
COVER FEATURE ARTIFICIAL INTELLIGENCE AND SOFTWARE ENGINEERING:
ARE WE READY?

30 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 2 2 © 2 0 2 2 1 E E E

Hironori Washizaki, Waseda University, NII, SYSTEM INFORMATION, and eXmotion

Foutse Khomh, Polytechnique Montréal

Yann-Gaël Guéhéneuc, Concordia University

Hironori Takeuchi, Musashi University

Naotake Natori, Aisin Corporation

Takuo Doi, Lifematics Inc.

Satoshi Okuda, Japan Advanced Institute of Science and Technology

In this study, a multivocal literature review identified 15

software-engineering design patterns for machine learning

applications. Findings suggest that there are opportunities

to increase the patterns’ adoption in practice by raising

awareness of such patterns within the community.

The popularity of machine learning (ML) techniques
has in creased in recent years. ML is used in many
domains, including cybersecurity, the Internet
of Things, and autonomous cars. ML techniques

rely on mathematics and software engineering. The former

Software-Engineering
Design Patterns for
Machine Learning
Applications

Digital Object Identifier 10.1109/MC.2021.3137227
Date of current version: 11 March 2022

 M A R C H 2 0 2 2 31

generates algorithms, develops capa-
bilities to learn from input data, and
produces representative models. The
latter is employed for implementation
and performance.

Many works have investigated the
mathematics and computer science on
which the ML techniques are built, but
few have examined implementation.
This situation raises concerns such
as the complexity of ML techniques
and the quality of the available imple-
mentations, which software defects
may negatively impact. These concerns
should be alleviated if developers
could demonstrate the software qual-
ity of their implementations. Conse-
quently, researchers and practitioners
study best practices to design ML
application systems and software to
address issues with software complex-
ity and the quality of ML techniques.
Such practices are often formalized as
design patterns. These patterns encap-
sulate reusable solutions to commonly
occurring problems within ML appli-
cation design. There are surveys and
case studies on practices and practi-
tioners’ insights on ML systems devel-
opment in general.1–3 However, none
of them focus on the use of concrete
ML design patterns.

Herein, we report the results of a
multivocal literature review of design
patterns for ML. Based on the results,
we report on developers’ perceptions
to validate these patterns in practice.
Preliminary literature review results
and preliminary study on practitioners’
perceptions were presented at confer-
ences.4,5 In this article, we examine
all patterns and conduct a large-scale
in-depth study on developers’ percep-
tions. We also describe one major ML
design pattern to show how the ML
design patterns are documented and
used for resolving design problems.

ML DESIGN PATTERNS IN
THE LITERATURE
We define “software-engineering pat-
terns for ML application systems and
software design” (hereafter, “ML design
patterns”) as any patterns that include
design structure directly or address
design concerns of ML software systems
indirectly. We performed a multivocal
literature review of both academic and
gray literature to collect them.

For the academic literature, we chose
Engineering Village, which is a search
platform that provides access to 12 engi-
neering document databases, such as
Ei Compendex and Inspec. Engineer-
ing Village can search all recognized
scholarly engineering journals, confer-
ences, and workshop proceedings with
a unique search query. On 14 August
2019, we designed and used the follow-
ing query specifying “pattern” as well as
keywords related to patterns to search
for documents addressing ML design
practice. Based on the broad definition
of ML design patterns in this article,
we included relevant keywords such as
“implementation pattern” and “archi-
tecture pattern” since they may handle
design concerns indirectly.

((((system) OR (software)) AND

(machine learning) AND

((implementation pattern) OR

(pattern) OR (architecture

pattern) OR (design pattern)

OR (antipattern) OR (recipe)

OR (workflow) OR (practice) OR

(issue) OR (template))) WN ALL)

+ ((cpx OR ins OR kna) WN DB)

AND (({ca} OR {ja} OR {ip} OR

{ch}) WN DT).

