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Computing Forces by ECSW-Hyperreduction in Nonlinear
Magnetodynamic FEM Problems

Johannes Maierhofer and Daniel J. Rixen

TUM School of Engineering and Design, Chair of Applied Mechanics,
Technical University of Munich, 85748 Garching, Germany

This contribution proposes a novel strategy to apply the hyperreduction principle for the mechanical force calculation of non-linear
magnetodynamic problems in an FEM context. The already established energy-conserving sampling and weighting (ECSW) method
is therefore adapted to exploit the structure of mechatronic systems, so the hyperreduction is only applied to the non-linear domain.
It is consequently named partial hyperreduction, here the pECSW. Also, the force calculation is formulated such that ECSW is
applied as sampling-based integration. The force computation requires a new element sampling and weighting process, here called
cECSW, arising from the configurational updates of the geometry corresponding with the possible motions of the mobile part. The
advantage is the possibility of avoiding treating the full-order model for the force calculation. Storing the reduced order model
with two element sets for field and force calculation is sufficient. The strategy is demonstrated on the TEAM20 problem of the
Compumag benchmark systems, which is extended to dynamic excitation. The new methods show the ability to produce accurate
results for significantly smaller systems.

Index Terms— Eddy-current problems, energy-conserving sampling and weighting (ECSW), finite element method (FEM),
magnetodynamic, model order reduction (MOR), non-linear models.

I. INTRODUCTION

ANALYZING electromagnetic devices using the finite
element method (FEM) is a standard procedure. Using

non-linear material laws to consider the saturation of the
magnetic field is also well-established in the industry. A recent
topic of research is the model order reduction (MOR)
of non-linear magnetodynamic field simulations. Promising
results were achieved by the hyperreduction approach, namely,
the energy-conserving sampling and weighting (ECSW)
method [1].

A. Related Work

In the realm of computational engineering, MOR and
hyperreduction, a term introduced in [2], play pivotal
roles in managing complex systems. The proper orthogonal
decomposition (POD) is a common MOR technique [3],
successfully applied to quasi-static magnetodynamic systems
[4], [5]. An overview of projection-based methods is
given in [6]. POD and Krylov subspace techniques were
also investigated for linear material in the frequency
domain [7], [8].

However, the straightforward projection into reduced space
can be insufficient in addressing non-linear problems, where
much computational cost arises from evaluating each element’s
non-linear contribution to the system’s energy. This issue
has been the focus of many studies [9], [10], [11], with
the application of the discrete empirical interpolation method
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(DEIM) [12]. In [13], a method is introduced for reducing
non-linear magnetodynamic problems by combining POD
with manifold interpolation. This approach has demonstrated
superior results compared to classical techniques like direct
POD reduction and standard interpolation of pre-computed
reduced bases.

In order to improve the accuracy and robustness of reduction
for non-linear models, the ECSW method, originating from an
idea of computer graphics [14], further developed for structural
dynamics [15] has emerged as a promising candidate.
The ECSW method might offer significant advantages in
electrodynamic systems regarding stability and result quality,
even for highly reduced models. Initial steps have been made
in recent studies [1], [16], [17]. In these works, the ECSW
method was successfully utilized to compute the magnetic
vector potential, yielding promising results, indicating its
ability to significantly reduce computational costs and retain
good accuracy.

Applying the ECSW method for electromagnetic problems
related to mechatronic applications (actuators and sensors)
offers the possibility to exploit the ECSW further than has
already been done so far. Indeed, since only part of the domain
is non-linear (due to saturation), the implementation of ECSW
can be significantly improved. Furthermore, in applications
where forces need to be derived from the electromagnetic
simulation, the ECSW idea can be exploited to significantly
reduce the cost of the post-processing step. In this article,
we propose new ideas to exploit ECSW for those two
important aspects.

B. Objective

As monitoring mechatronic systems with the use of so-
called digital twins in embedded controllers becomes more
and more important, demand for small, yet sufficient, models
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Fig. 1. Domains of the magneto-dynamic equation.

with a small footprint in terms of memory and CPU load rises.
Two main objectives, therefore, drive the MOR strategy in this
article.

1) Save computational time in the transient, non-linear field
computation by investing only minimal offline effort.

2) Generate a fully self-contained minimal model capable
of computing dynamic forces for any current trajectory
applied.

In all generality, the system’s structure is shown in Fig. 1.
The air domain � (constant µ, no conductivity) encapsulates
the excitation domain (copper coils) �0, where the current
density j0 is given. The core �c and the mobile target �t

are domains with non-linear magnetic permeability [µ(B)]
and constant conductivity σ . Both can, therefore, induce eddy
currents for a changing magnetic field. The mobile target
domain �t is moved by the virtual displacement δs to evaluate
the mechanical force.

