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Deriving Models of Cartilaginous Cells From Confocal
Fluorescence Microscopy Images to Estimate Dielectric Properties
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The dielectric properties of cartilage are essential for the development of reliable numerical models of electrical stimulation devices
intended for the regeneration of cartilage. They are, however, not widely known. To determine the dielectric properties of cartilage,
we propose a numerical workflow that incorporates detailed tissue-specific 3-D geometries based on fluorescent microscopic images
and describes how different parameters can affect the results. We investigated a typical bioimpedance setup that can be used
for impedance sensing and electrical stimulation. The obtained results provided valuable insights that can aid in the design and
implementation of future experiments, ensuring their accuracy and reliability.

Index Terms— Bioimpedance, computational electromagnetics, electrical stimulation, numerical models.

I. INTRODUCTION

RESEARCH on electrical stimulation for cartilage regen-
eration is growing over time. Numerical simulations can

pave the way for gaining insights into an interaction between
cells and an electric field. In this context, the dielectric
properties of biological tissue are one of the key components.
However, those properties of cartilage in Hz and kHz range
are not experimentally well known leading to challenges
in the generation of reliable and robust numerical models.
The permittivity and conductivity values at these intermediate
frequencies are usually retrieved from a parametric model,
which has been argued to be ambiguous [1]. For estimat-
ing dielectric properties, fine-grained numerical models have
emerged as a potential solution [2], [3]. In previous works,
artificial geometries based on a stochastic geometrical tissue
model have been used. Here, we improve on that by deriving
geometry models from cell images, thus reflecting realistic
cell distributions. Furthermore, we cover more realistic cell
shapes and include cell organelles. Hence, we determine the
dielectric properties of cartilage by employing more realistic
and complex geometrical models than in previous works. The
effects of distinct input parameters are also investigated in the
models using uncertainty quantification (UQ) and sensitivity
analysis. Finally, we study the cell-based approach on a
realistic electrode as used in electric cell–substrate impedance
sensing (ECIS). With ECIS chips, processes such as cell
growth, migration, adhesion, and proliferation can be studied
in cell experiments on hydrogels, bone, and cartilage [4]. Our
modeling approach and its results can be employed to develop
precise future experiments.
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II. MATERIALS AND METHODS

A. Mesh Generation Workflow

1) Image Segmentation: In this study, meshes were gen-
erated from cellular geometries identified from confocal
microscope (Zeiss LSM510) images. The image acquisition
and benchmark cell volume are described elsewhere [5].
We simplified the geometric description of the cells by fit-
ting ellipsoids to the contiguous set of voxels affiliated with
each cell to determine their location, radii, and orientations
within the tissue using ImageJ v.1.53f51 [6]. To mitigate the
challenge of adjacent cell separation in the z-direction caused
by anisotropic voxel size, the 3-D images were resampled to
obtain isotropic voxels. Various filters were then applied to
reduce image noise, enhance the image contrast, and subtract
the background due to uneven illumination. Thereafter, an auto
threshold technique is utilized to segment images into cell
interior and exterior. Large artifactual objects with an area
exceeding 300 µm2 were removed from the image slices. Tiny
noises and artifacts cannot be filtered based on this criterion
as parts of the cells could be removed from individual image
slices. Instead, a volume filter from BoneJ2 v.7.0.13 [7] was
applied to remove various small noises with a volume of less
than 200 µm3. Subsequently, holes were filled and touching
cells were separated or small cell parts were connected based
on the Distance Transform Watershed algorithm [8]. Finally,
3-D ellipsoid fitting [9] was employed. The entire procedure
was wrapped into an ImageJ script to perform batch processing
of all images.

2) Defining the Geometric Input: The characteristic dimen-
sions of the ellipsoids were stored in input files formatted
consistently with previous research [10]. As each image was
recorded for only one particular cartilage zone, a combination
of different zones was applied for the geometrical model
of the sample utilized in this study. Furthermore, we added
a pericellular matrix (PCM) with a thickness of 2.5, 3.6,
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and 3 µm in the superficial, middle, and deep zones, respec-
tively [11]. The cell nucleus was modeled by scaling the cell
to 80% of its volume. Four cell geometry scenarios were
utilized to determine the dielectric properties of the tissue.
The single-shell (SS) model includes only the cells and their
membranes. The single-shell-wall (SSW) geometry comprises
the cells, their membranes and their PCM. The double-shell
(DS) geometry contains the cells, their membranes, the cell
nucleus envelopes and the nucleus. The double-shell-wall
(DSW) geometry consists of the same components as the DS
but has the PCM in addition.

3) Mesh Generation: We used NGSolve [12] with the mesh
generator Netgen to generate the geometry in an automated
manner. From the geometries, we generated quality meshes
using a predefined mesh hypothesis. We ensured that the mesh
had a surface and volume error of less than 1% with respect to
the cell surface area and volume. A second-order finite element
method (FEM) with curved elements was applied.