For the gray literature, we used a
Google search performed on 16 August
2019. The query was the same as that
for the academic literature:

(sy stem OR software) “machine

learning” (pattern OR

“implementation pattern” OR

“architecture pattern” OR

“design pattern” OR antipattern

OR recipe OR workflow OR

practice OR issue OR template)

and:

“ma chine implementation pattern”

OR “architecture pattern” OR

“design pattern” OR antipattern

OR recipe OR workflow OR

practice OR issue OR template.

We retrieved 32 scholarly documents
and 48 gray literature documents. Two
of the authors examined whether each
document should be included in
our review using the following cri-
teria: 1. Documents written in English
addressing concrete software-engi-
neering patterns or practices to design
ML application systems and software
should be included. 2. Documents
focusing on design of ML techniques
and algorithms should be excluded.
This process identified 19 scholarly
documents and 19 gray documents.
All the data are available.6 Among
these documents, there was no paper
published at Pattern Languages of Pro-
grams (LPoP) series that are conferences
on patterns and pattern languages,
although PLoP series proceedings
published by ACM have been included
in the search using the Engineer-
ing Village.

Figure 1 shows the trend in the num-
ber of documents related to the design
of ML application systems in the past
decade. ML application systems have
recently become popular due to the
promotion of artificial intelligence
(AI). Since 2008, academic and gray
documents have discussed good prac-
tices of ML application design.

ARTIFICIAL INTELLIGENCE AND SOFTWARE ENGINEERING: ARE WE READY?

32 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

OVERVIEW AND
CLASSIFICATION OF ML
DESIGN PATTERNS
Two of the authors each read half of the
documents. Each author extracted pat-
terns independently. Then one of the
authors checked each pattern by read-
ing the entire document to determine
whether the pattern pertained to soft-
ware-engineering design practices for
ML systems. The extraction process iden-
tified 69 patterns. However, the check-
ing process reduced this to 33 patterns
related to the architecture and design
of ML systems. Finally, three industrial
ML developers reviewed the 33 candi-
dates from the viewpoint of practical
usefulness. During the review process,
any disagreement has been resolved by
discussion. They identified only 15 ML
design patterns (Table 1). The remain-
ing 18 candidates were not identified as
ML design patterns due to their unclear
descriptions or shortage of information
supporting their usefulness.

Not all of the identified ML design
patterns are well-documented in a stan-
dard pattern format, which includes
a clear problem statement and the

corresponding solution descriptions.
Thus, we described most of these ML
design patterns in a standard pattern
format so that practitioners can easily
(re)use them in their contexts.7–9

Through our literature review and
reading of the documents, we noted
various characteristics that could help
classify ML design patterns. Figure 2
shows an abstract structural overview
of ML applications consisting of mod-
els, data, and infrastructures. Based
on the overview, we classified these ML
design patterns into three categories
according to their scopes (Table 2):

 › P1–P6 are ML system topology
patterns that define the entire
system architecture.

 › P7–P10 are ML system pro-
gramming patterns that define
the design of a particular
component.

 › P11–P15 are ML model operation
patterns that focus on
ML models.

Topology patterns can be regarded
as architecture patterns that handle

unique architectural rules specific to
ML systems, while programming pat-
terns can be seen as design patterns
that are relatively less specific to ML.
Nevertheless, the programming pat-
terns still address some design char-
acteristics of ML software in addition
to the general design characteristics.
Model operation patterns are all spe-
cific to ML models.

Furthermore, any design pattern
should address one or more quality
attributes that are associated with
design problems. For ML design pat-
terns, we assumed that the following
product quality attributes defined in
ISO/IEC 25010:2011 as well as model
and prediction quality attributes can
be addressed:

 › System and software product
quality attributes: Functional
suitability, performance effi-
ciency (denoted as “E” in the
table), compatibility (C), usabil-
ity, reliability (R), security (S),
maintainability (M), and,
portability (P).