C. System Equations

The discretized equations for electrodynamic systems are
founded on Maxwell’s equations. For quasi-static problems,
the frequency of time-varying fields is low enough so
that one can neglect electromagnetic wave emission and a
simplification of Maxwell’s equations (2) and (1) to the
so-called magnetodynamic equations can be considered

∇ × E = −
∂ B
∂t

(1)

∇ × H = j . (2)

The isotropic constitutive law for the material (3) and Ohm’s
law (4) complete the governing equations

B = µ(B)H (3)
jeddy = σ E. (4)

The concept of the vector potential A is defined as

B = ∇ × A (5)

and inserted in Faraday’s law (1)

∇ × E = −∇ ×
∂ A
∂t

↔ E = −
∂ A
∂t

(6)

the magnetodynamic equations are solely written in terms of
the vector potential1

∇ ×
1

µ(A)
∇ × A = jexternal − σ

∂ A
∂t

. (7)

Applying the finite element theory with edge type
elements to (7) yields the classical discretized first time-order
differential equation set (8), with u being the unknown values
of the vector potential, M the magnetic mass matrix, g the
internal current vector and f the external load (current) vector

Mu̇ + g(u) = f . (8)

A more detailed derivation of the formulation used here can
be found in [19] and [20].

The internal current density g(u) is derived via the symbolic
derivation of the magnetic energy density with respect to the
vector potential. The magnetic energy density is obtained by
integrating the B H -curve of the material’s datasheet

g(u) = ∇uw(u).

After the derivation, the weak form is built, and the
discretization is applied.

As a time integration scheme, a backward Euler scheme in
combination with a Newton–Raphson method is considered.
With r being the residual

r(un+1) = M(un − un+1) + 1t( fn+1 − g(un+1)) (9)

ui+1
n+1 = ui

n +

(
M + 1t d g

du |ui
n+1

)−1
r
(
ui

n+1

)
. (10)

II. HYPERREDUCTION APPROACH

The ECSW Method weights selected elements such that
the internal currents g(u) produce the same virtual work
as the non-reduced system (analogous to what was proposed
in the seminal paper [15] where structural dynamic problems
were considered and g(u) were non-linear internal mechanical
forces). The ECSW method is a combination of a Galerkin
projection on a subspace of the solution to reduce the degrees
of freedom and a hyperreduction to reduce the non-linear
internal current term to a small evaluation set as shortly
summarized next.

A. Galerkin Projection

The full solution vectors of a reference simulation span the
space of the expected solution. Here, in a pre-processing step,
a solution of the full problem is computed while applying an
excitation similar to the one applied in further simulations
and a singular value decomposition (SVD) of the solution
snapshots U = [u1, . . . , um] is performed. The reduction basis
V contains the most important left singular vectors of that
decomposition, and the solution is then approximated by

u ≈ V q (11)

1Any gradient field could be added to E in (6). Here, we chose the
modified vector potential which is applicable for systems with spatial constant
conductivity σ to solve this so-called gauging problem [18].
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where q are the generalized degrees of freedom in the reduced
space. The reduced problem, denoted with the index r , is then
obtained by projection of (8) on V

V T MV q̇ + V T g(V q) = V T f (12)
Mr q̇ + gr (q) = fr . (13)

Although this projection reduces the size of the problem, the
computational burden to advance the simulation in time is
only marginally reduced since the internal currents g(V q)

and the tangent matrix (dg/du) still need to be evaluated in
every iteration step (9), and (10). Hence an additional so-called
hyperreduction step is needed, using, for instance, the ECSW
approach.

B. Energy Conserving Sampling and Weighting

The method was developed for non-linear finite element
dynamic models in mechanical engineering in [15] and [21]
around 2014. The goal is to evaluate only a subset Ẽ of
elements E and weigh them with a factor ζe > 0.

The sum of all virtual work contributions, produced in each
element by the internal currents, should be approximated as
accurately as possible. Therefore, considering the contribution
of each element (localization vector Le) to the reduced current,
one can write

V T g(V q) =

∑
e∈E

V T LT
e ge(LeV q)

≈

∑
e∈Ẽ

ζeV T LT
e ge(LeV q) = Y(q)ζ (14)

where

Y(q) =
[
V T LT

1 g1(L1V q) , . . . , V T LT
E gE(LEV q)

]
and where ζ is only non-zero for the selected set Ẽ , a subset
of the full element set E . The approximation (14) should be
as good as possible for any q. To find a ζ with as many
zero entries as possible which approximates the sum of the
virtual work to a defined tolerance, m training sets (index s)
qs , obtained during a pre-simulation (resulting us) and a
projection with the basis V are considered as explained next.

1) Training Sets and sNNLS: Considering the full-order
solution vectors, filtered with the basis, at each computed time
step ts , one can compute the contribution V T LT

e ge(LeV qs)

of each element to the reduced force V T g(V qs). This
information is then used to find a minimum set of non-zero ζe

to approximate the reduced currents V T g(V qs) up to a given
tolerance τ

∥

Y(q1)
...

Y(qm)

ζ − b∥2 < τ where: b =

V T g(V q1)

. . .

V T g(V qm)

.

(15)

In addition, to guarantee the positive definiteness of the
associated energy, all weightings in ζ must be positive.
A quasi-optimal set ζ can be found by a sparse non-negative
least square (sNNLS) solver. More details on this algorithm
can be found in [21].

Fig. 2. Generic example of selected ECSW elements and the associated dofs.

2) Evaluated Elements: As the unassembled internal
currents are used to calculate the virtual work of each element,
the weighting factors ζ are also at the level of unassembled
elements. In Fig. 2, the active elements are marked in blue
and their associated dofs in red. Due to the use of Nédélec-
elements, the edges of the elements represent the dofs of the
system.