B. Numerical Modeling

Magnetic fields and eddy currents can be assumed neg-
ligibly small, so that we could solve the electro-quasistatic
(EQS) [13] field equation as follows:

∇ · [(σ + jωϵ)∇φ] = 0 (1)

where φ is the electric potential, σ is the conductivity, ε is the
permittivity, and ω is the angular frequency. The impedance Z
of the considered sample can be determined from the solution
of (1) using the instantaneous power dissipation P [2]. The
complex permittivity ε̂ can be computed using the relation
given below:

Z =
1

jωϵ̂C0
(2)

with the unit capacitance C0 [1]. Then, σ and ε can be derived
from ε̂ = ε− jσ/ω. A voltage drop of 1 V was applied to the
top and the bottom of the extracellular matrix (ECM) region,
thus creating a parallel-plate capacitor-like electrode configu-
ration. Simulated frequencies ranged from 1 kHz to 1 THz
with 10 logarithmically spaced points per decade. Due to
the thinness of membranes and nucleus envelopes, we used
a thin layer approximation [3], [14]. The FEM was used to
solve (1) using a conjugate orthogonal conjugate gradient
(COCG) solver with a Jacobi preconditioner in NGSolve.
The correctness of the numerically computed impedance was
checked with a linear Kramers–Kronig validity test [15]
and analytical solutions for a spherical cell, implemented in
ImpedanceFitter [16], [2].

First, the UQ analysis of the DSW model was conducted
on the inexpensive analytical model using 105 samples for the
quasi-Monte Carlo sampling by employing the Uncertainpy
toolbox [17]. Then, only the most relevant parameters were
employed to examine the expensive numerical model using
polynomial chaos expansion with the order of four. The 90%
percentile prediction intervals and the first-order Sobol indices
were calculated. Given the UQ results obtained from the
analytical solution, the importance of parameters can be deter-
mined by examining their Sobol indices. The most important

TABLE I
MODEL PARAMETERS FOR UQ OF THE ANALYTICAL SOLUTION OF THE

DSW MODEL GIVEN IN TERMS OF THE UNIFORM DISTRIBUTION U . σ :
CONDUCTIVITY, ε: RELATIVE PERMITTIVITY; SUBSCRIPT: m CELL

MEMBRANE, CYT: CYTOPLASM, w: PERICELLULAR LAYER,
NE: NUCLEAR ENVELOPE, NP: NUCLEOPLASM

Fig. 1. Left: Bottom view of the simplistic ECIS chip, including two inter-
digitated electrodes with two fingers per electrode. Right: Clipped geometry,
including the DSW model of the cells on top of the electrodes.

parameters were selected if their frequency-dependent Sobol
indices exceeded 0.2. Table I gives an overview of all possible
hypotheses in the UQ analysis. Due to the lack of biological
measurement data, we analyzed only uniform distributions as
they reflect our knowledge regarding the uncertainties of the
individual parameters. All the computations were conducted
using parallel computing on the HAUMEA high-performance
computing (HPC) cluster of the University of Rostock (each
node equipped with 2 Intel Xeon Gold 6248 40-core CPUs
and 192 GB RAM).

In this work, besides using a simplistic parallel-plate capac-
itor geometry to apply the electric fields, we considered the
ECIS chip as a bioimpedance application. A simplified geom-
etry of one cell culture well with interdigitated electrodes was
constructed, as illustrated in Fig. 1. The cells were arranged
on the electrode surface by replicating the original cell block
obtained from the confocal microscopy image, ensuring com-
plete coverage of the entire electrode area. All dimensions of
the ECIS geometry are given in Fig. 1. Again, a voltage drop
of 1 V was applied across the electrodes. The more complex
geometry required a high amount of memory not available on
the HPC cluster. One reason was the computer-aided design
(CAD) kernel in Netgen, which allocated a few hundred GB
of memory for the complex geometry. As the geometry is
required on every processor to curve the mesh, we used shared-
memory parallelization on a server featuring two AMD EPYC
7H12 64-core CPUs with 4 TB RAM.
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Fig. 2. From left to right: 3-D view of the original image of the deep zone,
the fit ellipsoids and the mesh created with Netgen. The unit of the specified
lengths is µm.

Fig. 3. Numerically computed dielectric properties for different geometry
models in which three cartilaginous zones were combined using parallel plate
capacitor electrodes with the parameter given in the base case in Table I. The
total number of cells is 537.