 › ML model and prediction quality
attributes: Model robustness
(Mr), model explainability (Me),
prediction accuracy (Pa), and,
prediction fairness.

One of the authors analyzed the
quality attributes by reading prob-
lems and solutions descriptions of
the 15 ML design patterns and identi-
fying related specific descriptions or
keywords (for example, “If … has data
dependency, it is difficult to localize
the erroneous part” implies main-
tainability). Then, four of the authors
reviewed and confirmed the result.
Many ML design patterns address
maintainability (Table 2). Most oper-
ation patterns address model and

2008
0

1

2

3

4

5

6

7

8

9

10

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

GrayScholarly

FIGURE 1. The number of documents per year.

 M A R C H 2 0 2 2 33

TABLE 1. Extracted ML design patterns.

ID Pattern Name Problem (Excerpt) Solution (Excerpt)

P1 Different Workloads in
Different Computing
Environments8,10

It is necessary to separate and quickly change
the ML data workload and stabilize the training
workload to maximize efficiency.

Physically isolate different workloads to separate machines.
Then optimize the machine configurations and the
network usage.

P2 Distinguish Business
Logic from ML
Models7,11

The overall business logic should be isolated as
much as possible from the ML models so that they
can be changed/overridden as necessary without
impacting the rest of the business logic.

Separate the business logic and the inference engine, loosely
coupling the business logic and ML-specific dataflows.

P3 ML Gateway Routing
Architecture11

When a client uses multiple services, it can be
difficult to set up and manage individual endpoints
for each service.

Install a gateway before a set of applications, services, or
deployments. Use application layer routing requests to the
appropriate instance.

P4 Microservice
Architecture for ML7,12

ML applications may be confined to some “known”
ML frameworks, missing opportunities for more
appropriate frameworks.

Define consistent input and output data. Provide well-defined
services to use for ML frameworks.

P5 Lambda Architecture
for ML9,13

Real-time data processing requires scalability,
fault tolerance, predictability, and other qualities.
It must be extensible.

The batch layer keeps producing views at every set batch
interval while the speed layer creates the relevant real-time/
speed views. The serving layer orchestrates the query by
querying both the batch and speed layer, and then
merges them.

P6 Kappa Architecture
for ML9,14

It is necessary to deal with huge amount of data
with less code resource.

Support both real-time data processing and continuous
reprocessing with a single stream processing engine.

P7 Data Lake for ML7,13 We cannot foresee the kind of analyses that will be
performed on the data and which frameworks will
be used to perform such analyses.

Store data, which range from structured to unstructured, as
“raw” as possible into a data storage.

P8 Separation of Concerns
and Modularization of
ML Components2

ML applications must accommodate regular and
frequent changes to their ML components.

Decouple at different levels of complexity from the simplest to
the most complex.

P9 Encapsulate ML Models
within Rule-base
Safeguards8,15

ML models are known to be unstable and
vulnerable to adversarial attacks, noise in data,
and data drift overtime.

Encapsulate functionality provided by ML models and
appropriately deal with the inherent uncertainty of their
outcomes in the containing system using deterministic and
verifiable rules.

P10 Discard PoC Code16 The code created for PoC often includes code
that sacrifices maintainability for efficient
implementation of trial and error, and code that is
ultimately no longer needed.

Discard the code created for the PoC and rebuild maintainable
code based on the findings from the PoC.

P11 Parameter-Server
Abstraction16

For distributed learning, widely accepted
abstractions are lacking.

Distribute both data and workloads over worker nodes, while
the server nodes maintain globally shared parameters, which
are represented as vectors and matrices.

P12 Data Flows Up, Model
Flows Down17

Standard ML approaches require centralizing the
training data on one machine or in a datacenter.

Enable mobile devices to collaboratively learn a shared
prediction model in the cloud while keeping all of the training
data on the device as federated learning.

