
C O M P U T E R 0 0 1 8 - 9 1 6 2 / 2 2 © 2 0 2 2 I E E E P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y J U N E 2 0 2 2 73

Engineers (in particular, software engineers)
have been motivated to find a way to confront
the intrinsic and increasing complexity of their
endeavors. In this sense, models have been used

for centuries to abstract different aspects of a system
under construction. As pointed out in Gogolla and Se-
lic6 and Ludewig,8 models can describe certain aspects
of a system and fundamentally act as understanding
and communication means (descriptive models); they
can be used to analyze and predict system properties
(predictive models), and they can be employed as an
implementation specification (prescriptive models). A

good summary of different defini-
tions can be found in Muller et al.10

In this context, model-driven
engineering (MDE)9 emerged as
a discipline within software engi-
neering, which considers models
first-class citizens throughout the
software process and aims to de-
rive running applications directly
and automatically from models (in
general, by using transformations).
MDE evolved rapidly during the

2000s, and it is considered key to success in many do-
mains, such as railway systems, automotive applications,
business process engineering, and embedded systems.1

It simplifies software construction since developers can
abstract from most technological decisions (for example,
interface devices) and implementation aspects and focus
on domain details. It has been shown that MDE helps im-
prove productivity9 and code quality.2 However, the state
of practice suggests that models are still far from being
considered essential software artifacts.

Abstraction practice is strictly required for managing
complexity and developing correct software.18 Notably,
putting abstraction in practice in software engineering
terms means modeling. Since modeling is an essential
skill for software developers, the development, manipu-
lation, management, and comprehension of models is a

Teaching Modeling
in the Time of Agile
Development
Oscar Pastor, Polytechnic University of Valencia

Alfonso Pierantonio, University of L’Aquila

Gustavo Rossi, La Plata National University and National Scientific and
Technical Research Council

We discuss modeling in the context of agile software

development and reflect on how we, as educators,

can use modeling to help improve agile practices.

Digital Object Identifier 10.1109/MC.2022.3144929
Date of current version: 3 June 2022

EDITOR IRENA BOJANOVA
NIST; irena.bojanova@computer.orgEDUCATION

74	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

EDUCATION

relevant learning objective.7 There-
fore, educators have addressed this
problem for years. In this article, we
elaborate on this issue in the context
of agile software development. After
some brief comments on the state of
practice in modeling and the way we
teach about models, we reflect on how
we, as educators, can help improve
current agile practices.

STATE OF PRACTICE
The history of software engineer-
ing shows how abstraction is the
fundamental development notion: from
machine code and assemblers to pro-
gramming language support, the level
of abstraction is always evolving from
a lower one to a higher one. Models
should be the natural next step. As
happens in other engineering disci-
plines, more abstraction should lead
to better software production meth-
ods, making software engineering
an accurate process. Surprisingly,
this is not the case. Software engi-
neering is too frequently perceived
as closer to a (technological) handi-
craft-centered activity, strongly de-
pendent on skilled programmers, not
expert modelers.

As early as 1971, Teichroew and Say-
ani16 stated that “the size, importance
and cost of systems building provide
an opportunity for the investigation
of ways to improve the (software pro-
duction) process.” More than 50 years
later, programming environments
have constantly progressed, but cur-
rent practice for design, program-
ming, and testing activities still relies
on substantial manual effort. Models
should facilitate the automation of the
systems building process. Why is that
goal not being achieved? Is it unreach-
able? Is it worthless, assuming that
conventional (not model-driven) sof t-
ware production is enough? If we
talk about improving abstraction to
better conceptualize and accurately
represent reality in a software appli-
cation, shouldn’t a sound use of mod-
eling be independent of what soft-
ware development process is selected?

These are the questions we discuss in
this work.

