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A rtificial intelligence (AI), a broad field that in-
volves the ongoing pursuit to render machines 
capable of performing intelligent tasks, has 
taken the academic and industrial worlds by 

storm in a breathtakingly short time span. The current 
state of the art is nothing short of astounding, with ad-
vances in recent years that would have been considered 
futuristic a mere decade ago. Yet, despite all this progress, 
most scientists would agree that we are still in the “narrow 
AI” era. While a face recognition system might perform 
superbly at recognizing those allowed to enter a secure 

facility, it would be far from trivial to ren-
der the system capable of sifting through 
X-ray images. Few, if any, would aver that a 
machine performing some complex task is 
intelligent, conscious, and self-aware.

Artificial general intelligence (AGI), or 
strong AI, is defined as “an emerging field 
aiming at the building of ‘thinking ma-
chines’; that is, general-purpose systems 
with intelligence comparable to that of 
the human mind (and perhaps ultimately 
well beyond human general intelligence).”1

There are other definitions of AGI, which emphasize qual-
ities other than analytical prowess, for example, creativity 
and emotionality; I consider herein the analytical, which 
is, arguably, the focus of most research in the area. AGI is, 
in fact, a recent term, intended to encompass the original 
idea of strong AI since mainstream AI research has turned 
toward domain-dependent and problem-specific methods 
and solutions.

Examining the history of AI reveals a division into ep-
ochs, each characterized by a research zeitgeist embracing 
a central methodology that was seen as the path toward 
what we would now refer to as AGI. We have witnessed 
epochs of symbolic reasoning, expert systems, intelligent 
agents, and probabilistic reasoning, culminating in the 
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current era of machine- and deep learn-
ing.15 Every epoch seems to have man-
ifested the belief that the then-central 
paradigm would ultimately lead to 
true, self-aware, thinking machines.

AI pioneers in the 1950s and 1960s 
firmly believed that AGI would ar-
rive on the scene within a genera-
tion. Simon18 predicted in 1965 that 
“machines will be capable, within 
twenty years, of doing any work a 
man can do.” In 1970, Minsky wrote 
that “within a generation … the prob-
lem of creating artificial intelligence 
will substantially be solved.”2 The AI 
character HAL 9000 in the iconic 1968 
movie 2001: A Space Odyssey best por-
trays what was believed at the time to 
be attainable by the beginning of the 
millennium. Some 20-odd years after 
the film’s “deadline,” estimates for the 
arrival of AGI differ widely, ranging 
from a decade to never.

An example of a classical approach 
to AGI is the Cyc project, which began 
in the 1980s, with the aim of assem-
bling an encyclopedic ontology and 
knowledge base that spanned basic 
concepts and rules about how the 
world functions. “Cyc leverages sym-
bolic reasoning rather than machine 
learning (ML). Symbolic reasoners 
were dubbed Good Old Fashioned Ar-
tificial Intelligence (GOFAI) by John 
Haugeland.”5 Interestingly, Cyc is still 
alive and kicking, having survived the 
vicissitudes of a field in continual flux.

Contemporary approaches to AGI 
focus, unsurprisingly, on the currently 
reigning paradigm of deep learning. 
Clune3 recently proposed an AI-gen-
erating algorithm based on three pil-
lars: 1) metalearning architectures, 2) 
metalearning the learning algorithms 
themselves, and 3) generating effec-
tive learning environments. This ap-
proach shares my thinking on the pos-
sibilities of computational learning 
and the importance of environments. 
Another recent approach is that of 

brain-inspired AI,9 which uses princi-
ples of brain science (for example, cog-
nition, inference, memory, and intelli-
gence) to build AI algorithms. Herein, 
the idea is to more closely mimic nat-
urally occurring systems and struc-
tures. I consider the natural inspira-
tion as paramount and will circle back 
to it in the following.

Recent research into data-driven 
and knowledge-aware AI has noted the 
increasing difficulty in explaining AI 
models.10 In many domains, explana-
tions may not only be necessary but in-
deed legally required (for instance, in 
medicine), and the subfield of explain-
able AI aims to provide said explana-
tions. This line of research mostly deals 
with deep learning-based techniques, 
wherein data-driven methods afford 
explanations stemming from task-
related data, and knowledge-aware 
methods use extraneous knowledge 
to furnish explanations.10 Indeed, the 
ability to explain one’s reasoning is a 
hallmark of human intelligence.

