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Utilizing Helicoidal and Translational Symmetries Together in
2-D Models of Twisted Litz Wire Strand Bundles

Antero Marjamäki , Timo Tarhasaari, and Paavo Rasilo

Electrical Engineering Unit, Tampere University, 33720 Tampere, Finland

In this article, a helicoidally symmetric 2-D model of a twisted litz wire strand bundle is studied. Suitable foundations for
compatibility tools are presented to use such a model as a part of a larger system which does not follow a helicoidal symmetry.
A measure for the symmetricity of a field is proposed. This provides the foundations for the coupling of helicoidally symmetric and
translationally symmetric models with good understanding of the introduced approximation error.

Index Terms— Finite element method, helicoidal symmetry, litz wire, translational symmetry.

I. INTRODUCTION

INCREASING operating frequencies of power electronics
requires using litz wires to keep eddy-current losses of

windings at an acceptable level. Important applications for litz
wires are, e.g., wireless power transfer coils [1] and windings
in power electronic converters’ magnetic components [2] and
high-speed electrical machines [3].

Litz wires are made of thin electrically isolated strands of
conducting material. Typically, there are hundreds or thou-
sands of strands assembled in a bundled configuration. The
strand bundles and bundles of bundles are usually twisted in
a helicoidal shape to even out the proximity effects caused by
the adjacent bundles or winding turns.

Windings made of litz wire are difficult to model due to
their complex and fine-detailed multi-scale nature. However,
detailed modeling of litz wires is crucial, as existing research
suggests that choosing a suitable litz wire configuration is
more complex than picking the strand diameter and the number
of strands. It is reported in [3] that, e.g., the bundle config-
uration and shape of the strand have a significant impact on
the total losses of litz wire windings in high-speed machines.

The computational burden of simulating the losses emerging
in a device which includes litz wire windings is prohibitive
without the application of special techniques. Because of this,
the engineering field is constantly looking for new methods of
incorporating litz wires more accurately in the computational
models [4], [5], [6]. Symmetries of the modeled device, e.g.,
translational symmetry or rotational symmetry, are typically
exploited to reduce the problem domain from 3-D to 2-D.
If neither symmetry is directly applicable, the so-called multi-
slice models can be used [7]. This reduction in dimension
typically sacrifices some of the 3-D properties of the problem,
one of which is the helicoidal twisting of the strands and
bundles. To account for the twisting in an approximate manner,
one needs to use multiple slices where the locations of the
strands are varied from slice to slice.
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In this article, a 2-D model for a twisted strand bun-
dle is developed using helicoidal symmetry and dimensional
reduction [8]. This method has been used successfully in
computing self-fields of superconducting cables [9] and power
cables [10], but there was no attempt to connect the heli-
coidally symmetric model to any larger system. The novelty of
this article is in using the familiar concept of harmonic fields,
commonly used to model time-periodic signals, to capture the
twisting effects.

II. METHODS

A 2-D model of a litz wire with nstr parallel strands is
considered. The wire is assumed to be helicoidal with a pitch
length lz. The computational domain is divided into three parts:
the Cartesian domain �c, the twisting effects’ domain �tw, and
the helicoidal domain �h (see Fig. 1). In a cross section of
a litz wire, the strands are more distorted the further they are
from the twisting axis. We use circular strand cross sections for
simplicity. The 3-D geometry is extruded from the 2-D slice,
and hence the 2-D geometry is an accurate representation of
the 3-D geometry. The 3-D geometry, however, is only an
approximation of a real litz wire structure.

Our aim is to keep �tw as small as possible and free of
conducting and nonlinear materials. In this article, we do not
yet have the tools to incorporate �c into the computational
model. Hence, we consider the area � = �tw ∪ �h. Two
charts are used to cover the domain: a Cartesian chart χc which
covers the whole domain �c ∪ � and a helicoidal chart χh

which covers � (see Fig. 2). As the charts are overlapping
in �, a transition map χ = χ−1

h ◦ χc exists and we can
change the representation of fields in � between the coordinate
systems. It might be confusing that χc and χh are not explicitly
stated. What we have is certain properties, such as material
parameters, measured using χc and we want to represent them
using χh. That is why we only need to instantiate the transition
map χ which defines the relationship between χc and χh.

For brevity, let c = cos(αw) and s = sin(αw), where α =
(2π/ lz). The transition map is

χ :
⎡
⎣ u

v
w

⎤
⎦ �→

⎡
⎣ x

y
z

⎤
⎦ =

⎡
⎣ uc−vs

us + vc
w

⎤
⎦. (1)
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Fig. 1. 2-D slice of the helicoidal wire and an illustration of the 3-D geometry.

Fig. 2. Charts for Cartesian χc, and helicoidal χh coordinates and the
transition map χ from the helicoidal coordinate system (u, v, w) into the
Cartesian coordinate system (x, y, z). Figure illustrates how the Cartesian
chart (x, y, z) and helicoidal chart (u, v, w) see the z-directional coordinate
fibers (dashed lines) and the w-directional coordinate fibers (solid lines) in
the twisting effect region (gray area).

