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Coupled 2-D FEM and 1-D Micromagnetic Model for Transverse
Anisotropy Tape-Wound Magnetic Cores
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We present a new approach for modeling high-frequency losses in transverse anisotropy magnetic tapes by solving a 1-D eddy-
current problem coupled to a micromagnetic constitutive law. Contrary to earlier models, the model is derived using a magnetic
flux density conforming formulation. The model allows coupling the tape-level magnetization process to a 2-D finite element model for
analyzing larger cores by homogenizing the tape layers. The developed model predicts the high-frequency losses in good agreement
with previously presented measured results and models, demonstrating potential for increased accuracy in the calculation of losses
in tape-wound cores.

Index Terms— Eddy currents, finite element method, homogenization, magnetic losses, micromagnetics, tape-wound magnetic cores.

I. INTRODUCTION

TRANSVERSE field annealed (TFA) amorphous or
nanocrystalline tapes are attractive materials for manu-

facturing high-permeability and low-loss magnetic cores e.g.,
in power electronics applications [1]. Owing to their transverse
180◦ domain wall (DW) structure, their longitudinal magne-
tization processes above the MHz-range are dominated by
domain rotations, making losses related to DW movement neg-
ligible [2]. In addition, their µm-range thicknesses efficiently
suppress classical eddy currents. Simplified illustrations of the
domain structure and a wound core are given in Fig. 1.

Power losses in TFA tapes have been analyzed by coupling
a magnetic-field conforming 1-D formulation for the eddy
currents in the tape to a 1-D micromagnetic constitutive law
derived from the Landau–Lifshitz–Gilbert (LLG) equation [3],
[4]. Such an approach has been shown to provide a reasonable
estimate of the losses of thin toroidal test samples at frequen-
cies ranging from 0.1-10 MHz up to 1 GHz [3]. However, the
1-D approaches do not allow accounting for inhomogeneous
flux density distributions present in larger magnetic cores in
practical applications.

In this article, we derive a new magnetic flux density
conforming formulation for the coupled 1-D eddy-current-
LLG problem and present an approach for coupling this to
a 2-D finite element (FE) model through a homogenization
approach. This allows accounting for the tape-level losses in
larger cores. The developed models will be referred to as the
1-D micromagnetic model and the coupled 2-D/1-D model,
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Fig. 1. Domain structure in a TFA tape with thickness d , illustration of a
core wound from the tape, and definition of relevant coordinate systems.

respectively. The coupled 2-D/1-D model is validated against
measurements and modeling results presented in [3].

II. MODEL

A. 1-D Micromagnetic Model

Following the notation in Fig. 1, the 1-D diffusion equation
describing the dynamics of the magnetic field in the tape
thickness w ∈ [(−d/2), (d/2)] is given by

∂2h(w, t)
∂w2 = σ

∂b(w, t)
∂t

(1)

where h and b are the v-components of the magnetic field
strength and flux density, respectively, and σ is the electrical
conductivity of the tape. Following [5] and [6], the diffusion
problem (1) is solved by expressing b(w, t) using a set of
cosinusoidal basis functions α j (w) = cos(2π jw/d) and their
time-dependent coefficients b j (t), j = 0, . . . , nb − 1, which
can be solved from the system

hs(t) =
1
d

∫ d/2
−d/2 hFe(b(w, t))α(w)dw +

σd2

12 C d
dt b(t) (2)
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where hFe(b) represents the constitutive law and C is a
constant matrix. The vectors hs(t) =

[
hs(t) 0 . . .

]⊤
α(w) =[

α0(w) . . . αnb−1(w)
]⊤ and b(t) =

[
b0(t) . . . bnb−1(t)

]⊤

are also introduced. From (2), the magnetic flux density dis-
tribution in the tape can be solved either for given surface field
strength hs(t) or average flux density b0(t).

