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In this study, a multivocal literature review identified 15 

software-engineering design patterns for machine learning 

applications. Findings suggest that there are opportunities 

to increase the patterns’ adoption in practice by raising 

awareness of such patterns within the community.

The popularity of machine learning (ML) techniques 
has in  creased in recent years. ML is used in many 
domains, including cybersecurity, the Internet 
of Things, and autonomous cars. ML techniques 

rely on mathematics and software engineering. The former 
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generates algorithms, develops capa-
bilities to learn from input data, and 
produces representative models. The 
latter is employed for implementation 
and performance.

Many works have investigated the 
mathematics and computer science on 
which the ML techniques are built, but 
few have examined implementation. 
This situation raises concerns such 
as the complexity of ML techniques 
and the quality of the available imple-
mentations, which software defects 
may negatively impact. These concerns 
should be alleviated if developers 
could demonstrate the software qual-
ity of their implementations. Conse-
quently, researchers and practitioners 
study best practices to design ML 
application systems and software to 
address issues with software complex-
ity and the quality of ML techniques. 
Such practices are often formalized as 
design patterns. These patterns encap-
sulate reusable solutions to commonly 
occurring problems within ML appli-
cation design. There are surveys and 
case studies on practices and practi-
tioners’ insights on ML systems devel-
opment in general.1–3 However, none 
of them focus on the use of concrete 
ML design patterns.

Herein, we report the results of a 
multivocal literature review of design 
patterns for ML. Based on the results, 
we report on developers’ perceptions 
to validate these patterns in practice. 
Preliminary literature review results 
and preliminary study on practitioners’ 
perceptions were presented at confer-
ences.4,5 In this article, we examine 
all patterns and conduct a large-scale 
in-depth study on developers’ percep-
tions. We also describe one major ML 
design pattern to show how the ML 
design patterns are documented and 
used for resolving design problems.

ML DESIGN PATTERNS IN 
THE LITERATURE
We define “software-engineering pat-
terns for ML application systems and 
software design” (hereafter, “ML design 
patterns”) as any patterns that include 
design structure directly or address 
design concerns of ML software systems 
indirectly. We performed a multivocal 
literature review of both academic and 
gray literature to collect them.

For the academic literature, we chose 
Engineering Village, which is a search 
platform that provides access to 12 engi-
neering document databases, such as 
Ei Compendex and Inspec. Engineer-
ing Village can search all recognized 
scholarly engineering journals, confer-
ences, and workshop proceedings with 
a unique search query. On 14 August 
2019, we designed and used the follow-
ing query specifying “pattern” as well as 
keywords related to patterns to search 
for documents addressing ML design 
practice. Based on the broad definition 
of ML design patterns in this article, 
we included relevant keywords such as 
“implementation pattern” and “archi-
tecture pattern” since they may handle 
design concerns indirectly.

(((( system) OR (software)) AND 

(machine learning) AND 

((implementation pattern) OR 

(pattern) OR (architecture 

pattern) OR (design pattern) 

OR (antipattern) OR (recipe) 

OR (workflow) OR (practice) OR 

(issue) OR (template))) WN ALL) 

+ ((cpx OR ins OR kna) WN DB) 

AND (({ca} OR {ja} OR {ip} OR 

{ch}) WN DT).

For the gray literature, we used a 
Google search performed on 16 August 
2019. The query was the same as that 
for the academic literature:

(sy stem OR software) “machine 

learning” (pattern OR 

“implementation pattern” OR 

“architecture pattern” OR 

“design pattern” OR antipattern 

OR recipe OR workflow OR 

practice OR issue OR template)

and:

“ma chine implementation pattern” 

OR “architecture pattern” OR 

“design pattern” OR antipattern 

OR recipe OR workflow OR 

practice OR issue OR template.