C. Hyperreduction

After finding the desired weighting vector ζ , the hyperre-
duced internal currents vector gr,ECSW and tangential stiffness
matrix Kr,ECSW are given as:

gr ,ECSW(q) =

∑
e∈Ẽ

ζeV T LT
e ge(LeV q) (16)

Kr ,ECSW(q) =

∑
e∈Ẽ

ζeV T LT
e Ke(LeV q)LeV . (17)

This strategy allows to significantly reduce the cost of the
simulation with the reduced (12) [1].

III. PARTIAL ECSW

In general, major parts of magnetodynamic systems can be
modeled linearly. Only small parts of the domain need a non-
linear consideration. To reduce the order of the model, the
linear domain can be sufficiently reduced by projection, while
in the non-linear domain, an additional hyper-reduction step is
needed as explained previously. Applying the hyperreduction
method ECSW only to a part of the domain will be called
partial ECSW, short pECSW in the following. Applying
pECSW saves offline computational effort as the sNNLS only
iterates over a much smaller subset of elements and also avoids
a second approximation of the linear domain, Fig. 3.

Realizing the partial ECSW, two subvariants are imaginable.
1) Domain decomposition, i.e., split the domain into a

linear and a non-linear subdomain and hyperreduce the
non-linear force function of the non-linear subdomain.

2) Order decomposition of internal currents, i.e., split
non-linear internal currents in the entire domain into
linear and higher order terms and hyperreduce only
higher order terms.

A. pECSW—Domain Decomposition

The first approach is inspired by substructuring techniques
where structural systems are partitioned into subsystems,
see Fig. 4. The individual subsystems have different sets
of equations that are re-assembled after having reduced the
subdomains.
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Fig. 3. Generic example of selected elements in the non-linear domain.
(a) Elements that contribute to edge values of the non-linear material.
(b) ECSW selected elements only in the non-linear material.

The difference to the classic ECSW formulation is in the
assembly process of the Y matrix where the contribution of
each element to the internal force is collected. The full set
of elements E now already is a subset of elements, i.e., the
elements in the non-linear domain, denoted by an Asterisk,
E⋆, to distinguish from the subset stemming from the full
elements, denoted by a tilde, Ẽ . The selection process for
the elements is the same as in the classic ECSW except that
in (14), only the elements from E⋆ contribute

ge(u) =

{
ge(u) ∀e ∈ E⋆

LT
e Klinu ∀e /∈ E⋆.

(18)

The equations for the backward Euler time stepping are
adapted accordingly to consider the linear and hyperreduced
non-linear domains separately. The problem (8) can thus be
solved at tn+1 as[

V T MV + 1t V T KlinV
]
qn+1

+ 1t
∑
e∈Ẽ⋆

ζ ⋆
e V T LT

e ge(LeV qn+1)

= V T MV qn + 1t V T fn+1. (19)

As for the classic ECSW, the Newton algorithm needs to
solve the next solution step in reduced coordinates q with
the corresponding stepping matrix Kstep,red(qi ) from the time
integration scheme. In contrast to the previous stepping matrix
algorithm, the reduced stepping matrix is now a combination
of the hyperreduced Kr,pECSW and the projected Klin. The
linearized problem for a given time step at Newton iteration
i + 1 writes

Kstep,red
(
qi)1q = rred

(
qi) (20)

where

Kstep,red
(
qi)

= V T [M + 1t Klin]V + Kr ,pECSW
(
qi)

rred
(
qi)

= 1t
(

fr − gr ,pECSW
(
qi))

− V T [M + 1t Klin]V qi . (21)

B. pECSW—Order Decomposition

A second way to separate linear and non-linear behavior is
interpreted as a local modification technique. As a baseline,
a linear system is assumed with a constant permeability that
fits the material curve for small magnetic fluxes. The non-
linear domains are then modified with an additional term,
which represents the non-linearity. This additional term now
contains all the higher-order terms of the magnetic flux
density without the linear order. In Fig. 5, the gap between
the assumed linear and the true non-linear material law is
visualized.

While the matrix representation of the domain decomposi-
tion approach (see Fig. 4) shows a splitting of the equations
(vertical splitting), the order decomposition splits the force
contributions (horizontal splitting). The finally hyperreduced
internal current vector is marked in yellow, as it is a modified
function, see Fig. 6.

As the method relies on the unassembled internal currents
of the finite elements, two weak forms, respectively, for
linear (resulting in a matrix K 1) and non-linear material
(resulting in g(u)) are formulated and evaluated on the mesh.
The difference is consequently then the higher order internal
currents g⋆ and is used for the training of the hyperreduction
algorithm

g⋆(u) = g(u) − K 1u. (22)

Finally, depending on whether an element is in a linear domain
or in a non-linear domain, its internal force will be computed
by

ge(u) =

{
g⋆

e(u) + LT
e K 1u ∀e ∈ E⋆

LT
e Klinu ∀e /∈ E⋆.

(23)

The further procedure is analogous to the previously shown
pECSW method, i.e., projection of the internal currents in
the chosen basis, then solving the next solution vector in
generalized coordinates using the modified stepping matrix.

C. pECSW Conclusion

This extension of the ECSW method is not primarily
intended to reduce the number of computed elements further
to gain lower computational effort in online calculations.
Rather, the objective is to increase the trust in the results
as the hyperreduction is only applied where needed (namely,
only in the non-linear part, leaving the linear part without
hyper-reduction treatment). A nice benefit in terms of lower
effort arises in the sNNLS algorithm that selects the elements.
By only allowing a subset of elements, the algorithm becomes
faster.