P13 Secure Aggregation17 The system needs to communicate and aggregate
model updates in a secure, efficient, scalable, and
fault-tolerant way.

Encrypt data from each mobile device in collaborative
learning and calculate totals and averages without individual
examination.

P14 Deployable Canary
Model18

A surrogate ML that approximates the behavior
of the best ML model must be built to provide
explainability.

Run the explainable inference pipeline in parallel with the
primary inference pipeline to monitor prediction differences.

P15 ML Versioning1,7,10,16 ML models and their different versions may change
the behavior of the overall ML applications.

Record the ML model structure, training data set, training
system and analytical code to ensure a reproducible training
process and an inference process.

PoC: Proof of Concept.

ARTIFICIAL INTELLIGENCE AND SOFTWARE ENGINEERING: ARE WE READY?

34 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

prediction quality attributes. Since no
ML design pattern addresses usability
and prediction fairness, these attri-
butes are excluded from the table.

ENGINEERS’ PERCEPTIONS
ML techniques are concrete solutions
to practical problems. Hence, ML devel-
opers may have already built a body of
knowledge on good design practices
of ML development. To clarify how ML
developers perceive existing ML design
patterns, we surveyed 600+ software
and ML developers who participated in
an online seminar on ML design patterns
in March 2021. During the seminar, we
explained the concept of software pat-
terns and introduced the 15 ML design
patterns. Afterward, developers answered
the following questions about reuse prac-
tices and patterns anonymously:

 › SQ1. How do you solve and share
design challenges of ML applica-
tion systems?

 › SQ2. (For each pattern) Have you
ever referred to this ML design
pattern?

Of the 600+ participants, 118 answered
our questionnaire, which corresponds
to a response rate of approximately
20%. Table 3 summarizes the survey
result of SQ1. Of the 118 respondents,
37 (that is, 31%) organized design pat-
terns and past design results. Then they
reused them to resolve ML design prob-
lems. These are the most mature prac-
tices in terms of design solution reuse.
Thirty-one (26%) reused externally
documented patterns but were not
organizing patterns or past results by
themselves. These are the second most
mature practices in terms of reuse.
Thirty-seven (31%) resolved problems
in an ad hoc way without reusing pat-
terns. These are the worst practices.

Training Data

Trained Model Prediction

Training
Infrastructure

Input Data

Programming
Patterns

Serving
Infrastructure

Model
Operation
Patterns

Topology Patterns

FIGURE 2. The ML system overview and categories of ML design patterns.

TABLE 2. Classification of ML design patterns.

ID E C R S M P Mr Me Pa

Category: Topology

P1 E M

P2 M

P3 C M

P4 C M P

P5 E R

P6 E R

Category: Programming

P7 E C M

P8 M

P9 R S

P10 M

Category: Model operation

P11 E R

P12 E Mr Pa

P13 S Mr Pa

P14 R Me

P15 M Mr Pa

 M A R C H 2 0 2 2 35

Table 3 also shows numbers of ML
design patterns used and the usage
ratios, which are calculated by #Pat-
terns_used / (#Respondents×15). For
example, 37 respondents organized
patterns, and they answered that in
total they had used 64 patterns. They had
the opportunity to use 37 × 15 patterns in
total, so their pattern usage ratio is 11.5%
(=64/(37 × 15)). As respondents became
more organized in their approach to
design problems by reuse, the pattern
usage ratio increased, as shown in the
table, from 6.3% to 10.8% and even to
11.5%. Based on the result, it is expected
that development teams and organiza-
tions will reuse more ML design patterns
to resolve design problems effectively
and efficiently as they become more con-
sistent in their reuse approach.

