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Dynamic magnetization curves of soft magnetic materials are often written in terms of magnetic flux density b and magnetic
field strength h as h = H(b) + c db/dt , where H is a static magnetization model and c is a real number describing eddy-current
effects. In this article, an analytical derivation for c is presented for soft magnetic composite (SMC) materials. The parameter c will
depend explicitly on the conductivity of the material particles as well as the geometry of the particles, described by mean particle
volume, variance of the particle volumes, volume fraction of the material, and insulation thicknesses. No experimental or empirical
parameters appear in c in our treatment.

Index Terms— Dynamic hysteresis, eddy current, magnetic contact, material identification, permeability, soft magnetic
composite (SMC).

I. INTRODUCTION

SOFT magnetic composite (SMC) materials consist of elec-
trically insulated compacted ferromagnetic powder [1].

Compared with electrical steels, the particle scale structure of
an SMC provides a reduction to classical eddy currents. The
magnetic behavior of SMCs is often isotropic. As a drawback,
the permeabilities of SMC materials tend to be low. Fig. 1
depicts an SMC material.

There are different approaches for modeling SMC mate-
rials. Let us discuss three of them. First, there are models
that include some geometric imitation of an SMC particle
structure into a computational model, usually based on the
finite-element method (FEM). Such studies have been con-
ducted by Maruo and Igarashi [2], Sato et al. [3], Sato
and Igarashi [4], and Vesa and Rasilo [5], [6], [7]. In the
works of Ren et al. [8], [9], [10], a similar approach in
the general level appears. In such computational studies, the
particles are usually treated as isotropic and homogeneous
continua. The obvious advantage of this paradigm is that
classical eddy currents and magnetic behavior, that are affected
by the particle structure, can be modeled in a very detailed
manner. Furthermore, it is possible to analyze how the particle
scale geometry affects the electromagnetic properties of the
material. As an obvious disadvantage, we must note that the
approach is computationally expensive. Modeling a magnetic
component, such as an inductor, with these methods could be
heavy in terms of computation time.

Second, there is an approach more suited to modeling
actual components. It is to ignore the particle scale structure
and replace the ignored scale of the material by a material
model. Such a paradigm is efficient when analyzing magnetic
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Fig. 1. Microscope image of a Fe–Ni–Mo alloy SMC.

components made out of SMC materials. As an example,
Guo et al. [11] used this approach to analyze a permanent
magnet machine with an SMC core.

One might argue that the second approach suffers from the
lack of explicit information about the particle scale structures.
If the materials were to be improved, the approach provides
no insight into the material details that could be tuned. This
means that there is a call for yet another approach that
combines the best bits of the mentioned ones. In the works of
Sato et al. [12], a classical eddy-current loss model for
SMC materials was presented. The calculation was based on
solving eddy currents in a spherical particle analytically and
integrating the loss contributions of several particles defined
by some particle diameter distribution. Later, a Cauer network
was utilized to convert a complex permeability of a spherical
particle for time-domain computations [13].

It seems that there is room for further developments in the
approach of treating classical eddy-current effects of SMC
particles analytically and combining the results into some
macroscale material model. A fully analytical closed-form
material model for SMC materials taking into account the
geometry of the particles seems to be missing.
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Fig. 2. Schematic of a single particle and an insulation.

Laminated cores are often treated using a material model
of the form h = H(b) + c db/dt , where H is a static
magnetization model and c = σd2/12, where σ and d are
the electrical conductivity and the thickness of the laminations,
respectively [14]. In this article, we aim at deriving a constant
similar to c for SMC materials. But, for SMC materials, the
constant c is going to contain the conductivity of the material
particles and a description of the geometry of the particles. The
geometry of the particles will be described by mean particle
volume, variance of the particle volumes, volume fraction
of the material, and particle insulation thicknesses. All the
dependencies of c are going to be physical or geometric.
Fitting parameters that do not have such an interpretation will
not be introduced.

II. ANALYSIS OF ONE PARTICLE IN FREQUENCY DOMAIN

In this section, we derive a magnetic model for one mag-
netically linear material particle in frequency domain with
sinusoidal excitations. The derivation is based on assuming
the SMC particles to be cylinders, much like the one depicted
in Fig. 2. The particles are connected to one another at the
ends of the cylinders through insulation layers.