The micromagnetic model describing the magnetization
process in the tape thickness is included in the constitutive
law by writing

hFe(w, t) = ν0b(w, t) − Mv(w, t) (3)

where Mv is the v-component of the magnetization vector M
and ν0 = 1/µ0 is the reluctivity of free space. By discretiz-
ing the LLG equation with the Forward-Euler time-stepping
scheme with time-step length 1t , we can write Mv at time-step
k as

Mk
v (w) = Mk−1

v (w) −
1t |γG|µ0

1 + α2
G

{[
Mk−1(w)×

(
Hk−1

ex,an,ms(w)

+
αG

Ms
Mk−1(w) × Hk−1

ex,an,ms(w)

)]
· uv

+
αG

Ms

((
Mk−1

u (w)
)2

+
(
Mk−1

w (w)
)2

)
hk

Fe(w)

}
(4)

where |γG| is the electron gyromagnetic ratio and αG is the
phenomenological damping parameter of the LLG equation,
Ms is the saturation magnetization, and Hex,an,ms contains the
exchange, anisotropy, and magnetostatic contributions to the
effective field vector as described in [3]. The effective field
term of the LLG equation is defined to be the sum of Hex,an,ms
and hFeuv. The unit vector in the v-direction is denoted with
uv. It is noted that the magnetostatic field is calculated for a
straight piece of tape. Uniaxial anisotropy in the u-direction is
assumed in the calculation of the anisotropy field contribution
in Hex,an,ms.

Equation (4) can be shortly expressed as Mk
v (w) =

ak−1(w) + ck−1(w)hk
Fe(w), where ak−1(w) and ck−1(w) con-

tain terms from the previous time-steps. Combining this result
with (3) and applying the Backward-Euler method to discretize
the time derivative of the magnetic flux density coefficients in
(2) finally allows writing (2) as

hk
s =

[
1
d

∫ d/2

−d/2

ν0

1 + ck−1(w)
α(w)α(w)⊤dw

]
︸ ︷︷ ︸

V k−1

bk

−
1
d

∫ d/2

−d/2

ak−1(w)

1 + ck−1(w)
α(w)dw︸ ︷︷ ︸

Fk−1

+
σd2

12
C

bk
− bk−1

1t

(5)

where an auxiliary constant matrix V k−1 and an auxiliary
constant vector Fk−1 have been defined. Using (5), the cou-
pled 1-D eddy-current-LLG problem can be solved for an
arbitrary average flux density waveform b0(t). Afterward, the
energy-loss density in the tape can be obtained by integrat-
ing the rate-of-change of the field energy density over one

fundamental period T in the steady state [7]

wloss =

∫
T

hs(t)
db0(t)

dt
dt. (6)

The losses calculated with (5) and (6) have been observed
to be in good agreement with the previously presented 1-D
models [3], [4]. During the time-stepping, the conservation of
the norm of the magnetization ∥M∥ is ensured by adopting
a norm-conserving formalism based on the Cayley transform
according to [8]. This method is used when simultaneously
time-stepping the LLG equation to obtain all the components
of M.

B. Coupled 2-D/1-D Model

Following the idea of [6], the 1-D micromagnetic model (5)
can be coupled to 2-D FE analysis of a wound core (in
the xy-plane according to Fig. 1), where the tape layers
are accounted for by using a homogenization approach.
In 2-D, we assume that due to surface roughness, the core
has a macroscopic reluctivity of ν0 in the radial direction,
while the magnetization in the tangential direction obeys (5).
The spiral structure of the wound core is not taken into
account, and instead the tape layers are assumed to be
circular.

For each 1-D flux density coefficient bk
j we define a

corresponding 2-D quantity Bk
j (x, y) which is expressed

using an out-of-plane magnetic vector potential Ak
j (x, y)uz as

Bk
j (x, y) = Bk

j,x(x, y)ux + Bk
j,y(x, y)uy = ∇ × (Ak

j (x, y)uz).