IV. CONFIGURATIONAL ECSW

Due to the so-called skin effect, representing eddy currents
correctly usually requires a very fine mesh in the vicinity of the
domain boundary. The size depends on the frequency of the
time-varying fields and its material properties. This element
size is an absolute value, which means it does not scale with
the overall model’s size. The bigger the modeled system, the
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Fig. 4. pECSW—domain decomposition approach. The magnetodynamic equation is different for the linear and the non-linear subdomain. Only the non-linear
domain is considered for the hyperreduction process.

Fig. 5. Comparison of non-linear and linear material behavior.

more elements are needed. However, calculating global forces
would not require a high element resolution, which leads to
the idea of reducing the number of evaluated elements for the
post-processing step of calculating the mechanical forces of
magnetodynamic systems.

The approach called configurational ECSW here, in short
cECSW, is an adaption of the ECSW idea to the post-
processing. It is, therefore, not involved in the actual solution
process and is thus independent of the method used for the
computation of the magnetic field. In the presented case, the
method is aimed at computing the magnetic force on a mobile
ferromagnetic target. The cECSW is trained by different
configurations of the geometry, which represent the virtual
displacement needed for the force computation according to
the virtual work principle (shortly explained in Section IV-A).
The underlying assumption is that the weights of the selected
elements in the computation of the mechanical force is not
dependent on the configuration. Two configurations for a
horizontal displacement of the target are shown generically
as an example for the discussion in Fig. 7.

1) Remark: A strict distinction must be made between
parametric and configurational geometry changes. The para-
metric geometry changes are real changes in the geometry

with no limit to their size, as typically encountered in
modification loops during design optimization or when
performing the analysis by changing the position of the bolt
in a solenoid actuator or the rotor rotation in an electric
machine. These changes are not covered in this contribution,
as they would not fulfill the assumption that the weights of
the selected elements are independent of the configuration. The
configurational changes handled here are only virtual changes,
which indicate what kinematically admissible motions the
body could undergo. The mesh topology must stay constant.
It is common to just deform one layer of elements, as these
virtual changes can be very small, even for a finite difference
evaluation as seen in Section IV-A.

A. Force Calculation

The global mechanical force on a mobile target body is
derived in general from the total change of energy W due
to the change of the system’s configuration (i.e., position)
with an amplitude denoted by s [19]. For an applied, constant
current density j , the force energetically conjugated to the
considered configurational change (e.g., resulting horizontal
force in Fig. 7) is obtained from the change of magnetic co-
energy. Considering several possible configurational changes
(e.g., vertical and rotational motion) and calling s the set of
their amplitudes, the associate conjugate forces are obtained
by derivation of the magnetic energy

F =
dW ′

ds
. (24)

For quasi-static systems (as claimed during the derivation),
the force can be computed for any timestep purely from the
conservative system. Note that the current density j is not
only the externally applied current but also the eddy current
distribution for each timestep. The equivalent static problem
including the eddy current, defined by Mu̇, is

g(u) = f − Mu̇. (25)
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Fig. 6. pECSW—order decomposition approach. The magnetodynamic equation remains one over the entire domain. The non-linear behavior is split into a
linear order term, represented as a matrix, and a higher order term, which undergoes the hyperreduction process.

Fig. 7. Generic example of configurational training. (a) First training
configuration. The rigid, moveable body is marked in red. (b) Second training
configuration. Virtually displaced body (exaggerated for visualization).

Let us recall (see Section I-C) that the finite element
formulation searches for a discrete vector potential u such
that it minimizes the energy functional of the system.

Defining the relation for the energy W□ = f T u = W +W ′,
which is the sum of energy W and co-energy W ′, the solution
of the magnetic problem satisfies

min
u

(
W (u) − f T u

)
min

u

(
W□ − W ′(u) − f T u

)
min

u

(
−W ′(u)

)
.

Hence, around the solution of the problem, the co-energy W ′

does not change with an infinitesimal change of the vector
potential. Written in general terms before the discretization

∂ W ′(A)

∂ A
= 0. (26)

Using then the chain rule to evaluate the mechanical force (24)

F =
dW ′

ds
=

∂ W ′

∂s
+

∂ W ′

∂ A︸︷︷︸
=0

∂ A
∂s

= ∇sW ′. (27)

The global co-energy is obtained by integrating the
co-energy density w′(A), which is the integral under the curve
of the constitutive material law, Fig. 5. With the material being

assumed to be isotropic, B and H are always collinear which
allows to write (28) in terms of magnitudes

W ′
=

∫
�

∫ H

0
B

(
H̃

)
dH̃ d�. (28)

Performing the partial derivations in (27), note that,
by definition, the remaining quantities are constant. The
expression for the force becomes

F = ∇sW ′

=

∫
�

∇s

∫ H

0
B

(
H̃

)
dH̃ d� +

∫
�

∫ H

0
B

(
H̃

)
dH̃∇s d�.