Many authors have surveyed the
extent to which modeling and MDE
are used in industry (see, for exam-
ple, Gorschek et al.,12 Heldal et al.,13
and Hutchinson et al.14). Specifically,
Heldal et al.13 analyze when descrip-
tive and prescriptive models are used.
While there is certainly a niche for
MDE (in Heldal et al.,13 the survey cov-
ers huge companies working on em-
bedded systems), the mainstream use
of agile approaches (which emerged
as a counterpart of monolithic ones)
did not come with a similar prevalence
of the use of models (even descriptive
ones). This mismatch is strongly re-
flected in developers, as discussed in

Gorschek et al.12 The reasons might
have originated in corporate practices,
such as discouraging the use of mod-
els because of an extreme interpreta-
tion of one of agile’s principles: “Value
working software over comprehensive
documentation.” This interpretation
has also hampered the introduction of
user-centered development approaches
in the agile universe.15 However, as
discussed in the following, it might
also be a product of problems in the ed-
ucation of developers.

MODELING AND MDE
EDUCATION
We can get a good idea of why, what,
and how we teach about modeling by
reading the proceedings of educator
symposiums held with the Associa-
tion for Computing Machinery/IEEE
International Conference on Model-
Driven Engineering Languages and
Systems (MODELS) (see, for example,
the MODELS 2021 Educators Sympo-
sium webpage11). Specifically, from

Kuzniarz and Börstler7 we learn that
we must include modeling in the cur-
riculum “to encourage and stimulate
thinking at high abstraction levels …
to enable and ensure successful devel-
opment of software” and “to be com-
petitive in the labor market.” Ciccozzi
et al.5 survey the way we teach model-
ing and MDE. Besides interesting find-
ings about course content and tools,
negative aspects were explored. From
our point of view, two of them are re-
markable: 1) the lack of maturity of
existing tools and 2) students having
difficulty understanding abstraction
and conceiving modeling as quite dif-
ferent from programming. While we,
as educators, have almost no control
over the former, we should improve our

practices to deal with the latter, espe-
cially considering how it might impact
industry practices.

APPROACHES AND IDEAS
Agile development intends to improve
the software production process, which
is necessarily linked to getting better
abstraction capabilities. Models pro-
vide the right answer. Beyond using
models for communication and to fa-
cilitate understanding, they should be
the key artifact that guides software
development, providing as many au-
tomation facilities as possible to con-
nect abstract descriptions with their
associated software representations.
As suggested in Bucchiarone et al.,4
we believe that the agile development
wave provides an opportunity to re-
visit the model-driven main goal,
facilitating the design of a software
production process where enterprise
models and software applications
are conceptually aligned through the
construction of the right models and

Engineers (in particular, software engineers)
have been motivated to find a way to confront
the intrinsic and increasing complexity of their

endeavors.

	 J U N E 2 0 2 2 � 75

transformations. Given that models
are essential to conceptualize compo-
nents that must be represented in a
software system, modeling correctly
and building the right ones should be-
come the most important software en-
gineering activity, which is naturally
related to teaching.

Modeling properly implies train-
ing software engineers in abstracting
and conceptualizing correctly. Build-
ing the right models requires making
software engineers become aware of
the languages that apply to differ-
ent abstraction levels [for example,
Business Process Modeling Notation
for business process models, i* for
goal-oriented requirements models,
Unified Modeling Language (UML)

class diagrams for system structure
models, and so on]. One of the main in-
hibitors of modeling in practice is the
lack of a well-established “teaching
modeling” body of knowledge, a gap
that is only partly filled by the work in
Burgueño et al.3 Modeling is about ab-
stracting, and how to teach and assess
how good a student is at it is not sim-
ple. It means evaluating how well he
or she conceptualizes, which requires
skills and abilities to grasp insights
and knowledge blurred in the intri-
cacy of the application domain.

This modeling dimension should
be on top of programming as an es-
sential topic in software engineering
teaching. Some problems that need to
be precisely solved to achieve this ob-
jective include the following:

1.	 Foundations: We need these
to have a universal, widely
accepted and used definition
of what a model is, providing a
precise definition that is onto-
logically well grounded.

2.	 Better tooling: This is import-
ant to reinforce efficient, ad-
equate, f lexible, usable, and
reliable (in other words, ma-
ture) tool support, facilitating
the use of models in software
production and making it
feasible to use conceptual
programming-based tools,
where models go beyond a
merely communicational
dimension, becoming a trust-
worthy software artifact (as
discussed in Embley et al.17).