We retrieved 32 scholarly documents 
and 48 gray literature documents. Two 
of the authors examined whether each 
document should be included in 
our review using the following cri-
teria: 1. Documents written in English 
addressing concrete software-engi-
neering patterns or practices to design 
ML application systems and software 
should be included. 2. Documents 
focusing on design of ML techniques 
and algorithms should be excluded. 
This process identified 19 scholarly 
documents and 19 gray documents. 
All the data are available.6 Among 
these documents, there was no paper 
published at Pattern Languages of Pro-
grams (LPoP) series that are conferences 
on patterns and pattern languages, 
although PLoP series proceedings 
published by ACM have been included 
in the search using the Engineer-
ing Village.

Figure 1 shows the trend in the num-
ber of documents related to the design 
of ML application systems in the past 
decade. ML application systems have 
recently become popular due to the 
promotion of artificial intelligence 
(AI). Since 2008, academic and gray 
documents have discussed good prac-
tices of ML application design.
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OVERVIEW AND 
CLASSIFICATION OF ML 
DESIGN PATTERNS
Two of the authors each read half of the 
documents. Each author extracted pat-
terns independently. Then one of the 
authors checked each pattern by read-
ing the entire document to determine 
whether the pattern pertained to soft-
ware-engineering design practices for 
ML systems. The extraction process iden-
tified 69 patterns. However, the check-
ing process reduced this to 33 patterns 
related to the architecture and design 
of ML systems. Finally, three industrial 
ML developers reviewed the 33 candi-
dates from the viewpoint of practical 
usefulness. During the review process, 
any disagreement has been resolved by 
discussion. They identified only 15 ML 
design patterns (Table 1). The remain-
ing 18 candidates were not identified as 
ML design patterns due to their unclear 
descriptions or shortage of information 
supporting their usefulness.

Not all of the identified ML design 
patterns are well-documented in a stan-
dard pattern format, which includes 
a clear problem statement and the 

corresponding solution descriptions. 
Thus, we described most of these ML 
design patterns in a standard pattern 
format so that practitioners can easily 
(re)use them in their contexts.7–9

Through our literature review and 
reading of the documents, we noted 
various characteristics that could help 
classify ML design patterns. Figure 2 
shows an abstract structural overview 
of ML applications consisting of mod-
els, data, and infrastructures. Based 
on the overview, we classified these ML 
design patterns into three categories 
according to their scopes (Table 2):

 › P1–P6 are ML system topology 
patterns that define the entire 
system architecture.

 › P7–P10 are ML system pro-
gramming patterns that define 
the design of a particular 
component.

 › P11–P15 are ML model operation 
patterns that focus on  
ML models.

Topology patterns can be regarded 
as architecture patterns that handle 

unique architectural rules specific to 
ML systems, while programming pat-
terns can be seen as design patterns 
that are relatively less specific to ML. 
Nevertheless, the programming pat-
terns still address some design char-
acteristics of ML software in addition 
to the general design characteristics. 
Model operation patterns are all spe-
cific to ML models.

Furthermore, any design pattern 
should address one or more quality 
attributes that are associated with 
design problems. For ML design pat-
terns, we assumed that the following 
product quality attributes defined in 
ISO/IEC 25010:2011 as well as model 
and prediction quality attributes can 
be addressed:

 › System and software product 
quality attributes: Functional 
suitability, performance effi-
ciency (denoted as “E” in the 
table), compatibility (C), usabil-
ity, reliability (R), security (S), 
maintainability (M), and,  
portability (P).

 › ML model and prediction quality 
attributes: Model robustness 
(Mr), model explainability (Me), 
prediction accuracy (Pa), and, 
prediction fairness.

One of the authors analyzed the 
quality attributes by reading prob-
lems and solutions descriptions of 
the 15 ML design patterns and identi-
fying related specific descriptions or 
keywords (for example, “If … has data 
dependency, it is difficult to localize 
the erroneous part” implies main-
tainability). Then, four of the authors 
reviewed and confirmed the result. 
Many ML design patterns address 
maintainability (Table 2). Most oper-
ation patterns address model and 
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TABLE 1. Extracted ML design patterns.

ID Pattern Name Problem (Excerpt) Solution (Excerpt) 

P1 Different Workloads in 
Different Computing 
Environments8,10

It is necessary to separate and quickly change 
the ML data workload and stabilize the training 
workload to maximize efficiency. 