A. Fields in 2-D

Referring to Fig. 2, we denote the radius of the cylindrical
particle as R. We treat the magnetic field as rotationally
symmetric around the symmetry axis of the cylinder and
translationally symmetric in the direction of the symmetry
axis. We write the magnetic field h in terms of the radial
coordinate r . Next, we investigate how the magnetic flux 8

through the bottom disk of the cylinder and the magnetic field
strength on the lateral boundary surface of the cylinder, hs,
depend on each other.

Following the treatment presented by Lammeraner and
Štafl [15], the equations for the magnetic field strength h are

r2h′′
+ rh′

+ k2r2h = 0
h(R) = hs

}
(1)

where k2
= −µσ jω. Furthermore, µ and σ are the perme-

ability and the conductivity of the particle, and j and ω are
the imaginary unit and the angular frequency of the excitation,

respectively. This is a Bessel-type equation whose solution is
given as follows:

h(r) =
J0(kr)

J0(k R)
hs (2)

where J0 is the zero-order Bessel function of the first kind.
Substituting b(r) = µh(r) and integrating the flux density

over the spherical surface yield the magnetic flux through the
surface, which is given by

8 = 2π

∫ R

0
b(r)rdr =

2π Rµ

k
J1(k R)

J0(k R)
hs (3)

where J1 is the first-order Bessel function of the first kind.
Let us assume that the spherical cross section of the cylindrical
particle is surrounded by some insulating material. We assume
that the effective cross-sectional area that the magnetic flux
passes through is given by π R2/η, where 0 < η ≤ 1 is a
coefficient that models the volume fraction of the material.
The effective flux density is now given by

beff =
8

π R2

η

=
2µη

k R
J1(k R)

J0(k R)
hs (4)

in the frequency domain.

B. Reluctance Network in 1-D

Let us now connect the particle into another particle through
a thin insulating layer. We use well-known methods of reluc-
tance networks.

Referring to Fig. 2, the darker region on the right-hand side
of the cylinder represents a thin insulation. The reluctance of
the insulating layer is given by

Rins =
τ l

µinsπ R2 (5)

where µins is the permeability of the insulation, l = 2Rκ is
the length of the particle, where κ describes the length relative
to the diameter 2R of the particle, and τ l is the thickness of
the insulation, where the constant 0 < τ << 1 determines
the relative thickness of the insulation. Assuming that the flux
through the particle passes also the insulation, the magnetic
field strength in the insulating region is related to the effective
flux density of the particle by

hins =
Rins8

τ l
=

1
ηµins

beff. (6)

The volume fraction coefficient η appears in both (4) and
(6). The reason for such a convention is that all the flux is
assumed to pass the cylindrical particle and the associated
insulation, but there are insulating surroundings outside the
lateral surfaces of the particle and the insulation that are taken
into account by the coefficient η.

The effective magnetic field strength heff,l over the particle
of length l and the insulation of thickness τ l is given by

heff,l =
1

(1 + τ)l

[
τ lhins + lhs

]
. (7)
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Fig. 3. Schematic of multiple particles connected to one another via insulations.

Combining (4), (6), and (7) yields

heff,l =
1

(1 + τ)η

[
τ

µins
+

1
µ

k R J0(k R)

2J1(k R)︸ ︷︷ ︸
=:g(k R)

]
beff (8)

where the function g is farsightedly characterized by the
argument k R = R(−µσ jω)1/2.

C. Taylor Expansion

We now aim at turning the single particle model (8) into
time domain. We also want to perform an integration over
a distribution of particle volumes. Let us approximate the
function g as its N th-order Taylor expansion, and let us
substitute the volume of the particle V = 2κπ R3. We get

heff,l ≈
1

(1 + τ)η︸ ︷︷ ︸
···

(
τ

µins
+

1
µ

N∑
i=0

γ2i (k R)2i

)
beff

= · · ·

(
τ

µins
+

1
µ

N∑
i=0

γ2i (−µσ)i R2i ( jω)i

)
beff

= · · ·

(
τ

µins
+

1
µ

N∑
i=0

γ2i
(−µσ)i

(2κπ)
2
3 i

V
2
3 i ( jω)i

)
beff (9)

where only the even coefficients γ2i = 1, −(1/8),
−(1/192), . . . appear, as explained in the literature [16]. Since
only even exponents are nonzero in the expansion, formula (9)
expresses the magnetic field strength in terms of rising integer
exponents of jω, which is straightforward to transform into
time domain. Furthermore, the formula is expressed in terms
of exponents of the volume V , which provides a neat access
to integrations over V .