3.	 Revised syllabi: These would
enable us to assess and rethink
how we teach abstraction and
modeling. Most syllabi treat
these subjects in a perhaps

unrelated way. Consequently,
the assimilation of abstrac-
tion (and its practice) is not
consistently pursued and,
to a certain degree, depends
on students’ attitudes and
curiosity. One possibility is
to use early courses on object
orientation to introduce mod-
eling instead of (only) pro-
gramming. Also, as suggested
in Ciccozzi et al.,5 we should
try to use project-oriented
and hands-on learning. The
availability of tools that per-
mit round-tripping between
code and models [for example,
Visual Paradigm (https://
www.visual-paradigm.com)]
would make students perceive
models as a functional part of
their projects alongside the
code and not a way to procras-
tinate what they are mainly
interested in: coding, coding,
and coding! As mentioned, the
lack of educational modeling

tools with reduced acciden-
tal complexity should also
be addressed since tooling is
another critical issue.

Emphasizing the relevance of mod-
eling in software engineering teaching
must consider that modeling abilities
among students should play a crucial
role. Correctly abstracting a real sys-
tem that is represented in a computer
requires advanced conceptualization
skills, which is not easy to convey and
evaluate. Some students seem readier
to do it well than others, but in any case,
a software engineering student should
not get a degree without possessing a
solid modeling ability. Such difficulties
can be mitigated by replanning the way
abstraction is taught.

It is not just a student issue. Mod-
eling is hard to teach. Good practices
should be widely accepted and em-
ployed by educators. Assessing the
syntax and semantic quality of models
should become a task supported by a
sound ontological commitment. Even
delimiting the set of rules that a (sim-
ple) UML class diagram should follow
(as a kind of correction guide) remains
an open question (for example, simple
aspects, such as whether classes with-
out attributes and associations with
the same names should be allowed, do
not have precise, definitive answers).
This represents a significant issue, as
there is broad diversity among model-
ing languages.

From a more “tactical” point of view,
we can profit from the popularity of
low-code platforms to demonstrate how
models and model-driven development
(usually “hidden” behind visual editors,
as indicated in Bucchiarone at al.1) im-
prove the productivity, quality, and
cost effectiveness of software devel-
opment. Finally, we must prove how
informal modeling (sketches, wire-
frames, and so on) can be easily accom-
modated in the agile cycle to improve
communication, understanding, and
agreement, as suggested in Bucchiar-
one at al.1 Whether this will be a suc-
cessful strategy is not easy to say.

Beyond using models for communication and to
facilitate understanding, they should be the key

artifact that guides software development.

76	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

EDUCATION

What is worth remarking is that what
makes a programmer a good software
engineer is the ability to use abstrac-
tion fruitfully—and the state of the art
in software abstraction is MDE.

REFERENCES
1.	 A. Bucchiarone et al., “What is the

future of modeling,” IEEE Softw.,
vol. 38, no. 2, pp. 119–127, 2021, doi:
10.1109/MS.2020.3041522.

2.	 J. I. Panach et al., “Evaluating
model-driven development claims
with respect to quality: A family of
experiments,” IEEE Trans. Softw. Eng.,
vol. 47, no. 1, pp. 130–145, 2021, doi:
10.1109/TSE.2018.2884706.

3.	 L. Burgueño et al., “Contents
for a model-based software en-
gineering body of knowledge,”
Softw. Syst. Model., vol. 18, no. 6,
pp. 3193–3205, 2019, doi: 10.1007/
s10270-019-00746-9.

4.	 A. Bucchiarone, J. Cabot, R. F. Paige,
and A. Pierantonio, “Grand chal-
lenges in model-driven engineer-
ing: An analysis of the state of the
research,” Softw. Syst. Model., vol.
19, no. 1, pp. 5–13, 2020, doi: 10.1007/
s10270-019-00773-6.

5.	 F. Ciccozzi et al., “How do we teach
modeling and model-driven engineer-
ing? A survey,” in Proc. 21st ACM/IEEE
Int. Conf. Model Driven Eng. Lang. Syst.,
Companion, 2018, pp. 122–129, doi:
10.1145/3270112.3270129.