(29)

The change of position of the part leads to a change of
the Jacobian, which describes the coordinate transformation
between physical coordinates and the isometric coordinates for
the FEM elements. The Jacobian of the isogeometric mapping
is denoted by J , and its determinant by |J | = det(J ). In the
first term of (29), one needs to evaluate the change of B (at
constant A) due to a deformation of the initial coordinate
system by the perturbation. This can be obtained using the
Jacobian of the transformation J from the initial configuration
to the perturbed one [22]. In all generality, the force arising
from the co-energy is written for all quantities given in the
original configuration [23]

F =

∫
�

 −BT ∂J
∂s

J −1 H︸ ︷︷ ︸
Change due to change of derivation operator curl

+

∫ H

0
B

(
H̃

)
dH̃ |J |

−1 ∂|J |

∂s︸ ︷︷ ︸
Change due to geometry change

 d�. (30)

An overview of the different ways to use (30) for force
calculation on a given mesh is given in Fig. 8 and will
be discussed next. After a successful field calculation per
timestep, the vector potential is further processed to gain the
global mechanical forces. While the classical Jacobian method
needs all the virtually deformed elements (marked yellow
in Fig. 8), the cECSW approach proposed in the following
paragraphs samples and weighs those elements in either a non-
linear or a linear way, which reduces the evaluated sub-subset
of elements to the green marked ones in Fig. 8.
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Fig. 8. cECSW scheme. The field solution provides a time series of magnetic vector potentials. In the post-processing, besides the classical Jacobian Method,
the cECSW is proposed. Only a subset of virtually deformed elements is considered for the force integration.

B. Force by Classical Jacobian Method

For elements that are not deformed during the virtual
displacement of the mobile target, the derivative of the
Jacobian with respect to the displacement is zero. That results
in a subset of elements that do not contribute to the global
force. Therefore, only a subset of elements needs to be
evaluated. The integral over the domain changes into integrals
over each element �e and a sum over all elements in the
subset E ′

F =

∑
e∈E ′

Fe. (31)

C. Force Integration by ECSW

Applying the idea of the ECSW method for the force
calculation to reduce the computational effort and shrinking
the model size means selecting elements and calculating
weights. The sum over the element forces (the set of
elements which undergo a deformation is denoted with E ′)
is approximated by a sum over a subset of elements E⋆ which
are then weighted with the factor ζ ⋆

e to compensate for the
neglected elements. The localization operator Le picks the
solution dofs for the corresponding element e, and thus

F = ∇s

∑
e∈E ′

∫
�e

w′

e(Leu) d�e. (32)

With the energy being positive, the idea of ECSW can be
applied, approximating the energy with positive weighted
elements. Assuming that the weights are constant with respect
to the virtual deformation, the gradient is shifted behind the
weight ζ ⋆

e . This is a reasonable assumption, considering that
the virtual configurational change is infinitesimal

F ≈ ∇s

∑
e∈E⋆

ζ ⋆
e

∫
�e

w′

e(Leu) d�e (33)

≈

∑
e∈E⋆

ζ ⋆
e ∇s

∫
�e

w′

e(Leu) d�e (34)

=

∑
e∈E⋆

ζ ⋆
e Fe. (35)

In order to select the elements using the sNNLS algorithm,
training snapshots need to be prepared. Considering the m
solution snapshots of a pre-simulation, the change of co-energy
in each element due to a set of c possible configurational
changes is computed. This generates a set of mc training sets
from which a minimum set of elements and the corresponding
weights can be selected following the ECSW strategy.

In order to avoid the evaluation of the Jacobian derivatives
for each training dataset for each element, the gradient is
approximated with a finite difference.

1) Non-Linear Material Elements: In the general case,
where the deformed elements contain non-linear material, the
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training is performed using the co-energy of every element
in E ′, W ′

e(Leu). The configurational finite steps used for the
finite difference are denoted with the superscript c0 and c1.
The subscript denotes the element number 1, . . . , n and the
snapshot number 1, . . . , mc. Using the same amplitude s for
each direction of configurational change allows us to omit
the scaling in the following explanations. The adapted Y
matrix for the force approximation to be used for the sNNLS
algorithm becomes

Yζ =


(
W ′c0

11 − W ′c1
11

)
. . .

(
W ′c0

n1 − W ′c1
n1

)
...(

W ′c0
1mc − W ′c1

1mc

)
. . .

(
W ′c0

nmc − W ′c1
nmc

)


 ζ1
. . .

ζn

. (36)

In general, the co-energy for the mc different snapshots
need to be integrated as in (28). As explained next, this costly
computation can be avoided if the elements are linear.

2) Linear Material Elements: If all the virtually deformed
elements are of linear material, a simplification during
the preparation of the sNNLS can be conducted. This
situation occurs for systems where the non-linear material is
completely encapsulated in air and only rigid body motions are
allowed. For real application systems, this is a very common
assumption. A few transformations are carried out to extract
the co-energy directly from the internal currents already known
from the training simulations.

The linear energy density is written as the product
of the internal current density g(u) and the solution vector
u. The solution vector does, by definition, not change with a
configuration change, so the derivative is only effective on the
internal currents. Written for each element, the force becomes

F =

∑
e∈E ′

∇s
1
2
(Leu)T (Le g) (37)

=
1
2

∑
e∈E ′

(ue)
T
∇s(ge) (38)

≈

∑
e∈E⋆

ζ ⋆
e Fe. (39)

With the same justification as for the classic ECSW, the
elements can be sampled and weighted with positive values,
but now the difference of the internal currents for different
configurations is approximated. For each training snapshot
i j , i = 1, . . . , m, j = 1, . . . , c, hence each line in (36),
an equation for the sNNLS is added

Yi jζ =

V T LT
1

(
gc0

1

(
L1V qi j

)
− gc1

1

(
L1V qi j

))
. . .