Figure 3 summarizes the result of
SQ2. The most used patterns were P15
(used by 24% of the respondents), P4
(21%), and P10 (15%). In terms of the
use rate calculated by #Used / #Knew,
P2 was the most frequently used pat-
tern with a use rate = 15/28 = 0.54. On
the other hand, no respondents actu-
ally used P12 or P13, although some
respondents knew of these patterns.
There is a threat to validity that some
participants might answer “yes” for
patterns that they generally know and
have used the essential part of the pat-
terns’ problems and solutions, while
some might answer the same but have
less understanding (or even worse,
misunderstanding) of the patterns.
Nevertheless, the survey result should
help grasp the general tendency of
acceptance of ML design patterns.

In terms of quality attributes, our
previous survey targeting 300+ devel-
opers showed that maintainability
is most considered among nonfunc-
tional attributes during their ML sys-
tem developments.5 And the most used

patterns P15, P4, and P10 commonly
address maintainability, as shown in
Table 2. Their frequent use may sug-
gest that they consider them effective
for improving maintainability since

maintainability was reported to be their
primary concern.

The developers were unfamiliar
with most ML design patterns, although
there were several major patterns used

TABLE 3. Survey result of SQ1 (N = 118).

Design Solution and Reuse
Practice # Respondents # Patterns Used Pattern Usage Ratio

Organizing patterns and past
design results and reusing
them

37 64 11.5%

Reusing externally
documented patterns

31 50 10.8%

Resolving problems in an ad
hoc way without patterns

37 35 6.3%

Other (incl. those with little
experience in ML system
development)

13 3 1.5%

Knew It Did Not Know It

28 25 18 17 15 11 8 7 1

28 29

20
33

13 25

11 18
15

28
24 30

12

50 50
68 50

74 75 75 58

10 10 3 3 0 0

13 15

82 70
72

63 79 68

81

12 14 12 18 16 19 18 25
17 23 28 24

14 20 25

0

20

40

60

80

100

120

P15 P4 P10 P7 P2 P8 P3 P5 P9 P1 P6 P11 P14 P12 P13

Used It Never Used It Consider Using It Not Consider

FIGURE 3. The survey result of SQ2 of seminar participants (N = 118): Knew and Used It,
Knew but Never Used It, Did Not Know It but Will Consider Using It, and Did Not Know It and
Will Not Consider Using It.

ARTIFICIAL INTELLIGENCE AND SOFTWARE ENGINEERING: ARE WE READY?

36 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

by 20+% of the respondents. For all
pat ter ns, most respondents i nd i-
cated that they would consider using
them in future designs. These find-
ings suggest that the identified ML
design patterns are expected to help
resolve particular problems, and there
a re oppor t un it ies to ut i l ize ex ist-
ing ML design patterns and realize
more consistent reuse by increasing
awareness of such patterns within
the ML community.

EXAMPLE OF A MAJOR
ML DESIGN PATTERN
Here, we describe one major ML design
pattern and its usage. We selected
“Distinguish Business Logic from ML
Model” (P2) since it was one of the most
popular patterns among our survey
participants. Moreover, it provides
a basis for other patterns (such as P7
“Data Lake for ML”) by clearly decom-
posing the ML system into multiple
layers and components. For brevity,
participants, collaborations, imple-
mentation, and known uses are omit-
ted here.

Pattern name
Distinguish Business Logic from ML
Model7 (original name “Multi-Layer
Architectural Pattern”11)

Intent
Isolate failures between business
logic and ML learning layer to help
developers debug ML application sys-
tems easily.

Problem
ML application systems are complex
because their ML components must
be (re)trained regularly and have an
intrinsic nondeterministic behav-
ior. Similar to other systems, the
business requirements for these sys-
tems and the ML algorithms change
over time.

Solution
Define clear APIs between the tradi-
tional and ML components. Place the
business and ML components with
different responsibilities into three
layers (Figure 4). Divide data f lows
into three.

Applicability
It is applicable to any ML application
system with outputs that depend on
ML techniques.

Consequences
Decoupling “traditional” business and
ML components allows the ML compo-
nents to be monitored and adjusted to
meet users’ requirements and chang-
ing inputs.