Similarly, each row i of hk
s in (5) has a 2-D counterpart

Hk
s,i (x, y) which obeys the Ampere’s law ∇× Hk

s,i (x, y) = 0.
The coordinate transformation between xy- and rθ -coordinates
is expressed using a rotation matrix R⊤. The weak form
of the Ampere’s law for Hk

s,i (x, y) is discretized using
the standard 2-D Galerkin FE method and can be written
as ∫

�

D⊤

xy R
( nb−1∑

j=0

[
ν0δi j 0

0 Vi j +
σd2

12
Ci j

1t

]
R⊤ Dxyak

j

−

[
0
Fi

])
d� − f i = 0 (7)

where � denotes the core region. In (7), Dxy is a matrix
containing the curls of the FE shape functions (in the
xy-coordinates), ak

j is a vector containing the nodal values
of vector potential Ak

j , δi j is the Kronecker delta function, Vi j ,
Ci j , and Fi are elements of matrices V k−1, C and vector Fk−1

used in (5), and f i contains terms from the previous time-step.
The system of equations obtained by writing out all i rows

of (7) is observed to be linear. When all the nodal values of the
vector potentials a j are gathered to one vector a, the system
of equations can be expressed as Sa = g. The linearity of the
system results from the explicit Forward-Euler discretization
of the LLG equation.

III. RESULTS AND DISCUSSION

Coarse 2-D FE meshes containing ∼30 first-order elements
in the core region are created for 5◦ sectors of toroidal
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Fig. 2. Used mesh when a core with 17 µm thick tape is modeled. The core
region has the dimensions of a core consisting of ten layers of tape.

Fig. 3. Comparison of losses wloss simulated with the coupled 2-D/1-D
model against measurements and modeling results extracted from [3] for a
core with 17 µm thick Co71Fe4B15Si10. Additionally, the relative errors of
both models with respect to the measurements are plotted.

inductors made of 13, 17, and 20 µm thick TFA tapes
analyzed in [3]. The material and micromagnetic parameters
for the tapes are extracted from [3]. The cores are sur-
rounded by a stranded winding region, which is supplied by
50 kHz – 1 GHz sinusoidal ac voltage such that the desired
magnetic flux density amplitude is obtained in the core.
Additionally, a small air region surrounding the conductor is
included in the modeling domain. Fig. 2 shows an example
mesh when a core made of 17 µm thick tape is modeled.

The air and stranded conductor domains are modeled with
standard 2-D FE practices whereas (7) describes the core
region. Periodic boundary conditions are set along the radial
boundaries of the modeling domain and a homogeneous
Dirichlet condition on the outer radius. Since the flux density
inside the center region of the toroid is negligible, only few
layers of air elements are modeled inside the inner coil and a
homogeneous Neumann condition is set on the inner radius.

Fig. 3 shows that the losses wloss in a core wound
from 17 µm thick Co71Fe4B15Si10 obtained with the cou-
pled 2-D/1-D model and (6) correspond well to both the
measurements and modeling results extracted from [3]. The
core was simulated with an average magnetic flux density of
5 mT and damping parameter value of αG = 0.04. The relative

Fig. 4. Comparison of high-frequency losses wloss simulated with the coupled
2-D/1-D model against measurements and modeling results extracted from
[3] for Co67Fe4B14.5Si14.5 cores. The tape thickness in the examined core is
13 µm (left) and 20 µm (right).

errors plotted in Fig. 3 suggest the coupled 2-D/1-D model to
be more accurate at high frequencies. Both the models lose
accuracy at frequencies below 1 MHz as the assumption of
negligible DW effects does not hold anymore.