V T LT
n

(
gc0

n

(
Ln V qi j

)
− gc1

n

(
Ln V qi j

))
T  ζ1

. . .

ζn

.

(40)

This shows that in case the elements in E ′ are linear, the
force can be evaluated by cECSW from (39) with a reduced
element set and weights obtained from the training with (40)
where no co-energy needs to be evaluated, but only known
internal currents obtained from the configurational steps are
needed. The element forces Fe can be evaluated either by
finite differences or the local Jacobian method (30). Note
that, if using (30), it is sufficient to save the weights for

Fig. 9. Selected elements for both stages marked in blue and green. Blue
elements serve for the field calculation and green elements for the post-
processing. Some elements are in both subsets.

Fig. 10. Geometry TEAM20 [24].

the evaluated elements and their Jacobian relations only. The
weights, once computed, stay constant after the training, while
the Jacobian values depend on the actual (virtual) configuration
change.

D. cECSW Conclusion

The main idea is to find an optimized reduced model that
holds for the field calculation and for the post-processing, i.e.,
calculating forces. For this, the ECSW method is applied as
sampling and weighting of elements. This saves in the first-
line model storage and, as a nice benefit, computational time
for the post-processing.

V. EXAMPLE

The previously presented strategy of force calculation
utilizing the ECSW method in both stages is demonstrated
on the TEAM20 benchmark problem of the Compumag
Society. As the original problem definition is only static,
it is extended to a magnetodynamic problem by assigning a
homogeneous conductivity to all ferromagnetic materials. The
dynamic parameters are inspired by the TEAM10 problem,
which handles eddy currents in non-linear systems of a similar
structure.

The 3-D geometry is defined as seen in Fig. 10. It consists
of three parts. A ferromagnetic yoke structure embraces a
copper coil. Inside the coil, a cuboid of the same ferromagnetic
material as the yoke is mounted such that it is freely movable
in the vertical direction. Applying a current, reluctance forces
emerge that tend to pull the free body in.

The solids and the surrounding air are meshed with in total
65 740 tetrahedal elements, see Fig. 11. A finite element order
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Fig. 11. Visualized mesh TEAM20.

Fig. 12. Official material parameter.

(fe-order) 1 leads to 76 564 dofs, fe-order 2 results in 338 984
dofs.

A. Material

The non-linear B H -curve of the steel is given in a tabular
form, which is plotted in Fig. 12. A spline interpolation is
performed to obtain a continuous function that is integrable
in order to find the energy density. For the pECSW-Order-
Decomposition, the first section of the curve is fit with a linear
permeability of µr = 1500. To compare the performance, two
further linear permeabilities are considered which do not fit
the actual material well, µr ,low = 750 and µr ,high = 3000. The
conductivity is given as σ = 7.505 × 106 S m−1.

1) Framework: The work for this contribution was carried
out using NGSolve and Python. NGSolve is an open-source,
object-oriented finite element library written in C++ and
equipped with a comprehensive Python API. It is closely
linked to NETGEN [25], an automatic mesh generator that
can mesh 2-D and 3-D geometries created with constructive
solid geometry (CSG) or open cascade technology (OCT).
Computations were conducted using an Intel Xeon CPU E3-
1270 v5 at 3.60 GHz, with NGSolve version 6.2.2301 and
Python 3.11.

2) Relative Error: The relative error (RE) compares
reduced problem solutions u to their corresponding reference
uref. In the course of this work, this comparison is limited
to scalar values (field quantities evaluated locally or global
values). The error at each time step ti is summed to produce

Fig. 13. Evaluation points P1 and Pj evaluate the field quantity B and
jeddy. An average is built over the cross section area defined by the lines α–β

and γ –δ.

a single significant value. The formula is

RE =

√∑
i (uref(ti ) − u(ti ))2√∑

i uref(ti )2
. (41)

The RE definition is quite harsh, and a small offset over
multiple time steps results in a high error number. But it
is also a useful one-number criterion to see how well two
measurement histories match.

3) Evaluation Points: The simulation values are evaluated
using two local points and the average results on two cross
section areas. The benchmark is also evaluated both in
simulation and experiment at point P1, as well as the lines
α–β and γ –δ, see [26]. Point Pj , see Fig. 13, is introduced in
this article to measure the eddy current values that counteract
the coil’s driving current.

B. Reference Simulation

For the static reference, the coil is excited by dc-currents
with a resulting applied magnetomotive force between
1000 and 5000 AT. With a cross section of 1738.8 × 10−6 m2

this results in the current densities of j = 0, 575(A/mm2) and
j = 2, 876(A/mm2), respectively.

The magnetic field at the point P1 and the averaged
magnetic field along two lines α-β and γ -δ as well as the
force of the plunger in z-direction (see Fig. 14) coincide well
with the measurement from the official results [27].

The dynamic simulations are conducted with an excitation
function that forms a smooth step

j(t) =

{
0 (t < 0)

j0
(

1 − e−
t
τ

)
(t ≥ 0).

(42)

j0 0.575 A mm−2 to 2.876 A mm−2

τ 0.05 s.
The parameters are chosen such that the steel parts can be

sufficiently saturated and the eddy current density is not small,
and yet the eddy current in the coil can be neglected [24].