6.	 M. Gogolla and B. Selic, “On teach-
ing descriptive and prescriptive
modeling,” in Proc. 23rd ACM/IEEE
Int. Conf. Model Driven Eng. Lang.
Syst., Companion, 2020, pp. 1–9, doi:
10.1145/3417990.3418744.

7.	 L. Kuzniarz and J. Börstler, “Teaching
modeling: An initial classification
of related issues,” in Proc. Electron.

Commun. EASST 7th Educator’s Symp.,
2011, pp. 1–10.

8.	 J. Ludewig, “Models in software engi-
neering: An introduction,” SoSyM,
vol. 2, no. 1, pp. 5–14, 2003, doi:
10.1007/s10270-003-0020-3.

9.	 M. Brambilla, J. Cabot, and M.
Wimmer, “Model-driven software
engineering in practice,” in Synthesis
Lectures on Software Engineering, 1st
ed., L. Baresi, Ed. San Rafael, CA,
USA: Morgan & Claypool, 2012.

10.	 P.-A. Muller, F. Fondement, B. Bau-
dry, and B. Combemale, “Modeling
modeling modeling,” Softw. Syst.
Model., vol. 11, no. 3, pp. 347–359,
2012, doi: 10.1007/s10270-010-0172-x.

11.	 “Educators symposium,” in
Proc. ACM/IEEE Int. Conf. Model
Driven Eng. Lang. Syst. Com-
panion (MODELS-C), Fukuoka,
Japan, Oct. 10–15, 2021. [On-
line]. Available: https://conf.
researchr.org/track/models-2021/
models-2021-educators-symposium

12.	 T. Gorschek, E. Tempero, and L. An-
gelis, “On the use of software design
models in software development
practice: An empirical investigation,”
J. Syst. Softw., vol. 95, p. 193, Sep. 2014,
doi: 10.1016/j.jss.2014.03.082.

13.	 R. Heldal, P. Pelliccione, U. Eliasson,
J. Lantz, J. Derehag, and J. Whittle,
“Descriptive vs prescriptive models
in industry,” in Proc. ACM/IEEE
19th Int. Conf. Model Driven Eng.
Lang. Syst., (MoDELS), 2016,
pp. 216–226, doi: 10.1145/2976767.
2976808.

14.	 J. Hutchinson, J. Whittle, and M.
Rouncefield, “Model-driven engi-
neering practices in industry: Social,
organizational and managerial
factors that lead to success or fail-
ure,” Sci. Comput. Program., vol. 89,

pp. 144–161, Sep. 2014, doi: 10.1016/j.
scico.2013.03.017.

15.	 G. Cockton, M. Lárusdóttir, P.
Gregory, and Å. Cajander, “Integrat-
ing user-centered design in agile
development,” in Human-Computer
Interaction Series. Cham: Spring-
er-Verlag, 2016, pp. 1–46.

16.	 D. Teichroew and H. Sayani, “Auto-
mation of system building,” Datama-
tion, vol. 17, no. 16, pp. 25–30, 1971.

17.	 D. W. Embley, S. Liddle, and O.
Pastor, “Conceptual-model program-
ming: A manifesto,” in Handbook of
Conceptual Modeling, D. Embley and
B. Thalheim, Eds. Berlin: Spring-
er-Verlag, 2011, pp. 3–16.

18.	 E. W. Dijkstra, “Chapter EWD227:
Stepwise program construction,” in
Selected Writings on Computing: A Per-
sonal Perspective. New York, NY, USA:
Springer-Verlag, 1982, pp. 1–14.

OSCAR PASTOR is the director of
internationalization and transfer-
ence at the Valencian Research
Institute for Artificial Intelligence,
Universitat Politecnica de Valencia,
Valencia, 46009, Spain. Contact
him at opastor@dsic.upv.es.

ALFONSO PIERANTONIO is a
full professor at the University
of L’Aquila, L’Aquila, 67100, Italy.
Contact him at alfonso.pierantonio@
univaq.it.

GUSTAVO ROSSI is a professor at
La Plata National University, La Plata,
Argentina, and a researcher at the
National Scientific and Technical
Research Council, Buenos Aires,
1900, Argentina. Contact him at
gustavo@lifia.info.unlp.edu.ar.