III. MULTIPARTICLE MODEL

Let us assume that the particle volumes of the material
more or less obey the gamma distribution, given by the density
function

G(V ) =
βα

Γ (α)
V α−1e−βV (10)

where the parameters α and β are related to the expected value
E and variance Var by the formulas

E =
α

β
and Var =

α

β2 . (11)

Roughly speaking, the density function expresses “how many
particles have the volume V .” The function Γ is given by

Γ (z) =

∫
R≥0

x z−1e−x dx . (12)

Referring to Fig. 3, we assume that we have a sequence of
particles whose volumes obey the gamma distribution. Each
particle has the same effective magnetic flux density beff. Fig. 3
illustrates the consequences of the particles having the same
effective magnetic flux density. If a larger particle is connected
to a smaller particle, some flux diverges from the sequence to
the surroundings, and if a smaller particle is connected to a
larger particle, some flux is introduced to the larger particle
from the surroundings. Even though skin effect is present in
model (8), we assume that the magnetic coupling between the
particles by equating beff is not affected by the flux density
distribution in individual particles.

The effective magnetic field strength over the sequence of
particles is obtained by computing the total magnetomotive
force over the length of the sequence. We get

heff =

∑
l∈S heff,l(1 + τ)l∑

l∈S(1 + τ)l
=

∑
l∈S heff,ll∑

l∈S l
(13)

where the multiset S contains all the lengths of the particles in
the sequence. Next, we aim to approximate the sums of (13)
by integrals involving the gamma distribution (10). Since (13)
involves the lengths of the particles, but the density function
(10) is expressed in terms of particle volumes, it is worth
denoting the length l of a particle in relation to the volume V
of the particle. Given that V = π R2l and l = 2Rκ , we have

l(V ) =
(2κ)

2
3

π
1
3

V
1
3 . (14)

Taking the leap from (13) to the continuous domain, we get

heff ≈

∫
R+ heff,l(V )l(V )G(V )dV∫

R+ l(V )G(V )dV
. (15)
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Substituting (9) into (15), we get

heff ≈
1

(1 + τ)η

(
τ

µins
+

1
µ

N∑
i=0[

γ2i
(−µσ)iΓ

(
α+

2
3 i + 1

3

)
(2κπβ)

2
3 iΓ

(
α +

1
3

) ( jω)i

])
beff (16)

where the rather technical computations of the integrals are
available in the Appendix.

We manipulate (16) further by substituting (11) and replac-
ing jω by time differentiation. We get

heff ≈
1

(1 + τ)η

(
τ

µins
+

1
µ

+σ
Γ
(

E2

Var + 1
)

8
(
2κπ E

Var

) 2
3 Γ
(

E2

Var +
1
3

) d
dt

+
1
µ

N∑
i=2

γ2i

(−µσ)iΓ
(

E2

Var +
2
3 i +

1
3

)
(
2κπ E

Var

) 2
3 i

Γ
(

E2

Var +
1
3

) di

dt i

beff (17)

where inside the big parentheses the static contribution of the
insulations, the static contribution of the particles, the first-
order dynamic contribution of the particles, and the higher
order dynamic contributions of the particles have been sepa-
rated. Truncation of (17) from an appropriate order, usually
one, yields a simple dynamic hysteresis model.

The material model (17) is already in the desired form, but
the model is linear and scalar. Generalization of the model into
3-D is straightforward, provided that linearity holds. Due to
superposition, the scalar model is applicable componentwise.
Furthermore, truncating (17) from the first-order dynamic
term, we get

H = H(B) + ced(σ, τ, η, κ, E, Var) ∂B
∂t

H(B) =
1

(1+τ)η

(
τHins(B) +Hpart(B)

)
ced = σ 1

(1+τ)η

Γ
(

E2
Var +1

)
8(2κπ E

Var )
2
3 Γ

(
E2
Var +

1
3

)
(18)

where the magnetic model H is assumed to be linear through
the relations Hins(B) = 1/µinsB and Hpart(B) = 1/µB. The
novelty of this article is the derivation of the coefficient ced.
The decomposition of H is just a consequence of the well-
known reluctance network approach. A summary of the sym-
bols and their possible numerical values is given later in
Table I.