Usage example
Figure 5 presents an implementation
example of the pattern in a Slack-based
Chatbot system. By referring to the pat-
tern, the necessary elements as well as
their relationships are easily specified
while having clear separation between
the Chatbot service (as the business logic)
and the underlying ML components.

ML application systems are quite
popular due to the recent pro-
motion of AI. To bridge the gap

between traditional software systems
and ML application systems with respect
to design, software-engineering design
patterns for ML applications were ana-
lyzed via a multivocal literature review
and a survey of developers. From the
32 scholarly documents and 48 gray docu-
ments identified in the literature review,
15 ML design patterns were identified. A
survey of developers revealed that there
are some major ML design patterns.

Although the literature review was
conducted in 2019, we believe this is the
first step to explore ML design patterns
and build on them to propose refined
patterns. We plan to revise the identi-
fied patterns by sharing them to obtain
reviews from the public. Since we sur-
veyed the practitioners’ perceptions on
the patterns two to five years after their
original publications, our survey should

Data LayerLogic LayerPresentation Layer

User
Interface Database

Data
Collection

Data Lake

Business
Logic

Data
Processing

Inference
Engine

R
ea

l W
or

ld

B
us

in
es

s
Lo

gi
c

S
pe

ci
fic

M

L
S

pe
ci

fic

Architectural Layers
Deployed as ML System

Business Logic Data Flow
ML Runtime Data Flow
ML Development Data Flow

Legend

FIGURE 4. The structure of “Distinguish Business Logic from ML Model” pattern.11

 M A R C H 2 0 2 2 37

reveal the meaningful perceptions. And
practitioners may not be aware of recent
patterns,19,20 which have emerged after
our literature review. As our future work,
we will continue our survey by extend-
ing the scope of ML design patterns to
include these recent patterns and ones
published at some of the PLoP series pro-
ceedings, which were not included in the
original search.

We also plan to create a map of
t he relationships among these ML
design patterns and other related pat-
terns. Furthermore, we will investi-
gate applications of these ML design
patterns in actual ML systems and
software design.

ACKNOWLEDGMENTS
The authors would like to thank Hiromu
Uchida for his help. This work was
supported by JST-Mirai JPMJMI20B8
Engineerable AI (eAI), JSPS JPJSBP
120209936, KAKENHI 21KK0179, and
enPiT-Pro Smart SE.

REFERENCES
1. S. Amershi et al., “Software engi-

neering for machine learning: A
case study,” in Proc. 41st Int. Conf.
Softw. Eng., Softw. Eng. Pract. (ICSE-
SEIP), 2019, pp. 291–300, doi: 10.1109/
ICSE-SEIP.2019.00042.

2. M. S. Rahman, E. Rivera, F. Khomh,
Y.-G. Guéhéneuc, and B. Lehnert,

“Machine learning software engi-
neering in practice: An industrial
case study,” 2019, arXiv:1906.07154.

3. A. Serban, K. van der Blom,
H. Hoos, and J. Visser, “Adop-
tion and effects of software
engineering best practices in
machine learning,” in Proc. Int.
Symp. Empirical Softw. Eng. Meas.
(ESEM), ACM, 2020, pp. 1–12, doi:
10.1145/3382494.3410681.

4. H. Washizaki, H. Uchida, F. Khomh,
and Y. Guéhéneuc, “Studying
software engineering patterns
for designing machine learning
systems,” in Proc. 10th IEEE Int.
Workshop Empirical Softw. Eng.

