nonlinearities

Note that A⃗g corresponds to the full MVP in the domain
Vi . This facilitates the treatment of nonlinearities, as only
A⃗g is affected by a nonlinear reluctivity ν = ν(r⃗ , B⃗(r⃗)).
To approximate the nonlinear material characteristic, a stan-
dard nonlinear iteration scheme can be employed such as
fix-point iteration or Newton’s method [15], which is then
only applied to the reaction sub-problem (21). Other than that,
no further modifications are needed to take nonlinearities in
the updated RMVP formulation into account.

F. Illustration: Eccentric Line Current in an Iron Tube

Consider as a case study an infinitely long eccentric line
current I in air surrounded by an infinitely long iron tube. This
model’s 2-D cross section is shown in Fig. 1. Va is defined
as the air and coil region within the iron tube, while the iron
tube itself is chosen as Vi . Thus, the interface 0 is the circular
boundary between those two domains.

The RMVP formulation is applied to compute the MVP
and magnetic flux density caused by the direct current I .
Fig. 2(a) shows the source MVP A⃗s , which is obtained by
evaluating the Biot–Savart integral (3). It represents the MVP
as if the eccentric line current were located in free space.
The corresponding image MVP A⃗m calculated by (18) is seen
in Fig. 2(b). Fig. 2(c) visualizes the surface current density
K⃗ g determined by (15), from which the reaction MVP A⃗g

calculated using (21) is shown as flux lines in the same figure.
The superposition of these three sub-solutions leads to the total
MVP A⃗ as shown in Fig. 2(c).
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Fig. 2. MVP components obtained in the sub-formulations of the RMVP
formulation and the resulting total MVP for the case study of the eccentric
wire in an iron ring. (a) Equipotential lines of the source MVP A⃗s in the
eccentric wire case study calculated by (3). The source current is depicted
as a green line. For the sake of visualization, A⃗s is calculated in the whole
domain instead of only at the interface boundary. (b) Equipotential lines of
the image MVP A⃗m in the eccentric wire case study calculated by (18). The
computation is only done in the sub-domain Va . (c) Green lines visualize the
surface current density J⃗ g at 0 determined by (15). The equipotential lines
of the reaction MVP A⃗g in the eccentric wire case study calculated by (21).
(d) Equipotential lines of the total MVP A⃗ = A⃗s + A⃗m + A⃗g in the eccentric
wire case study. The source current is depicted as a green line.

IV. NUMERICAL STUDIES

A. Benchmark Model: 2-D Racetrack Coil

The RMVP formulation is implemented in the freely avail-
able open-source FE solver GetDP [9] and employed to carry
out a 2-D linear magnetostatic simulation of a racetrack coil
surrounded by an iron yoke. To justify the 2-D approximation,
it is assumed that the racetrack coil is very long compared to its
cross section diameter, such that the effects at the coil ends can
be neglected at a central cross section of the model. Fig. 3(a)
shows the geometry, which consists of two winding groups
(hatched rectangles) containing wires with rectangular cross
section and embedded in an air domain Va (white), which
is surrounded by an iron yoke Vi (gray). 0 is the interface
between Va and Vi . For the iron yoke, a linear permeability
of µi = 4000µ0 has been chosen. Since the line currents
come together with singularities, the magnetic energy strives

Fig. 3. Racetrack coil model used for the purpose of numerical studies.
(a) Two coil windings (hatched rectangles, see Fig. 3(b) for a detailed sketch)
in air (white, denoted as Va) surrounded by an iron yoke (gray, denoted
as Vi ). The interface boundary between iron and air is denoted as 0. The
dashed circular domain represents the evaluation domain for the magnetic
energy. (b) Detailed view of the coil winding configuration for Nx = Ny = 3.
In the volumetric case (1), each winding is modeled as a rectangle with a
given volumetric current density. In the RMVP case (21), each half-turn is
represented by a set of points (purple and gray dots) representing line currents
in or out of plane, depending on the current orientation. In the simplest case,
each half-turn is modeled by a single line current located in the cross section
center (purple dots).

for infinity. Therefore, the magnetic energy considered below
is evaluated in a sub-domain, which is the dashed circular
domain Veval within Va .