Whether (18) is applicable for nonlinear static models H,
it is beyond the scope of this article, but it seems that for
laminated cores, the corresponding equation is valid in the
nonlinear case [14]. This is based on the assumption that skin
effect of the magnetic flux density is negligible in the sheets,
which is valid when the excitation frequencies are relatively
low. Then, the contributions of the nonlinear static model and
the dynamic part may be separated by a simple superposition.
If the same argument was applied to (18), it would mean
that the operators H, Hins, and Hpart could be nonlinear static
magnetic models.

TABLE I
SYMBOLS EXPLAINED

IV. NUMERICAL EXAMPLE

In this section, we provide an experimental study to demon-
strate the applicability and the limitations of the model.
Magnetic properties of a sample are studied over a wide
frequency range with low-amplitude magnetic excitations.

A. Measurements

The SMC material depicted in Fig. 1 serves as a case
study sample. Multiple microscope images, much like the
one appearing in Fig. 1, were taken, and the particle surface
areas were computed from the images. The computed particle
surface areas were raised to the power of 3/2 to estimate
the volumes of the particles. Fig. 4(a) depicts the measured
distribution of the particle volumes. Integration over an interval
of volumes tells us how many particles belong to that volume
range relative to the total number of the particles. Fig. 4(b) is
explained later.

The SMC material was characterized using a two-coil setup
with an LC R meter. Frequency-dependent complex perme-
ability µmeas was computed from the measured impedance
between the sinusoidal low amplitude primary current and
the sinusoidal low amplitude secondary voltage. Root-mean-
squared (rms) secondary voltage was set to a fixed value
V2,rms = 1 V. By the Faraday law, the rms magnetic flux
density was brms = V2,rms/(2π A f ) ≈ 1500 T · Hz/ f .
However, at lower frequencies, the current limit 20-mA rms
of the device is expected to limit the flux density. The Ampère
law yields a bound brms = |µmeas|I1,rms/ l ≈ 0.2 A/m · |µmeas|.
Measurements were repeated for multiple values of the sec-
ondary voltage within a range of V2,rms = 0.01, . . . , 1 V
to ensure that the frequency-dependent µmeas is independent
of the amplitude of the flux density. This means that the
measurements were carried out in the magnetically linear
region of the material.

Fig. 5 depicts the absolute value of the permeability, and
Fig. 6 depicts the normalized energy loss density

wmeas

|b|2
= −π

Im{µmeas}

|µmeas|
2 (19)

where wmeas corresponds to energy loss density over one cycle
of excitation. The terms of (19) are arranged in such a way
that the right-hand side contains no information other than
what can be determined by the measured complex effective
permeability. By linearity, the loss density scales to the second
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Fig. 4. Distributions of particle volumes. (a) Measured particle volumes and
a fitted gamma distribution. (b) Distributions of (a) transformed into another
form.

power of the flux density, and hence, the left-hand side is in
a normalized form.

It should be noted that (19) accounts for all the normalized
losses that have been written into µmeas. In case of mea-
surements, this includes all the losses that are visible to the
LC R meter through the measured impedances. The effective
frequency-dependent complex permeabilities obtained from
our computational models contain information about the eddy-
current losses.

B. Models

We compare two models with the measurements. Both
models provide a relation between complex b and complex
h and, thus, provide a complex effective permeability. Hence,
also, losses are available by (19).

On the one hand, we use model (18) in its complex scalar
form, and we call this model “Computed.” On the other hand,
a model with less approximations is obtained by integrating
(8) over the estimated gamma distribution numerically by
formula (15). We call this model “Computed, Bessel,” since
it involves numerical evaluations of Bessel functions. There
are two reasons for the use of “Computed, Bessel” in the

comparison. First, our model (18) was derived from the
truncated Taylor polynomial of (8), whereas the “Computed,
Bessel” uses (8) directly. Hence, we can take a look at how
the truncation of the Taylor polynomial affects the numerical
results. Second, we need to identify local material parameters
from macroscale measurements, and we will see that the
“Computed, Bessel” model provides a good forward model
for the estimation problem.

C. Identifications

Model (18) involves quite many parameters that should be
identified from the material depicted in Fig. 1. Table I provides
a summary of all of them. Next, we discuss how to provide
reasoning for each of the identified parameters.