The Jacobian matrix of the transition map is

Jχ =
⎡
⎣ c −s −α(us + vc)

s c α(uc−vs)
0 0 1

⎤
⎦. (2)

The magnetostatic problem is defined by the equations

dH = J (3)

dB = 0 (4)

H = ν � B (5)

where d is the exterior derivative, H is the magnetic field
strength, B is the magnetic flux density, J is the current
density, and ν is the reluctivity tensor. By representing the
magnetostatic problem in the (u, v,w) coordinates, we can
reduce the problem into a 2-D translational symmetric prob-
lem. See [8] and [9] for a detailed description of the reduction.
The difference compared with a Cartesian translational sym-
metric problem is visible in the material law⎡

⎣ Hu

Hv

Hw

⎤
⎦ = ν0

⎡
⎣ 1 0 −αv

0 1 αu
−αv αu �

⎤
⎦

⎡
⎣ Bu

Bv

Bw

⎤
⎦ (6)

where � = 1 + α2(u2 + v2).
The translational symmetric problem is formulated by hav-

ing the out-of-plane components of the vector potential Aw

and the magnetic field Hw as unknowns. Equations (3)–(5)
then become�
∂u ∂v

��ν0

�

	
1 + α2v2 −α2uv
−α2uv 1 + α2u2


	
∂u Aw

∂v Aw


�

− 2α

�2
Hw = Jw. (7)

To solve Hw, we need one more equation. It can be obtained
by setting the average of the out-of-plane component of the

magnetic flux density to zero�
�

Bwdu ∧ dv = 0 (8)

which leads to�
�


μ0

�
Hw + α

�
(v∂v Aw + u∂u Aw)

�
du ∧ dv = 0. (9)

The system consisting of (7) and (9) is discretized with 2-D
finite-element discretization and solved in the w = 0 plane.

III. SYMMETRY OF A FIELD

We interpret symmetry of a field as immutability of the field
in the direction of the symmetry. Formally, as a measure for
symmetricity we propose the Lie derivative of a field along
the symmetry flow. For example, the Cartesian translational
symmetry flow is expressed using a vector field Z , such that
it defines the z-direction at every point in the domain. The
vector field Z is part of the xyz-coordinate frame. It acts
as a directional derivative for the coordinate 0-forms x , y,
and z such that Z(x) = Z(y) = 0, and Z(z) = 1. The Lie
derivative of any p-form η with respect to vector field Z can
be calculated using Cartan’s magic formula

LZ η = diZ η + iZ dη (10)

where iZ is the contraction along the vector field Z . The
contraction is linear with respect to its vector field argument,
and hence iZ can be expressed in the uvw-coordinates as

iZ = ∂u

∂z
iU + ∂v

∂z
iV + ∂w

∂z
iW = −αviU + αuiV + iW (11)

where U , V , and W are the vector fields along the coordinate
axes of the helicoidal uvw coordinate system. Note that
because z = w in the transition map, dz = dw holds, but
Z = W does not.

The expression for the Lie derivative of a helicoidally
symmetric H can be derived to be

LZ H = (−αv∂u Hu + αHv + αu∂v Hu)du

+ (−αHu + αu∂v Hv − αv∂u Hv)dv

+ (−αv∂u Hv + αu∂v Hu)dw. (12)

In (12), we have used the fact following from our interpretation
of symmetry that for a helicoidally symmetric H , the partial
derivatives with respect to coordinate w of its component
functions are ∂w Hu = ∂w Hv = ∂w Hw = 0.

Based on our interpretation of symmetry, the field H is
symmetric with respect to a vector field Z if

LZ H = 0. (13)

Our hypothesis is that the field H , emerging from the heli-
coidally twisted wire, can be considered z-symmetric when
LZ H becomes negligible. If the pointwise norm of the Lie
derivative ||LZ H || is small enough around a point, H can
be considered translationally symmetric, with respect to Z ,
around that point. Fig. 3 visualizes how the symmetricity of
the field varies. The norm has the highest values close to the
bundle, and the value decays with respect to the distance from
the bundle.



MARJAMÄKI et al.: UTILIZING HELICOIDAL AND TRANSLATIONAL SYMMETRIES TOGETHER IN 2-D MODELS 7400504

Fig. 3. Behavior of ||LZ H || in the xy-plane. The strand diameter is 0.1 mm,
and the pitch length lz = 35 mm.

The decay does not happen quickly enough to justify
neglecting the twisting effects right outside the bundle. In a
winding made of twisted litz wires the bundles are packed
close to each other, and thus the twisting effects penetrate
the neighboring bundles and any, possibly magnetic, nonlinear
and conducting, materials close to the windings. Therefore,
by simplifying a litz bundle to be translationally symmetric
with respect to the z-coordinate, we introduce error to the
computational model.