Data LayerLogic LayerPresentation Layer

User Interface
(Chatbot UI)

Web App
Front-End Slack

Business Logic
(Chatbot Logic)

Web App
Back-End Slack

Data Collection
(Data Set)

Data Sets
Nagoya Univ.
Conversation

Corpus

Data Processing
(Text to Vector Transformer)

NN Model
Pre- and Post-

Processing
TensorFlow

Inference Engine
(Language Model)

NN Model TensorFlow

Database
(Previous Q&A Store)

DB Server (None)

Data Lake
(Vectorized Corpus)

Word
Vector

TensorFlow
(Text)

Users

Data
Source

Input

Output

Data Sets

ML
Input

ML Output

Architectural Elements
(Example Role as Chatbot)

What How

Business Logic Data Flow

ML Development Data Flow

ML Runtime Data Flow

Input Data

Output Data

Input Data

Data Sets
Word
Vector

Legend

FIGURE 5. An example of Chatbot system architecture by applying “Distinguish Business Logic from ML Model.”

ARTIFICIAL INTELLIGENCE AND SOFTWARE ENGINEERING: ARE WE READY?

38 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

Pract. (IWESEP), 2019, pp. 49–54, doi:
10.1109/IWESEP49350.2019.00017.

5. H. Washizaki, H. Takeuchi, F.
Khomh, N. Natori, T. Doi, and S.
Okuda, “Practitioners’ insights on
machine-learning software engi-
neering design patterns: A prelim-
inary study,” in Proc. IEEE Int. Conf.
Softw. Maintenance Evol. (ICSME),
2020, pp. 797–799, doi: 10.1109/
ICSME46990.2020.00095.

6. 2021, doi: 10.5281/zenodo.5168886.
7. H. Washizaki, F. Khomh, and Y.-G.

Guéhéneuc, “Software engineering

patterns for machine learning appli-
cations (SEP4MLA),” in Proc. 9th Asian
Conf. Pattern Lang. Programs (Asian-
PLoP), Hillside, Inc., 2020, pp. 1–10.

8. H. Washizaki et al., “Software engi-
neering patterns for machine learning
applications (SEP4MLA): Part 2,” in
Proc. 27th Conf. Pattern Lang. Programs
(PLoP), Hillside, Inc., 2020, pp. 1–10.

9. J. Runpakprakun and H. Washizaki,
“Software engineering patterns for
machine learning applications (SEP-
4MLA) - Part 3,” in Proc. Conf. Pattern
Lang. Prog., 2021, pp. 1–9.

10. C.-J. Wu et al., “Machine learning at
Facebook: Understanding inference
at the edge,” in Proc. 25th Int. Symp.
High Performance Comput. Archit.
(HPCA), 2019, pp. 331–344, doi:
10.1109/HPCA.2019.00048.

11. H. Yokoyama, “Machine learning
system architectural pattern for
improving operational stability,”
in Proc. Int. Conf. Softw. Archit. Com-
panion (ICSA-C), 2019, pp. 267–274,
doi: 10.1109/ICSA-C.2019.00055.

12. D. Smith, “Exploring development pat-
terns in data science,” THEORYLANE,

ABOUT THE AUTHORS

HIRONORI WASHIZAKI is a professor in the Department
of Computer Science and Engineering at Waseda Univer-
sity, Tokyo, 1698555, Japan, and a visiting professor at the
National Institute of Informatics, Tokyo, 1018430, Japan.
He also works in industry as outside director of SYSTEM
INFORMATION and eXmotion. His research interests
include software design, reuse, quality assurance, machine
learning engineering, project and business management,
and ICT education. Washizaki received a Doctoral degree
in information and computer science from Waseda Univer-
sity. Washizaki is IEEE Computer Society Vice President for
the Professional & Educational Activities Board. Contact
him at washizaki@waseda.jp.

FOUTSE KHOMH is a full professor at Polytechnique Mon-
tréal, Quebec, H3T 1J4, Canada. His research interests include
software maintenance and evolution, machine learning sys-
tems engineering, cloud engineering, and dependable and
trustworthy machine learning/artificial intelligence. Khomh
received a Ph.D. in software engineering from the University
of Montreal. Contact him at foutse.khomh@polymtl.ca.