In Section IV-B, we discussed how the measured particle
volume distribution was obtained for Fig. 4(a). The expected
particle volume E and the variance of the particle volumes
Var are just the expected value and the variance of the
measured distribution. Numerical values of these parame-
ters are available in Table I. The dashed red curve “Esti-
mated” in Fig. 4(a) represents the gamma distribution (10)
that is assumed to approximate the measured distribution.
The gamma distribution is fully determined by E and Var.
Fig. 4(a) does not really reveal the weaknesses of the use
of the gamma distribution. Hence, Fig. 4(b) is provided.
It contains transformed versions of the distributions that appear
in Fig. 4(a). The transformations include multiplications by
particle volumes, after which normalizations were carried out.
Finally, transformation of the x-axis was conducted. From
Fig. 4(b), it can be seen that the measured distribution is
more skewed toward smaller particle sizes than the estimated
distribution even though expected values and variances match.
This is a sign that the actual particle distribution does not
exactly follow the gamma distribution. But, in the end, some
reasonably realistic distribution has to be used for an analytical
derivation of the eddy-current coefficient ced.

The permeability of the insulations µins was chosen to be the
permeability of free space µ0 for non-magnetic behavior. The
conductivity σ and the permeability µ of the particles as well
as the insulation thickness factor τ of the material cannot be
directly measured from the material sample, but they have
to be estimated from the macroscale magnetic behavior of
the sample. Let us denote the computed effective frequency-
dependent complex permeability obtained using the model
“Computed, Bessel,” by µB. We define an objective function

e(µ, σ, τ ) =

∑
f ∈F

|µmeas( f ) − µB( f, µ, σ, τ )|2 (20)

where the summation is defined over the set F containing
all the measurement frequencies. The parameters µ, σ , and τ

were found by minimizing the objective function e under the
constraint

τ =
|µmeas,dc|/µ − η

η − |µmeas,dc|/µins
(21)

where µmeas,dc is the measured permeability at the dc limit.
This constraint is to ensure that the measured and computed
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Fig. 5. Comparison of absolute values of complex permeabilities. (a) Narrow
frequency range. (b) Extended frequency range.

permeabilities match at the dc limit. The concrete com-
putations were carried out using the reflective trust region
optimization algorithm that is available in the Python Scipy
library [17]. Numerical values for µ, σ , and τ are available
in Table I.

It was assumed that the particles are more or less round,
and hence, the relative length κ of the particles was chosen to
be 1. Furthermore, the volume fraction η of the material was
set to be 90%. This is close to the values discussed earlier in
the literature [5], [18].

D. Numerical Results

We use the two models, “Computed, Bessel” and “Com-
puted,” with the terminology summarized in Section IV-B. The
models use the parameters that are summarized in Table I.
In Fig. 5, we see that the measured permeability curve agrees
well with the “Computed, Bessel” model. This is due to
two factors. First, model (8) that is integrated numerically
over the particle volume distribution is based on reasonable
assumptions. It seems that classical eddy currents, including
skin effect, explain the behavior of the material for such a
frequency sweep well. Second, since not all of the parameters
listed in Table I can be measured directly from the material
sample, an optimization algorithm was utilized to find some
of the parameters. This was discussed in Section IV-C. Such

Fig. 6. Comparison of loss densities. (a) Narrow frequency range.
(b) Extended frequency range.

fitting may also compensate some inaccuracies related to,
for example, the estimation of the material particle volume
distribution.

From the losses depicted in Fig. 6, we can state that the
overall shape of the measured losses agree with the losses
obtained using the “Computed, Bessel” model. There is a
4.4% relative difference of the losses at 1 MHz and a 19%
relative difference at 10 MHz. It is unclear why there is this
discrepancy. On one hand, we could consider if the used
model contains some unnecessarily restrictive assumptions.
One assumption we made is that the particles in the “Com-
puted, Bessel” model are not capacitively coupled, and only
eddy currents inside the particles contribute to the losses.
However, the measurements contain all the losses that are
visible to the LC R meter by the measured impedances. Con-
sidering capacitively conducting currents in the model could
yield an increase for the losses in the high-frequency range.
On the other hand, it may very well be that the optimization
task that is based on minimizing (20) does not give enough
weight for the imaginary part of the “Computed, Bessel”
model, and hence, there is a discrepancy in the high-frequency
losses.