I think of these current, heavily 
learning-based concepts, as “pressure 
cooker” approaches: apply enough 
“pressure”—that is, more (perhaps 
much more) of the current technology 
of choice—and AGI will ultimately 
emerge. The pressure cooker did not de-
liver the promised AGI in previous eras 
of AI. As to whether it will deliver this 
time around is a question still up in the 
air. I wish to propose a different path 
that may be worth exploring in parallel.

In 1952, Miller and Urey set up an 
experimental investigation into the 
molecular origins of life by conduct-
ing a chemical experiment that sim-
ulated the conditions thought at the 
time to be present on the early Earth 
and by testing the chemical origin of 
life under those conditions.11 They in-
troduced molecules thought to exist 
in early Earth’s primitive atmosphere 
into a closed chamber and simulated 
lightning discharges by supplying the 

system with electrical current. After a 
few days, they observed that the flask 
contained organic compounds, some 
of which were amino acids that serve 
as essential building blocks of protein 
(interestingly, decades later, scien-
tists examining sealed vials preserved 
from the original experiments found 
well more than 20 different amino ac-
ids, far more than originally reported).

The Miller–Urey experiment’s im-
portance, to my mind, is not so much 
in its results (which have come under 
some debate) but in the fundamen-
tal question the work posed—and in 
the rigorous experimental method 
the authors proposed by way of an-
swering said question. They wished 
to explore the origins of life and set 
out to define the environment they 
believed to be appropriate for such an 
experimental study. In the same vein, 
I propose to pursue AGI from its ori-
gins and aim to define the necessary 
desiderata by turning toward nature, 
hitherto the only “designer” of AGI en-
tities. Granted, huge strides in biology 
notwithstanding, our understanding 
of nature remains limited. Yet, I still 
think that our current grasp of biolog-
ical AGI can guide us in the building of 
AGI machines, particularly by focus-
ing on the following five elements21: 1) 
an underlying physical universe that 
supports 2) evolution, 3) learning, 4) a 
complex environment, and 5) replica-
tion. It now behooves us to reify these 
elements, and I wish to offer one such 
possible reification (others can likely 
be proposed).

For the first element—a “universe” 
wherein all computation takes place—I 
propose cellular automata (CA). CA are 
dynamical systems in which space and 
time are discrete.4 CA consist of an ar-
ray of cells (usually of dimensionality 
1 or 2), each of which can be in one of 
a finite number of possible states, up-
dated through discrete time steps ac-
cording to a local, identical interaction 
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rule. CA exhibit three notable features, 
namely, massive parallelism, locality 
of cellular interactions, and simplicity 
of basic components (cells). The (local) 
operation of a cell is dictated by a so-
called rule table, which defines the 
cell’s next state given its current state 
and the states of its neighbors. With to-
day’s advances in hardware, CA can be 
made to perform extremely fast for 2D 
and possibly even 3D grids. Figure 1(a)  

provides an example of CA perform-
ing an image correction task.19 Inter-
estingly, in the 1960s, Fredkin6 spec-
ulated that our universe might, at its 
deepest level, operate like CA.

For the evolutionary element, the 
natural candidate is the field of evolu-
tionary algorithms (EAs), wherein core 
concepts from evolutionary biology—
inheritance, random variation, and se-
lection—are harnessed in algorithms 

that are applied to complex computa-
tional problems.21 EAs, whose origins 
can be traced to the 1950s and 1960s, 
have come into their own during the 
past two decades. EA techniques have 
been shown to solve numerous dif-
ficult problems from widely diverse 
domains. As argued by Kannappan  
et a l.,8 who rev iewed resea rch on 
evolving human-competitive machine 
intelligence, “Surpassing humans in 

FIGURE 1. (a) 2D CA computing the boundary of a rectangle through discrete time steps (shown beneath each panel), with all cells 
working in parallel.19 The output is attained by having the rectangle filled out at the final time step. (b) A canonical evolutionary algo-
rithm (EA). (c) A programmable self-replicating loop in 2D CA. A numerical value denotes a cellular state. “Sheath” states are denoted 
by dots; P denotes a state belonging to the set of program states; D denotes a state belonging to the set of data states; and A is a state 
that indicates the position of the program. The loop is shown in the midst of self-replication, after which the program will run on the data.13
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the ability to solve complex problems 
is a grand challenge, with potentially 
far-reaching, transformative implicat-
ions.” A canonical EA is shown in 
Fig u re 1(b): essent i a l ly, a n i n it i a l 
population of candidate solutions is 
generated (usually at random), after 
which the algorithm cycles through a 
fitness–selection–variation loop until 
an acceptable solution is found. Note 
that Figure 1(b) does not delineate a 
single algorithm but rather a meta-al-
gorithm, representing the basic proto-
type of a broad family of algorithms, 
referred to as evolutionary.