YANN-GAËL GUÉHÉNEUC is a full professor in the Depart-
ment of Computer Science and Software Engineering at Con-
cordia University, Mon tréal, Quebec, H3H 2L9, Canada. His
research interests include evaluating and enhancing the quality
of the software systems, focusing on the Internet of Things and
researching new theories, methods, and tools to understand,
evaluate, and improve the development, release, testing, and

security of such systems. Guéhéneuc received a Ph.D. in soft-
ware engineering from the University of Nantes. Contact him at
yann-gael.gueheneuc@concordia.ca.

HIRONORI TAKEUCHI is a professor at Musashi University,
Tokyo, 1768534, Japan. His research interests include enter-
prise modeling, requirements engineering, and text analytics
in software engineering. Takeuchi received a Ph.D. in engi-
neering from Keio University. Contact him at h.takeuchi@
cc.musashi.ac.jp.

NAOTAKE NATORI is with Aisin Corporation, Kariya, 1010021,
Japan. His research interests include artificial intelligence
and machine learning. Natori received a master's degree in
engineering from Waseda University. Contact him at naotake.
natori@aisin.co.jp.

TAKUO DOI is with Lifematics Inc., Tokyo, 1010051, Japan.
His research interests include machine learning and agile
development. Doi received a Ph.D. in engineering from the
University of Electro-Communications. Contact him at doi@
lifematics.co.jp.

SATOSHI OKUDA is with the Japan Advanced Institute of Sci-
ence and Technology, Ishikawa, 1086019, Japan. His research
interests include machine learning systems and development
process. Okuda received a master's degree in engineering from
the Japan Advanced Institute of Science and Technology. Con-
tact him at okuda@jaist.ac.jp.

 M A R C H 2 0 2 2 39

2017. https://www.theorylane.com/2017/
10/20/some-development-patterns
-in-data-science/

13. P. Menon, “Demystifying data lake
architecture,” TechTarget, 2017.
https://rpradeepmenon.medium.
com/demystifying-data-lake
-architecture-30cf4ac8aa07

14. V. Tyagi, “From insights to value –
Building a modern logical data lake
to drive user adoption and business
value,” 2017. [Online]. Available:
https://www.slideshare.net/Hadoop
_Summit/from-insights-to-value
-building-a-modern-logical-data
-lake-to-drive-user-adoption-and
-business-value

15. M. Kläs and A. M. Vollmer,
“Uncertainty in machine learning
applications: A practice-driven
classification of uncertainty,”
in Proc. Comput. Safety, Rel.,
Security (SAFECOMP) Work-
shops, 2018, pp. 431–438, doi:
10.1007/978-3-319-99229-7_36.

16. D. Sculley et al., “Hidden tech-
nical debt in machine learning
systems,” in Proc. 28th Int. Conf.
Neural Inf. Process. Syst., 2015, pp.
2503–2511.

17. B. McMahan and D. Ramage, “Feder-
ated learning: Collaborative machine
learning without centralized
training data,” Google AI Blog, 2017.

https://ai.googleblog.com/2017/04/
federated-learning-collaborative.
html

18. S. Ghanta et al., “Interpretability
and reproducability in produc-
tion machine learning appli-
cations,” in Proc. 17th IEEE Int.
Conf. Mach. Learn. Appl. (ICMLA),
2018, pp. 658–664, doi: 10.1109/
ICMLA.2018.00105.

19. V. Lakshmanan et al., Machine Learn-
ing Design Patterns. Sebastopol, CA,
USA: O’Reilly, 2020.

20. Y. Shibui, “Machine learning
system design patterns,” GitHub,
2020. https://github.com/mercari/
ml-system-design-pattern

Digital Object Identifier 10.1109/MC.2022.3150823

Write for the IEEE Computer
Society’s authoritative
computing publications
and conferences.

IEEE COMPUTER SOCIETY

Call for Papers

GET PUBLISHED
www.computer.org/cfp