The configuration of each winding group is shown in
Fig. 3(b). In the 2-D reference model, each half-turn of the
coil is modeled as a surface [black rectangles in Fig. 3(b)]
with a given surface current density. In the 2D RMVP setting,
each half-turn is discretized by a set of points (see Fig. 3(b),
gray and purple dots), which represent line currents in or out
of plane, depending on the current orientation. In the simplest
case, a half-turn is modeled by a single line current located in
the cross section center as seen in Fig. 3(b) (purple dots).

The results of the RMVP approach are verified against
reference values obtained by a conventional 2-D FE simulation
modeling the half-turns as surfaces and solving (1) while
using a very fine mesh. The resulting magnetic flux density
magnitude of the proposed method is shown in Fig. 4, where
the maximal value has been capped to that of the reference
solution. Particularly high fields are obtained at the four inner
corners of the iron yoke due to the sharp geometry as well
as the linear material properties and, of course, at the line
currents due to their singular nature.

B. Convergence Analysis

For the convergence analysis, the L2-error with respect
to the volumetric reference solution is considered. The line
currents have to be excluded from the considered domain,
as otherwise the L2-error would not converge due to the
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Fig. 4. Magnetic flux density magnitude in the racetrack coil obtained by
the updated RMVP formulation.

Fig. 5. Linear convergence of the L2-error in the evaluation domain (solid,
purple) with respect to the mesh length for the RMVP formulation. The
L2-error in the whole domain (dashed, orange) does not converge due to the
singularities.

singularities. Therefore, a sub-domain Veval ⊂ V is chosen,
such that L′ ⊈ Veval as seen in Fig. 3(a) (circular region).

For lowest order FEs, one would normally expect a
quadratic convergence of the L2-error. However, this only
holds if, among other criteria, the right-hand side of the BVP is
in L2(V ) [16]. In the reaction sub-problem (19), the right-hand
side is a Dirac source term, making the problem not regular.
Although classical convergence results are therefore invalid
here, it has been shown that the L2-error of 2-D elliptic
problems with Dirac source terms converges linearly [17].
Indeed, this is observed for the L2(Veval)-error in Fig. 5 (solid
purple line).

Varying the size of Veval, and thereby the remoteness of
∂Veval to the line currents, neither improves nor worsens the
linear convergence behavior, as long as the Veval excludes
the line currents or their immediate neighborhood. Then,
the magnetic energy gets highly overestimated and does not
converge at all (see Fig. 5, dashed orange line).

C. Performance Comparison to the Original Formulation

The runtimes of the original and updated RMVP formula-
tions are compared for the 2-D magnetostatic linear simulation
of the benchmark model with more than 100 000◦ of freedom
on a standard workstation. Both the total runtimes and the

Fig. 6. Runtime comparison between the original and updated RMVP.
Both the total times (purple) and the proportions of the Biot–Savart integral
evaluations alone (orange) are depicted. For the updated RMVP case, the
worst and best case with computation of A⃗s in Va and 0 has been considered,
respectively.

runtimes of only the Biot–Savart integral evaluation are mea-
sured. Additionally, the updated RMVP simulation is carried
out for the optimal case that only the source MVP on 0 has
to be computed as well as the worst case, in which the source
MVP in Va is wanted. The latter would be the case if one
is interested in the magnetic field in the whole aperture of a
magnet. In practice, magnet designers are often interested in
field values at particular points, e.g., in a circular curve for a
multipole coefficient analysis to investigate the field quality of
the magnet [18]. Therefore, the average runtime is expected
to range between those two extreme cases.

Fig. 6 shows the measured total runtimes (purple) and the
portions of the Biot–Savart law evaluation therein (orange).
The following two observations are made, from which two
important conclusions are drawn.

1) The Biot–Savart integral computation heavily dominates
the total runtime of both RMVP formulations. Therefore,
improving that computation will significantly enhance
the whole RMVP procedure. In favor of the RMVP
formulation, the source field computation has been a
research topic for decades and several efficient solution
techniques exist to improve runtime, e.g., by utilizing
a reduced scalar potential [19], [20], exploiting the
existence of closed form expressions for conductors
of specific geometric shapes [21], or employing fast-
multipole methods [22]. Last but not least, one could
also parallelize the computation of the Biot–Savart inte-
grals.