To further validate the coupled 2-D/1-D model, the losses
were calculated also for cores with different tape thicknesses
and magnetic flux density amplitudes. Fig. 4 demonstrates the
high-frequency losses for cores wound from 13 and 20 µm
thick Co67Fe4B14.5Si14.5 with the magnetic flux density ampli-
tude of 10 mT. Again, good agreement between the models
and measurements is observed. Further analysis, however,
suggests that the losses in the 20 µm thick tape are slightly
less accurately predicted compared to the 13 and 17 µm thick
tapes The difference can be due to uncertainty in the optimal
choice of some model parameters. For the loss calculation
in Fig. 4, the damping parameter value of αG = 0.10 was
used. This contradicts earlier works suggesting increasing αG

as the tape thickness increases [9]. With the coupled 2-D/1-D
model, it was observed that increasing αG was necessary to
better predict the losses with increased magnetic flux density
amplitude. Rigorous methods to choose the exactly correct
values do not seem to exist. Values of αG between 0.04 and
0.22 are used in [3], [4], and [9]

The unconventional time-discretization used in the coupled
2-D/1-D model motivates to examine more closely the per-
formance of the model with respect to the chosen time-step
length. The chosen time-stepping scheme follows commonly
used practices of choosing an implicit scheme for the eddy
current problem [6] and an explicit scheme for the LLG
equation [10], and thus the resulting time-discretization is
a mix of implicit and explicit methods. Due to the lack
of an analytical solution, the dependence on 1t is studied
based on the dependency of the losses on the used time-
step wloss(1t). Fig. 5 shows the losses calculated with the
coupled 2-D/1-D model with different time-steps for different
excitation frequencies. The calculation was done for the
Co71Fe4B15Si10 core with 17 µm thick tape layers under
the same conditions as in Fig. 3. The results show that a
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Fig. 5. Dependency of the calculated losses on the time-step length
wloss(1t). The losses were calculated with the coupled 2-D/1-D model for
a Co71Fe4B15Si10 core with tape thickness of 17 µm. The calculation was
carried out under excitation frequencies of 1 GHz, 500 MHz, and 100 MHz.

Fig. 6. Simulated quarter of the racetrack-shaped core consisting of
200 layers of 17 µm thick Co71Fe4B15Si10. Used mesh (left). Distribution
of ||B0|| in the core at the maximum of excitation (right).

small time-step 1t is required to obtain accurate results.
A small time-step of ∼1 ps is required to accurately model the
dynamics of the LLG equation [8], but the observed required
time-step lengths are rather small even for micromagnetic
simulations. The losses in Figs. 3 and 4 were calculated with
a time-step of 1t = 0.1 ps which is justified according to the
analysis of Fig. 5. However, it is noted that the required 1t
seems to decrease as the frequency decreases. Larger time-
steps could possibly be used if higher-order time-stepping
schemes would be utilized. The current implementation is,
however, sufficient to provide a good engineering estimate for
the losses. The computational burden of the coupled 2-D/1-D
model is high with low frequencies due to the large number
of time-steps.

As the last example, a racetrack-shaped tape-wound core
is simulated. This demonstrates the capability of the coupled
2-D/1-D model to take into account inhomogeneous flux
density distributions. The simulation is carried out for a core
consisting of 17 µm thick Co71Fe4B15Si10 with 200 layers of
tape. The simulation parameters are set to match those used
in Fig. 3, but now the frequency was fixed to 500 MHz and a
flux density of 5 mT is imposed on the core at the middle of
the coil. Fig. 6 shows the used mesh and distribution of ∥B0∥.
The calculated losses are 1.19 J/m3 whereas for the toroidal

core they were 1.39 J/m3. The lower losses are due to the
lower average ∥B0∥ in the racetrack-shaped core.

IV. CONCLUSION

A new model was developed to calculate the high-frequency
losses in tape-wound cores constructed from TFA tape mate-
rials. The losses calculated with the coupled 2-D/1-D model
were shown to be in good agreement with a reference model
and measurements from the literature under high frequencies
of excitation. Potential for more accurate high-frequency loss
prediction was also demonstrated.

To confirm the more accurate loss prediction of the coupled
2-D/1-D model, the effect of the model parameters to the
predicted losses should be further investigated e.g., with sen-
sitivity analysis. More advanced time-stepping schemes could
be used to reduce the computational burden of the model.
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