Physically isolate different workloads to separate machines. 
Then optimize the machine configurations and the  
network usage. 

P2 Distinguish Business 
Logic from ML 
Models7,11

The overall business logic should be isolated as 
much as possible from the ML models so that they 
can be changed/overridden as necessary without 
impacting the rest of the business logic. 

Separate the business logic and the inference engine, loosely 
coupling the business logic and ML-specific dataflows. 

P3 ML Gateway Routing 
Architecture11

When a client uses multiple services, it can be 
difficult to set up and manage individual endpoints 
for each service. 

Install a gateway before a set of applications, services, or 
deployments. Use application layer routing requests to the 
appropriate instance. 

P4 Microservice 
Architecture for ML7,12

ML applications may be confined to some “known” 
ML frameworks, missing opportunities for more 
appropriate frameworks. 

Define consistent input and output data. Provide well-defined 
services to use for ML frameworks. 

P5 Lambda Architecture 
for ML9,13

Real-time data processing requires scalability, 
fault tolerance, predictability, and other qualities. 
It must be extensible. 

The batch layer keeps producing views at every set batch 
interval while the speed layer creates the relevant real-time/
speed views. The serving layer orchestrates the query by 
querying both the batch and speed layer, and then  
merges them. 

P6 Kappa Architecture  
for ML9,14

It is necessary to deal with huge amount of data 
with less code resource. 

Support both real-time data processing and continuous 
reprocessing with a single stream processing engine. 

P7 Data Lake for ML7,13 We cannot foresee the kind of analyses that will be 
performed on the data and which frameworks will 
be used to perform such analyses. 

Store data, which range from structured to unstructured, as 
“raw” as possible into a data storage. 

P8 Separation of Concerns 
and Modularization of 
ML Components2

ML applications must accommodate regular and 
frequent changes to their ML components. 

Decouple at different levels of complexity from the simplest to 
the most complex. 

P9 Encapsulate ML Models 
within Rule-base 
Safeguards8,15

ML models are known to be unstable and 
vulnerable to adversarial attacks, noise in data, 
and data drift overtime. 

Encapsulate functionality provided by ML models and 
appropriately deal with the inherent uncertainty of their 
outcomes in the containing system using deterministic and 
verifiable rules. 

P10 Discard PoC Code16 The code created for PoC often includes code 
that sacrifices maintainability for efficient 
implementation of trial and error, and code that is 
ultimately no longer needed. 

Discard the code created for the PoC and rebuild maintainable 
code based on the findings from the PoC. 

P11 Parameter-Server 
Abstraction16

For distributed learning, widely accepted 
abstractions are lacking. 

Distribute both data and workloads over worker nodes, while 
the server nodes maintain globally shared parameters, which 
are represented as vectors and matrices. 

P12 Data Flows Up, Model 
Flows Down17

Standard ML approaches require centralizing the 
training data on one machine or in a datacenter. 

Enable mobile devices to collaboratively learn a shared 
prediction model in the cloud while keeping all of the training 
data on the device as federated learning. 

P13 Secure Aggregation17 The system needs to communicate and aggregate 
model updates in a secure, efficient, scalable, and 
fault-tolerant way. 

Encrypt data from each mobile device in collaborative 
learning and calculate totals and averages without individual 
examination. 

P14 Deployable Canary 
Model18

A surrogate ML that approximates the behavior 
of the best ML model must be built to provide 
explainability. 

Run the explainable inference pipeline in parallel with the 
primary inference pipeline to monitor prediction differences. 

P15 ML Versioning1,7,10,16 ML models and their different versions may change 
the behavior of the overall ML applications. 

Record the ML model structure, training data set, training 
system and analytical code to ensure a reproducible training 
process and an inference process. 

PoC: Proof of Concept.
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prediction quality attributes. Since no 
ML design pattern addresses usability 
and prediction fairness, these attri-
butes are excluded from the table.