As a timestep, two different values (t = 0.001 s and
t = 0.005 s) are used to test the convergence of the simulation.
Both reveal nearly the exact same behavior, so the timestep
t = 0.005 s is chosen.
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Fig. 14. TEAM20 solution for the B-field and forces compared to the official
measurements.

TABLE I
RELATIVE ERROR DUE TO THE PROJECTION (WITHOUT ANY

HYPERREDUCTION) IN THE SUBSPACE SPANNED BY POD MODES

No further excitation functions to train the system are
presented in the course of this contribution. Further details on
different strategies for generating training data can be found
in [17].

1) Regularization: Following the theory of modified vector
potential, the non-conductive domains lead to a non-unique
governing set of equations. This singularity is overcome by a
small regularization term that is added to the equation like a
very small mass matrix, i.e., a very small conductivity in the
order of 1 × 106 (S/m).

For the sNNLS, the regularization term is neglected,
although this is actually a small discrepancy between the
computed vector field and the evaluated energy densities.

C. Field Computation—pECSW Results

To reduce the system with the proposed two-stage method,
first, a good field computation is aimed. Therefore, the entire
system needs to be computed, and the resulting magnetic
vector snapshots are fed into the SVD to find a solution basis.
In this case, ten modes are sufficient.

The POD is computed from the first 20 timesteps. Projecting
the solution on a subspace of {5, 10, 20} modes shows that
the results at the evaluated points can be approximated within
1 % by the use of ten modes. A beginning of overfitting can be
detected for 20 modes trained from 20 snapshots, see Table I.

TABLE II
COMPARISON OF ECSW TIME CONSUMPTION RESULTS. THE OFFLINE

TIME DENOTES THE TIME FOR THE SNNLS TO FIND THE SELECTED

ELEMENTS AND CORRESPONDING WEIGHTS. THE DURATION TO

FIND THE NEXT TIME INTEGRATION STEP IS AVERAGED

Applying the presented variations of the hyperreduction
method ECSW leads to model sizes, which are a fraction
of the full-size model. As the speedup is directly related
to the number of evaluated elements, it is not explicitly
discussed here. Of course, some data-handling overhead
remains constant through all the simulations. The timings
given in Table II, are the wall-times of the computation of one
timestep, averaged over all timesteps. The system’s element
count decreases from 65 740 to a range between 10 and
100. And nearly with the same ratio do the computation
times reduce for the evaluation of the elements. Table II
also shows the offline times to select the relevant elements
and their corresponding weights. The offline time reduces
significantly due to the pECSW approach. The finite element-
order influences the computational effort, but the rates of
reduction itself are quite independent.

1) Regularization: Due to the projection into the subspace,
the regularization of the air domain is not necessary anymore.
The standard ECSW method does not violate the well-posed
property of the problem. The final stepping matrix unveils
condition numbers around 5–25, which leads to easy and
robust solutions in the linear solver. The pECSW-DD can be
upgraded with a regularization term for the linear domain,
which lowers the condition numbers but is not necessary. The
pECSW-OD does not promise a bounded condition number.
There were cases where the stepping matrix became singular
after a few time steps. This behavior could be hindered but
not consequently inhibited with a regularization term in the
linear domain.

2) Constant Number of Elements: The plot in Fig. 15 shows
the magnetic flux density Bz at P1 and the eddy current density
jx at Pj for a ramp-like excitation. The results of the standard
ECSW, pECSW domain decomposition (pECSW-DD), and
pECSW order decomposition (pECSW-OD) are plotted for two
reduction levels (11 and 55 elements). These element numbers
correspond to the number of elements the standard ECSW
chose for τ = 0.1 and τ = 0.001. All three methods now
have the same computational effort, and a fair comparison of
the capability of the reduced model is possible.

The takeaway message from Fig. 15 indicates that both
pECSW methods perform better than the standard ECSW.
This was expected as for the pECSW all evaluated elements
contribute to the approximation of the non-linearity. The order
decomposition method works the best. For higher element
numbers considered in the ECSW hyperreduced model, the
differences between the methods vanish, and all the results
match the reference. However, the pECSW-OD has the major
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Fig. 15. Result curves for the three ECSW methods for two numbers of
elements considered. The reference is solid blue.

drawback of becoming potentially unstable due to a bad matrix
condition.

3) Conclusion: Both pECSW approaches fulfill the ex-
pectations in terms of building a reduced-order model to
compute the magnetic vector potential. Discussing whether
it is necessary or even worth applying the pECSW approach
instead of the standard ECSW, which considers the full domain
despite its non-linearity, two points are to be highlighted as
follows.

a) Implementation effort: If an intrusive implementation is
possible, the extra effort for pECSW is very small as all the
techniques are already there.

b) Offline costs: The offline costs are remarkably smaller
(10–20 times smaller) for the pECSW approaches. This leads
to the strong recommendation to use a pECSW method.

c) Convergence: The convergence of the pECSW-OD is
not always guaranteed, and therefore, the method is not
recommended, although it would provide the best results when
stable.

In summary, the most promising implementation of the
ECSW method to compute the field quantities is the classic
ECSW, which performs very well and does not need any
further implementation complexity but needs some more
elements to exhibit similar accuracy. Adding one step of
complexity, i.e., the partitioning of the system, the pECSW-
DD is the most intuitive and robust hyperreduction approach.