IV. MULTIHARMONIC FIELDS

Since bundle twisting effects on the magnetic field distribu-
tion cannot be neglected, we need a way to incorporate them to
the Cartesian translational symmetric model in �c. We would
like to express a helicoidally symmetric field with something
that is more compatible with the z-symmetry. As helicoidally
symmetric fields are periodic with respect to the z-coordinate,
they can be expressed using a Fourier series. We are interested
in how well such fields can be approximated using a finite
number of harmonics, i.e., what we call z-multiharmonic
fields.

Analogously to the multiharmonic models in the time
domain [11], we say that the field H is z-multiharmonic if
there exist complex valued 1-forms Ĥk such that

H (x, y, z) = Re

�
K�

k=−K

Ĥk(x, y)e jαkz

�
. (14)

To compute the coefficients Ĥk, the representation of the
helicoidally symmetric H , obtained in the uvw-coordinates,
must be changed. We can change the representation of H ,
inside �tw, with the help of the Jacobian as⎡

⎣ Hx

Hy

Hz

⎤
⎦ = JT

χ

⎡
⎣ Hu

Hv

Hw

⎤
⎦. (15)

The coefficients Ĥx,k , Ĥy,k , and Ĥz,k can then be calculated
as integrals over one period of length lz along the z-directional
fiber of the Cartesian coordinate system

Ĥi,k(x, y) = 1

lz

� lz/2

−lz/2
Hi(x, y, z)e− jαkzdz (16)

where i ∈ {x, y, z}. Since the solution is helicoidally symmet-
ric, the values of the field on a z-directional line are equivalent
to values of the field in a circle around the bundle on the

Fig. 4. Comparison of the Hz component (in A/m) from the 2-D model
using helicoidal symmetry (left side) and a 3-D model (right side) with three
and five strands. The Hz component is completely neglected in simplified
translational symmetric 2-D models.

Fig. 5. Comparison of the current density proxy vector fields (in A/m2) of
the 2-D and 3-D models.

xy-plane. Hence, the coefficients can be computed from the
information available in the 2-D helicoidally symmetric model.

V. RESULTS AND DISCUSSION

Wires with three and five copper strands of diameter
0.1 mm, of pitch length 1 mm, and of net current 1 A were
simulated using the 2-D symmetric model and a full 3-D
model. The parts outside the strands are considered as air.
In Fig. 4, the z-component of the magnetic field is shown.
The field is the strongest in the middle and decays rapidly
outside the bundle. This component of H is neglected entirely
in a Cartesian translationally symmetric 2-D model. In Fig. 5,
the current density in the strands is shown. It is worth to
note that as a simplification in the 2-D model, J is forced
to be parallel to the helicoidal strands. In the 3-D model
used for comparison, this restriction is not present. The 3-D
model was exited by a voltage source Vin, whereas the 2-D
model was exited by an equivalent w-directional electric field
Ein = (Vin/ lz). Both the inputs resulted in a net current of
1 A in the wire. The results between the 2-D and 3-D models
match well, which corresponds to the observations made in [9].

Next, the harmonic components of the magnetic field were
computed with nstr = 2, 3, . . . , 9 copper strands in the bundle.
The strand diameter, pitch length, and net current are 0.1 mm,
35 mm, and 1 A, respectively. Fig. 6 visualizes the harmonic
components Ĥk of H for the case nstr = 3. We observed that
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Fig. 6. Four biggest harmonic components of H by magnitude in the
xy-plane in the case of three strands. The colormap shows the norm ||Ĥk ||,
and the quiver shows the real part Re{Ĥk} of the component field.

Fig. 7. Behavior of the four biggest harmonic components of H by
magnitude, with respect to the distance from the center of the bundle in the
case of three strands.

the four most significant harmonic components, in descending
order by magnitude, are k = 0, k = nstr, k = 2nstr, and
k = 3nstr. The k = 0 component is analogous to a dc-offset
in a time-multiharmonic signal. It is the component of the
helicoidally symmetric H which already is z-symmetric. The
components k > 0 correspond to the nonsymmetric parts
which would be completely neglected in a translationally
symmetric model. From Fig. 7, it can be seen more precisely
how the different harmonic components behave with respect to
the distance from the center of the bundle. The k = 0 harmonic
decays inversely proportional to the distance, as is expected
based on the Biot–Savart law. The k > 0 components decay
more rapidly. This matches our intuition that one cannot
differentiate a twisted and an untwisted wire bundle if they
are observed at distance.

VI. CONCLUSION

The behavior of the twisting effects of a litz wire bun-
dle was studied, using a helicoidally symmetric 2-D model.

In this article, the harmonic components are computed in a
postprocessing phase, so the coupling between the Cartesian
translational symmetry and helicoidal symmetry is only unidi-
rectional. A bidirectional coupling is required to fully use the
approach. It is our hypothesis that any helicoidally symmetric
field in �h ∪ �tw can be represented as a z-multiharmonic
field in �c, and any z-symmetric field in �c ∪ �tw can be
represented as a w-multiharmonic field in �h. Then, by intro-
ducing suitable coupling conditions in �tw, we can leave the
harmonic coefficients as unknowns and solve them from a
single equation system. The tools and observations presented
in this article serve as a foundation for future research on this
topic.
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