ENGINEERS’ PERCEPTIONS
ML techniques are concrete solutions 
to practical problems. Hence, ML devel-
opers may have already built a body of 
knowledge on good design practices 
of ML development. To clarify how ML 
developers perceive existing ML design 
patterns, we surveyed 600+ software 
and ML developers who participated in 
an online seminar on ML design patterns 
in March 2021. During the seminar, we 
explained the concept of software pat-
terns and introduced the 15 ML design  
patterns. Afterward, developers answered 
the following questions about reuse prac-
tices and patterns anonymously:

 › SQ1. How do you solve and share 
design challenges of ML applica-
tion systems?

 › SQ2. (For each pattern) Have you 
ever referred to this ML design 
pattern?

Of the 600+ participants, 118 answered 
our questionnaire, which corresponds 
to a response rate of approximately 
20%. Table 3 summarizes the survey 
result of SQ1. Of the 118 respondents, 
37 (that is, 31%) organized design pat-
terns and past design results. Then they 
reused them to resolve ML design prob-
lems. These are the most mature prac-
tices in terms of design solution reuse. 
Thirty-one (26%) reused externally 
documented patterns but were not 
organizing patterns or past results by 
themselves. These are the second most 
mature practices in terms of reuse. 
Thirty-seven (31%) resolved problems 
in an ad hoc way without reusing pat-
terns. These are the worst practices.

Training Data

Trained Model Prediction

Training
Infrastructure 

Input Data

Programming
Patterns

Serving
Infrastructure 

Model
Operation
Patterns 

Topology Patterns

FIGURE 2. The ML system overview and categories of ML design patterns.

TABLE 2. Classification of ML design patterns.

ID E C R S M P Mr Me Pa

Category: Topology 

P1 E M

P2 M

P3 C M

P4 C M P

P5 E R

P6 E R

Category: Programming 

P7 E C M

P8 M

P9 R S

P10 M

Category: Model operation 

P11 E R

P12 E Mr Pa

P13 S Mr Pa

P14 R Me

P15 M Mr Pa
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Table 3 also shows numbers of ML 
design patterns used and the usage 
ratios, which are calculated by #Pat-
terns_used / (#Respondents×15). For 
example, 37 respondents organized 
patterns, and they answered that in 
total they had used 64 patterns. They had 
the opportunity to use 37 × 15 patterns in 
total, so their pattern usage ratio is 11.5% 
(=64/(37 × 15)). As respondents became 
more organized in their approach to 
design problems by reuse, the pattern 
usage ratio increased, as shown in the 
table, from 6.3% to 10.8% and even to 
11.5%. Based on the result, it is expected 
that development teams and organiza-
tions will reuse more ML design patterns 
to resolve design problems effectively 
and efficiently as they become more con-
sistent in their reuse approach.

Figure 3 summarizes the result of 
SQ2. The most used patterns were P15 
(used by 24% of the respondents), P4 
(21%), and P10 (15%). In terms of the 
use rate calculated by #Used / #Knew, 
P2 was the most frequently used pat-
tern with a use rate = 15/28 = 0.54. On 
the other hand, no respondents actu-
ally used P12 or P13, although some 
respondents knew of these patterns. 
There is a threat to validity that some 
participants might answer “yes” for 
patterns that they generally know and 
have used the essential part of the pat-
terns’ problems and solutions, while 
some might answer the same but have 
less understanding (or even worse, 
misunderstanding) of the patterns. 
Nevertheless, the survey result should 
help grasp the general tendency of 
acceptance of ML design patterns.

In terms of quality attributes, our 
previous survey targeting 300+ devel-
opers showed that maintainability 
is most considered among nonfunc-
tional attributes during their ML sys-
tem developments.5 And the most used 

patterns P15, P4, and P10 commonly 
address maintainability, as shown in 
Table 2. Their frequent use may sug-
gest that they consider them effective 
for improving maintainability since 

maintainability was reported to be their 
primary concern.

The developers were unfamiliar 
with most ML design patterns, although 
there were several major patterns used 

TABLE 3. Survey result of SQ1 (N = 118).