2) The updated RMVP formulation is by far computation-
ally superior to the original formulation. This holds true
even in the worst case. It is even more obvious when
used for the calculation of the magnetic field at particular
points, along certain curves, or in small-sized regions
in the magnet’s aperture. Then, the updated method
impressively outshines the original procedure.

Hence, Fig. 6 illustrates the performance gain of the updated
RMVP formulation with respect to the standard formulation
and at the same time, parallelization of the Biot–Savart
solver as a straightforward and promising measure for further
improvement.
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Fig. 7. Polynomial convergence of the relative L2-error of the magnetic flux
density with respect to the relative distance of 0 to the line current. The
numerical quality is spoiled when the line current is located in the immediate
neighborhood of 0.

D. Distance of the Line Currents to the Interface Boundary

The numerical quality of the updated RMVP formulation
significantly depends on the distance of the line currents to 0,
which typically coincides with the interface to the iron yoke,
but does not have to. To study that behavior, an eccentric line
current in the air with homogeneous Dirichlet boundary con-
ditions is considered. For this problem, an analytical solution
exists and will serve as a reference. While the position of
the line current is fixed, the radius of 0, R0 , which is an
artificial rather than a material interface, is changed. Let δ

denote the distance of the line current to 0. The L2-error of the
magnetic flux density is then computed for each configuration
and plotted against the relative distance of 0 to the line current
1 = δ/R0 in Fig. 7. It is observed that the numerical quality
highly worsens when the line current is positioned in the
immediate neighborhood of 0 (δ → 10−4 m or 1 → 102).
However, the error rapidly decreases with increasing distance
δ: Already a tiny gap of δ ≥ 10−3 m or 1 → 10−1 between
0 and the line current is sufficient to eliminate this source
of error completely. Since it is realistic for coils and current
sources in general to be positioned a few millimeters away
from the iron yoke, this numerical behavior is expected to be
negligible in practical applications or at least easy to mitigate
by substituting the outer coils by line currents which keep
sufficient distance to 0.

E. Application to 3-D Racetrack Coil

The RMVP formulation as presented in Section III can
be applied to a 3-D model with only slight modifications
compared to the 2-D procedure.

1) The interface 0 between Va and Vi is now represented
by a 2-D surface instead of a 1-D curve.

2) The coils are now being modeled by 1-D current
lines instead of 0-D points. Accordingly, the general
Biot-Savart expression (3) has to be utilized. For the
numerical integration, the current lines are approximated
using discrete line elements.

3) The MVP can now depend on all three space coordinates
and can point in any direction, instead of depending
only on x and y and featuring only a z-component as in
the 2-D approximation. Appropriately, 3-D edge shape
functions have to be used for the FE discretization of
the 3-D MVP.

Fig. 8. Geometry of the 3-D racetrack coil model consisting of nine windings,
which are represented by 1-D closed curves and which are surrounded by an
elliptically shaped iron yoke.

Fig. 9. Magnetic flux density in the 3-D racetrack coil model, computed
by the updated RMVP formulation. The nine windings are modeled by 1-D
curve loops (black).

4) The MVP is not intrinsically gauged as it is the case for
2-D problems [18]. Therefore, an explicit gauging has to
be introduced in order to enforce a unique solution [23].
Here, a Coulomb gauge [18] is employed, but one could
also use a different gauging technique such as a tree-
cotree gauge [24].

Apart from those aspects, the core RMVP formulation does
not change for 3-D problems.

The 3-D RMVP formulation is demonstrated on a 3-D race-
track coil model with an elliptical iron yoke and nine windings
represented by nine 1-D closed curves as shown in Fig. 8.
As for the 2-D racetrack coil problem in Section IV-A, a linear
iron permeability of µi = 4000µ0 is considered. The resulting
magnetic flux density is shown in Figs. 9 and 10 in the whole
model and on the central xy-cross section, respectively. As in
the 2-D case, particularly high fields (recognizable as yellow
arrows) are obtained near the line currents, where the field
strives to infinity.
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Fig. 10. Magnetic flux density at the central xy-cross section of the 3-
D racetrack coil, computed by the updated RMVP formulation. The nine
windings are indicated in black.