D. Force Calculation—cECSW Results

After investigating the field calculation, the application of
the ECSW approach to post-processing in terms of force
calculation is discussed in the example. The resulting element
selections are visualized in Fig. 16.

Due to the ramp excitation, the final force value converges
to the static forces. For a single rigid body mode of the

Fig. 16. TEAM20 selected elements. Blue elements for the pECSW-
algorithm, green elements for the cECSW-algorithm. Non-selected air
elements and coil elements are invisible.

Fig. 17. Comparison of the global force from standard ECSW and cECSW.
After t = 0.2 s, the system is not in a steady state and, therefore, is not fully
converged to the static value.

mobile target in the z-direction, 14 elements were selected
for a sNNLS tolerance of τ = 1 × 10−3 in the ECSW
for the forces. The offline costs were around t = 1 s. The
online costs for a single force integration decrease from 0.7 to
0.002 s.

The force results are very accurate; refer to Fig. 17. The final
excitation current at t = 0.2 s is 98 % of the static reference
of 5000 AT.

E. Reduced Order Model—Results

In the following, the reduced model created beforehand
(pECSW-DD for the field calculation and cECSW for the
force, trained once with the ramp seen above) will be tested
for three different excitations against their full-order reference
solution. The results are visualized in the radar chart in Fig. 19.
Each ray represents a relative error measure (local and global).
The shorter the circular path, the better.

The first excitation is the same ramp as for the training,
see (42). This leads to the so-called onboard validation of the
reduced model. The two following trajectories are unknown
to the system and consequently represent a cross-validation
of the reduced order model. The second excitation function
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Fig. 18. Cross validation of the reduced order model with an impulse
excitation for two excitation amplitudes.

forms a sine

I2(t) = I0 sin(2π f t) f = 10 Hz. (43)

The third excitation function forms an impulse

I3(t) = I0e−
(t−m)2

2a2 m = 0.05 s, a = 0.01 s. (44)

All experiments are conducted with two current density peak
amplitudes, namely, 3000 and 5000 AT.

The results for the impulse validation [excitation (44)] are
plotted in Fig. 18. The two amplitudes nicely show the non-
linear saturation effect for the magnetic flux density. The
reduced model leads to a small deviation in the relaxation
phase right after the impulse. Also, the effect of the eddy
currents is intuitive and well-represented by the reduced
model. In all categories, the pECSW method performs better.
The global quantities, like the magnetic energy and the force,
match nearly perfectly with the reference.

Fig. 19. Relative error RE (41), evaluated for different quantities (global
energy Wmag and force Fz , local field quantities B and j). The graph
contains the three test trajectories. As reference serves their full simulation,
respectively. A is the area enclosed by the error points. L is the circumference
length.

In order to generate a weighted single error measure over
multiple evaluation points, the area and the circumference
length in the radar plot of the reduction error Fig. 19 are
computed and displayed in the corresponding legend.

Two statements can be drawn from Fig. 19. First, the
reduced order model represents its own training simulation the
best. This was to be expected. This is often called onboard
validation. Second, the estimation of the force is relatively
robust. In general, the simulation results show a changing
accuracy when the excitation amplitude is changed, but no
clear correlation was found between the excitation level and
the accuracy of the reduction strategies.

Conclusion: The cECSW method brings major advantages
to the computation of mechanical forces in electromechanical
systems. With relatively small offline effort, the model can
be reduced significantly. This allows the model to be stored
in very limited memory environments and the force to be
computed with only very small computational power.

VI. SUMMARY AND CONCLUSION

A. Summary

Model order reduction not only reduces the wall time for the
engineer but also provides a model with a reduced memory
footprint. The family of ECSW methods is helpful for both
achievements. After a short recap of the classic ECSW method
and its application to magnetodynamic systems, two adaptions
were presented. One for the objective of a lean and reliable
computation of the magnetic field, including eddy-currents
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for any unknown excitation. The magnetic field computation
for a modified TEAM20 example, once trained, shows good
behavior for different excitations and timesteps and moreover
is free of the empirical regularization factor. On the other hand,
the application of the ECSW idea to speed up the evaluation
of the mechanical force allowed us to develop a strategy
that can be easily interpreted physically, incurs only a little
modification of the analysis while still evaluating the force
with excellent accuracy.

B. Future Work

Finding a sound reduction basis is identified as key to a
successful reduction. The hyperreduction part is found to be
robust and does not degrade the result markedly. Expanding
the idea of pECSW could also lead to different ways than
POD for generating a reduction basis. A kind of non-linear
condensation is thinkable as pre-processing. This could help
in reducing and, therefore, accelerating the full system in
advance before calculating training snapshots for the non-
linear domain.

C. Closing

In terms of performance, the ECSW method has been shown
to produce accurate results for a wide range of systems.
It has the advantage of being relatively simple to implement
compared to other model order reduction techniques and
is well-suited for large-scale systems where computational
resources are limited. Due to the method’s general origin,
it is adaptable to different objective functions. Here, we have
proposed two efficient improvements that were shown for
magnetodynamic systems. The first improvement consists of
applying hyperreduction only to domains that are considered
non-linear. A second improvement is proposed, where hyper-
reduction ideas are extended to the computation of mechanical
forces during the post-processing of electromagnetic analysis.
Concluding, both adaptions perform well in the given context.
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