III. RESULTS AND DISCUSSION

After the ellipsoidal fitting, an average cell volume is
2157 ± 957 µm3, which is in good agreement with the reported
value in [5]. This indicates a reliable segmentation process.
Moreover, the mesh can preserve the cells’ volume, orien-
tation, and position as depicted in the original microscopic
image (example in Fig. 2). The mesh of the DS model led
to the highest global DOFs (≈ 50 × 106). The numerically
computed curves and analytical estimates of all models are
relatively similar (not shown). For all models, the conductivity
at low frequencies did not exhibit a frequency dependence and
a β-dispersion appears between 100 kHz and 1 MHz (Fig. 3).
By including the PCM and cell nucleus, a γ-dispersion
(10 MHz to 1 GHz) could be modeled. According to our
assumption, this dispersion is more closely associated with the
PCM than with the cell nucleus. A reduction in conductivity
occurs with the addition of the PCM, whereas it increases
when including the nucleus. Thus, simple models do not serve
well for analyzing the dielectric behavior of a tissue, where
the internal layers differ from the external layers.

Based on the UQ of the analytical solution, out of the input
parameters, four parameters exhibited the most significant
influence on the computed dielectric properties, namely εnp,
σwall, εwall, and εm. Those parameters resulted in 142 FEM
simulations, and each simulation with ≈ 40 × 106 DOFs took
more than 1 h. The UQ analysis of the numerical model was
completed within approximately two days. The 90% prediction
interval of the computed conductivity varies around 1% from
its mean value (Fig. 4). While the 90% prediction interval
of the calculated relative permittivity initially ranges from
about 400 to 2700, it drastically narrows at around 10 MHz.
Up to 1 GHz, the tissue conductivity mainly depends on the

Fig. 4. Mean value and 90% prediction interval of the relative permittivity and
the conductivity from the UQ analysis of the DSW model are demonstrated
over a frequency range with the parameters given in Table I.

Fig. 5. Numerically and analytically computed dielectric properties for DSW
models using the ECIS chip with the parameters given in the base case in
Table I. The geometry contains 6300 cells.

conductivity of the PCM. Beyond the γ-dispersion, the relative
permittivity of the PCM has the most significant impact on
the computed conductivity. The permittivity of the membrane
predominantly affects the relative permittivity of cartilage
at low frequencies. In the range of the β-dispersion and
γ-dispersion, the estimated permittivity is primarily influenced
by the conductivity of the PCM. Above 10 MHz, the PCM
relative permittivity accounts for the most considerable impact
on the estimated permittivity, but the variation of the tissue
permittivity is minimal.

The ECIS chip geometry, comprising 6300 cells, led to
≈ 80 × 106 DOFs, requiring approximately one day for
meshing. The computational simulation took almost five days
to complete. As depicted in Fig. 5, the numerical model’s
conductivity is higher than the one computed from the ana-
lytical solution. This disparity arises due to the assumption
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Fig. 6. Top: Electric field distribution in the cross section through the central
Y Z -plane at 1 kHz with the parameters used for the base case in Table I. For a
more insightful visualization, the electric field strength was set to a maximum
of 100 V cm−1; the actual maximum field strength is around 220 V cm−1.
Bottom: Stimulated domain where the absolute TMP value is higher than
0.01 V. Only the cells positioned roughly 200 µm above the electrode can
be stimulated.

made in the analytical solution, which considers the entire
domain exposed to an external homogeneous field. In contrast,
the ECIS chip produces an inhomogeneous field, with the
electric field reaching only a few tens of micrometers above
the electrode. This limited exposure of the volume to the
field and the gap between the electrodes and the cells lead
to a more conductive domain under electrical stimulation,
resulting in higher conductivity and lower permittivity. Besides
impedance spectroscopy, our approach allows for the investi-
gation of electrical stimulation in cartilage regeneration. For
instance, we can obtain the transmembrane potential (TMP)
as a measure of stimulation. From Fig. 6, it is evident that the
limited penetration of the electric field results in a vanishing
TMP for cells near the top of the domain. Consequently,
a reduced model can be employed to simulate only the
stimulated domain, significantly reducing the computational
effort. The computational cost is currently the main bot-
tleneck of the approach. In particular, the mesh generation
of complex geometries is time consuming and error prone.
We also encountered that mesh-partitioning algorithms failed,
which prevented significantly faster, distributed computing
approaches on the HPC cluster. Future research will focus on
these aspects to further leverage scalable HPC techniques.

IV. CONCLUSION

In sum, our automatic numerical workflow enables the
estimation of dielectric properties using detailed tissue-specific
3-D geometries derived from fluorescent images. Our findings
shed light on the factors influencing the dielectric proper-
ties of cartilaginous tissue across various frequency ranges.
Additionally, we have successfully demonstrated the feasibility
of modeling ECIS chips together with detailed cell models.
In future research, integrating numerical models of electrical
stimulation with impedance measurements will enable the
development of a “digital twin” framework [19]. The digital
twin relies on feedback between the numerical model and

experimental data. Ultimately, these advancements will pave
the way for live monitoring and controlled electrical stimula-
tion approaches in patient care.
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