Fig. 11. Coil concept drawing of one-eighth of the LHC MQXA quadrupole.
Figure taken from [25].

V. SIMULATION OF THE MQXA QUADRUPOLE

A. Setup in FiQuS/GetDP

The proposed RMVP formulation is employed to carry out a
2-D magnetostatic nonlinear simulation of the LHC’s MQXA
low-beta quadrupole [8], [25] utilizing GetDP and FiQuS [26].

FiQuS is an open-source, free Python package, that enables
a sustainable, consistent, and reproducible workflow for com-
putational engineers developing accelerator magnet models.
This is especially important in the area of particle accelerator
design, where the development of accelerator components
spans generations of researchers and engineers of multiple
disciplines [27]. The updated RMVP formulation is imple-
mented into FiQuS as a generalized template, which FiQuS
adapts during runtime according to user-defined geometrical
and physical information about the model.

Fig. 11 shows one-eighth of the geometry of the consid-
ered MQXA quadrupole, which contains 61 windings (white
rectangles), resulting in 488 windings in total [25]. Trapezoidal
copper spacers (hatched trapezoids) help to achieve the desired
coil form. A steel collar (plaid area) holds the coil in place.
An iron yoke surrounds this configuration (not illustrated).

Each winding is approximated by one line current in its
center, leading to 488 line currents and individual Biot–Savart
integrals in the source sub-problem in total. A predefined
BH-curve from the FiQuS material template database is used
to model the iron yoke’s nonlinear behavior. The nonlinear
problem is solved by Newton’s method, for which GetDP’s
built-in Jacobian functions are utilized.

Fig. 12. Magnetic flux density magnitude in the MQXA quadrupole
computed by the RMVP formulation.

Fig. 13. Relative difference between the magnetic flux density magnitude
computed by the RMVP formulation and of the reference simulation per-
formed by a conventional 2-D FE solver.

B. Simulation Results

Fig. 12 shows the computed magnetic flux density in the
magnet. The results are compared to a reference simulation
performed by a conventional 2-D FE method taking the
windings into account by surface current densities. Fig. 13
shows the relative difference ϵr of the magnetic flux density
magnitude obtained by the RMVP to that of the reference
simulation. As expected, high discrepancies (ϵr ≥ 1) occur
in the neighborhood of the line currents, which represent
singularities (clearly visible in Fig. 13 as white dots). Out-
side the immediate neighborhood of the singularities, a good
approximation is achieved with relative differences in the order
of ϵr = 10−3, . . . , 10−1. An even better alignment between



7000808 IEEE TRANSACTIONS ON MAGNETICS, VOL. 60, NO. 3, MARCH 2024

the RMVP and reference simulation is expected if the longish
winding shapes were resolved by multiple line currents instead
of just one at their centers.

These results verify the procedure of treating nonlinear
material characteristics as described in Section III-E. Further-
more, they demonstrate the operability of the updated RMVP
implementation within FiQuS, with which the formulation
could become accessible not only for CERN magnet designers
but also for the global magnet engineering community.

VI. CONCLUSION

This work proposed an updated RMVP formulation for
accurate and fast magnetic field simulations of supercon-
ducting accelerator magnets. The formulation was postulated
and verified against a 2-D benchmark model. A runtime
comparison showed that the proposed method clearly out-
performs the original formulation. However, because of the
Dirac source term occurring in one of the sub-problems, the
L2-error only shows a linear convergence for lowest order FEs
instead of a quadratic one. This issue is well understood in
the scientific computing community, and different techniques
exist to improve the convergence order [28]. Furthermore, the
updated RMVP formulation was also employed to successfully
simulate a 3-D racetrack coil model.

Finally, the updated RMVP procedure was embedded in the
open-source and free Python package FiQuS, guaranteeing
the greatest possible applicability in the magnet engineer
community, and successfully employed to carry out a 2-D
nonlinear magnetostatic simulation of a quadrupole magnet.

The promising results of this work encourage an expansion
of that method toward an updated simulation framework for
HTS accelerator magnets, including physical formulations
suitable for HTS magnets [29] and magnetization models for
HTS tapes [30].
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