The model “Computed” is based on a first-order Taylor
expansion of the more complicated model. Hence, the agree-
ment between the model “Computed” and the measurements is
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reasonable only in the low-frequency region, where the Taylor
polynomial was developed. The permeability trend in Fig. 5 is
similar to the measured, but no overall quantitative agreement
is expected. At 400 kHz, the relative difference between
the measured permeability and the “Computed” permeability
is 9.6%. The losses of the “Computed” model capture only
the linear part of the loss curve. At 400 kHz, the relative
difference of the measured and the “Computed” losses is 7.8%.
We conclude that the truncated model (18) is applicable only
in the low-frequency region.

V. CONCLUSION

The contribution of this article was to derive the param-
eter ced appearing in the dynamic hysteresis model (18) for
SMC materials. The coefficient ced depends explicitly on the
geometric and physical parameters of the material, and no
additional experimental coefficients were brought into the
consideration. A list of the physical parameters with numerical
values for one specific material was given in Table I.

It was shown experimentally that the underlying more com-
plicated eddy-current model for SMC materials captures the
behavior of the case study material in the sense of permeability
and losses. The eddy-current coefficient ced was derived from
the first-order Taylor coefficient of a more complicated model.
Hence, the simplified dynamic hysteresis model (18) with
the coefficient ced should only be used for low-frequency
applications. For the case study SMC material, it was found
that permeabilities and losses were at 10% relative vicinity
of the measured quantities when the excitation frequency
was less than 400 kHz. This 400 kHz can be taken as
“low frequency.”

APPENDIX

In Section III, the derivation of (16) was omitted. Here,
we provide the missing pieces.

First, we show one integral formula. Let α, β > 0 and
q ≥ 0. Using the substitution V = β−1W between the
variables V and W , we have∫

R+

V α+q−1e−βV dV

=

∫
R+

(
β−1W

)α+q−1
e−W β−1dW

= β−(α+q)

∫
R+

W (α+q)−1e−W dW

= β−(α+q)Γ (α + q) (22)

by definition (12) of the function Γ .
Second, we compute a fraction of integrals farsightedly.

Let i ≥ 0. We use definitions (10) and (14) for the gamma
distribution function G and the particle length l. We notice
that

l(V )G(V ) =
βα(2κ)

2
3

π
1
3 Γ (α)

V α−
2
3 e−βV . (23)

Substituting (23) and using formula (22), we find the integral
formula ∫

R+ V
2
3 i l(V )G(V )dV∫

R+ l(V )G(V )dV

=

∫
R+

βα(2κ)
2
3

π
1
3 Γ (α)

V α+
2
3 i− 2

3 e−βV dV∫
R+

βα(2κ)
2
3

π
1
3 Γ (α)

V α−
2
3 e−βV dV

=

∫
R+ V α+

2
3 i+ 1

3 −1e−βV dV∫
R+ V α+

1
3 −1e−βV dV

=
β−(α+

2
3 i+ 1

3 )Γ
(
α +

2
3 i +

1
3

)
β−(α+

1
3 )Γ

(
α +

1
3

)
= β−

2
3 i Γ

(
α +

2
3 i +

1
3

)
Γ
(
α +

1
3

) . (24)

Third, we substitute (9) into (15) and use linearity of
integration. Computing the integral with (24), we have

heff ≈

∫
R+ heff,l(V )l(V )G(V )dV∫

R+ l(V )G(V )dV

=
1

(1 + τ)η

(
τ

µins

∫
R+ l(V )G(V )dV∫
R+ l(V )G(V )dV

+
1
µ

N∑
i=0

γ2i
(−µσ)i

(2κπ)
2
3 i

( jω)i

×

∫
R+ V

2
3 i l(V )G(V )dV∫

R+ l(V )G(V )dV

)
beff

=
1

(1 + τ)η

(
τ

µins
+

1
µ

N∑
i=0

γ2i
(−µσ)i

(2κπ)
2
3 i

( jω)i

× β−
2
3 i Γ

(
α +

2
3 i +

1
3

)
Γ
(
α +

1
3

) )
beff

=
1

(1 + τ)η

(
τ

µins
+

1
µ

N∑
i=0

γ2i
(−µσ)i

(2κπβ)
2
3 i

( jω)i

×
Γ
(
α +

2
3 i +

1
3

)
Γ
(
α +

1
3

) )
beff (25)

which is equal to (16).
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