The learning element would strai-
ghtforwardly consist of machine- and 
deep learning algorithms, which today 
constitute the focal paradigm of AI. 
As for a complex environment, sev-
eral candidates might come to mind. I 
propose games, which have been sug-
gested as AGI testbeds16 because they 
require many human-level skills for 
achieving excellence: quick reactions, 
visual understanding, motor coordina-
tion, path planning, decision making, 

tradeoff evaluation, predicting future 
states, physics comprehension, handl-
ing incomplete information, and un-
derstanding narrative. Games possess 
essential qualities that arguably ren-
der them complex enough for the AGI 
challenge, exhibiting key properties 
of complex environments by being 
changeable, diverse, unpredictable,  
surprising,14 nondeterministic, fully  
or partially observable, and rewarding 
(regarding the latter, Silver et al.17 re-
cently argued that “reward is enough”; 
that is, “intelligence … can be under-
stood as subserving the maximisation 
of reward”).

Finally, regarding the replication el-
ement, we may look into the decades of 
research into artificial self-replication. 
In the late 1940s, eminent mathemati-
cian and physicist John von Neumann 
became interested in the question  
of whether a machine can self-repli-
cate, that is, produce copies of itself. 
The study of artificial self-replicating 
structures and machines has been 
taking place since then.12,20 Much of 

this work is motivated by the desire 
to understand the fundamental infor-
mation-processing principles and al-
gorithms involved in self-replication, 
independent of their physical realiza-
tion. An understanding of these prin-
ciples could prove useful in a number 
of ways. It may advance our knowl-
edge of biological mechanisms of rep-
lication by clarifying the conditions 
that any self-replicating system must 
satisfy and by providing alternative 
explanations for empirically observed 
phenomena. The fabrication of artifi-
cial self-replicating machines can also 
have diverse applications ranging from 
nanotechnology to space exploration. 
Much of this research has been studied 
within the context of CA [Figure 1(c)].20

By computational analogy to the 
Miller–Urey setup—and, in contrast, 
to a pressure cooker—I propose a cru-
cible that would “melt” the preceding 
five elements by using “heat.” This ap-
proach, which I term artificial general 
intelligence crucible (argil), represents a 
different path to AGI. Figure 2 depicts 

Regression

Clustering

Clustering

EA

EA

Classification

Classification
Dimensionality

Reduction

Dimensionality

Reduction

Regression

(a) (b)

FIGURE 2. The argil approach. (a) The EA and ML mechanisms pertinent to all vertical layers. (b) The physical layer of CA “universe” 
(bottom), CA-based structures (center), and games environment (top).
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the idea for the overall argil setup. The 
following two main challenges pres-
ent themselves:

1. Melting: For AGI to emerge, the 
five elements must come to 
work as a cohesive one.

2. Attaining heat: To wit, there 
must be the computational 
wherewithal—theory, algo-
rithms, and hardware—neces-
sary to unite the elements.

Perhaps the argil approach will serve 
as clay from which to mold AGI.

Games can be divided into many 
groups and subgroups, a partial list 
of which includes board games, card 
games, dice games, video games, mobile 
games, and puzzles (groups are not nec-
essarily mutually exclusive). We might 
first aim for an AGI prototype that per-
forms well on several games that belong 
to a single group. Two cornerstones of 
AGI are general-purpose abilities and 
humanlike intelligence. General-pur-
pose abilities will be had by complexi-
f ying the environment through the 
addition of different kinds of games. To 
adjudicate humanlike intelligence, we  
might consider a Turing Test-like22 sce-
nario adapted to game environments,  
for example, as proposed by Hingston.7 
An AGI able to evolve, grow, learn, and 
perform on a par with humans on mul-
tiple games belonging to multiple cat-
egories would surely find many valu-
able uses outside the domain of games.

It is told of Albert Einstein that he 
once gave an exam to his graduating 
class—the exact same exam he had 
given the previous year. His teaching 
assistant, thinking this was the result 
of the professor’s absentmindedness, 
alerted Einstein: “Excuse me, sir …” he 
began timidly.

“Yes?” said Einstein.
“Sir, it’s about the test you just 

handed out …”
Einstein waited patiently.
“I’m not sure you realize it, but this is 

the exact same test you gave out last year.”
Einstein paused for a moment and 

then replied with equanimity, “Yes, 

it is the same test. But the answers 
have changed.”

Perhaps we can come up with differ-
ent answers to decades-old questions. 
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