Design Solution and Reuse 
Practice # Respondents # Patterns Used Pattern Usage Ratio

Organizing patterns and past 
design results and reusing 
them 

37 64 11.5%

Reusing externally 
documented patterns 

31 50 10.8%

Resolving problems in an ad 
hoc way without patterns 

37 35 6.3%

Other (incl. those with little 
experience in ML system 
development)

13 3 1.5%

Knew It Did Not Know It

28 25 18 17 15 11 8 7 1
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FIGURE 3. The survey result of SQ2 of seminar participants (N = 118): Knew and Used It, 
Knew but Never Used It, Did Not Know It but Will Consider Using It, and Did Not Know It and 
Will Not Consider Using It.
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by 20+% of the respondents. For all 
pat ter ns, most respondents i nd i-
cated that they would consider using 
them in future designs. These find-
ings suggest that the identified ML 
design patterns are expected to help 
resolve particular problems, and there 
a re oppor t un it ies to ut i l ize ex ist-
ing ML design patterns and realize 
more consistent reuse by increasing 
awareness of such patterns within 
the ML community.

EXAMPLE OF A MAJOR  
ML DESIGN PATTERN
Here, we describe one major ML design 
pattern and its usage. We selected 
“Distinguish Business Logic from ML 
Model” (P2) since it was one of the most 
popular patterns among our survey 
participants. Moreover, it provides 
a basis for other patterns (such as P7 
“Data Lake for ML”) by clearly decom-
posing the ML system into multiple 
layers and components. For brevity, 
participants, collaborations, imple-
mentation, and known uses are omit-
ted here.

Pattern name
Distinguish Business Logic from ML 
Model7 (original name “Multi-Layer 
Architectural Pattern”11)

Intent
Isolate failures between business 
logic and ML learning layer to help 
developers debug ML application sys-
tems easily.

Problem
ML application systems are complex 
because their ML components must 
be (re)trained regularly and have an 
intrinsic nondeterministic behav-
ior. Similar to other systems, the 
business requirements for these sys-
tems and the ML algorithms change 
over time.

Solution
Define clear APIs between the tradi-
tional and ML components. Place the 
business and ML components with  
different responsibilities into three 
layers (Figure 4). Divide data f lows  
into three.

Applicability
It is applicable to any ML application 
system with outputs that depend on 
ML techniques.

Consequences
Decoupling “traditional” business and 
ML components allows the ML compo-
nents to be monitored and adjusted to 
meet users’ requirements and chang-
ing inputs.

Usage example
Figure 5 presents an implementation 
example of the pattern in a Slack-based 
Chatbot system. By referring to the pat-
tern, the necessary elements as well as 
their relationships are easily specified 
while having clear separation between 
the Chatbot service (as the business logic) 
and the underlying ML components.

ML application systems are quite 
popular due to the recent pro-
motion of AI. To bridge the gap 

between traditional software systems 
and ML application systems with respect 
to design, software-engineering design 
patterns for ML applications were ana-
lyzed via a multivocal literature review 
and a survey of developers. From the  
32 scholarly documents and 48 gray docu-
ments identified in the literature review, 
15 ML design patterns were identified. A 
survey of developers revealed that there 
are some major ML design patterns.

Although the literature review was 
conducted in 2019, we believe this is the 
first step to explore ML design patterns 
and build on them to propose refined 
patterns. We plan to revise the identi-
fied patterns by sharing them to obtain 
reviews from the public. Since we sur-
veyed the practitioners’ perceptions on 
the patterns two to five years after their 
original publications, our survey should 
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reveal the meaningful perceptions. And 
practitioners may not be aware of recent 
patterns,19,20 which have emerged after 
our literature review. As our future work, 
we will continue our survey by extend-
ing the scope of ML design patterns to 
include these recent patterns and ones 
published at some of the PLoP series pro-
ceedings, which were not included in the 
original search.

We also plan to create a map of 
t he relationships among these ML 
design patterns and other related pat-
terns. Furthermore, we will investi-
gate applications of these ML design 
patterns in actual ML systems and 
software design. 
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