
Artificial Intelligence and
Software Engineering:
Are We Ready?

Digital Object Identifier 10.1109/MC.2022.3144805
Date of current version: 11 March 2022

Atif Mashkoor, Johannes Kepler University

Tim Menzies, North Carolina State University

Alexander Egyed, Johannes Kepler University

Rudolf Ramler, Software Competence Center Hagenberg

24	 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y � 0 0 1 8 - 9 1 6 2 / 2 2 © 2 0 2 2 I E E E

COVER FEATURE GUEST EDITORS’ INTRODUCTION

	 M A R C H 2 0 2 2 � 25

Artificial intelligence and software engineering complement

each other in various ways. This special issue highlights

how this relationship is developing over time to address

the challenges faced in modern-day computing.

Artificial intelligence (AI)
has disrupted all walks of
life. According to a recent
Ipsos survey16 for the World

Economic Forum, on average, six out of
10 adults expect that products and ser-
vices using AI will profoundly change
their daily life in the next three to five
years. This change is due to the incor-
poration of AI into products and ser-
vices such as recommender systems;
incorporation into workflows and pro-
cesses such as the rise of bots for auto-
mated tasks; and advanced analytical
capabilities, including identif ying
optimal resources for tasks.

According to the latest report pub-
lished by McKinsey, “The State of AI in
2021,”17 the top use cases of AI include
service operation optimization, prod-
uct enhancement, supply chain man-
agement, manufacturing, and so on.
One of the most notable benefits of
using AI in all those areas is a signifi-
cant cost decrease—up to 51% in some
cases. However, one of the prime rea-
sons for such high gains is adherence
to the core and advanced best prac-
tices already rooted in software engi-
neering (SE), for example, the use of
design thinking when developing AI
tools; internal testing, verification,
and validation before deployment; a
framework for AI model development;
a lifecycle approach; and reusability.
While SE is already helping AI prosper,
the same is true in reverse. AI and SE
can interact across iterative and agile
software process lifecycles. For exam-
ple, Shafiq et al.10 provide an overview
of how AI is disrupting various lifecy-
cle stages of software development.
Another view of the connection of AI

and SE adapted from Carleton et al.3 is
presented in Figure 1.

For the planning stage, AI can help
find the most critical issues that need
to be fixed on a priority basis11 and help
agile project management, includ-
ing identifying and refining backlog
items for sprint planning and manag-
ing risks.4 For the requirements stage,
AI can assist with recommendation
approaches for task allocation.12 This
is helpful for finding the most suit-
able resource person for a task,1 evenly
distributing knowledge among team
members, and finding solutions that
satisfy the different needs of various
stakeholders.7 For the design stage,
patterns play an essential role. Using
AI, we can identif y and recognize
design patterns in software through
source code and user interface (UI)

layouts. For example, see the Washi-
zaki et al. article in this issue as well
as the article by Nguyen et al.,13 who
propose an approach to semiautomate
design tasks by learning from previ-
ous UI design patterns. Another area
where AI helps in designing software
is development effort estimation.6, 14

Developers face numerous tuning
options once a system design is trans-
lated into a product. At that time, tools
such as multiobjective genetic algo-
rithms could help configure software.
Once configured and executed, the
software can be monitored and opti-
mized by AI tools that reduce the cloud
resources that are needed.15 For more
on AI tools that support better con-
figuration, see the Apel et al. article
in this issue. Also, when sharing soft-
ware, teams find it helpful to build test

Configure

Translate

Products

Build

Log
Mine

PrioritizeQuality
Models

Execution

Requirements Monitor and
Optimize

Transform

Planning

Design

Test Suites

Repair

FIGURE 1. The AI-inspired SE lifecycle.

GUEST EDITORS’ INTRODUCTION

26	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

suites5 that check to see whether any-
one’s changes have hurt the system. AI
tools can learn test suites to reach all
parts of a software system. For more
on testing, see the article by Khaliq
et al. Large test suites can be slow and
expensive to run nightly in a cloud
environment. To reduce that cost and
give developers faster feedback, AI
tools2 can learn how to prioritize tests
that are most likely to fail.

Once systems are running and test
case results are available, AI can sup-
port the software development process
again. For example, AI tools9 can auto-
matically find and repair buggy code.
Finally, suppose we log all these activities.

In that case, AI tools can learn from
quality models that predict features
about these systems. For example, AI
tools can study code repository sys-
tems, such as GitHub (https://github.
com/), and their issue tracking sys-
tems to learn qualit y models that
predict software development time,
bug locations, how long issues will
take to resolve, antipatterns in soft-
ware development, and much more.8
For an example of that antipattern
kind of analysis, see the article by
Adigun et al.

With so many technical options
available for AI, it is reasonable to ask
whether AI technologies are mature
enough to use. Hence, in this special
issue, we asked: “AI and SE: Are we

ready?” Based on our submissions,
the answer is a resounding yes. We
posted an open call to the SE commu-
nity. Overall, nine articles featuring
39 authors from seven countries were
submitted and rigorously screened
by at least three reviewers (in multi-
ple rounds). In the end, after several
revisions, five articles were accepted.
Taken together, they illustrate what is
now possible with the SE of AI systems.
AI is no longer a black box, incompre-
hensible, or unimprovable. Instead,
SE knowledge of AI has increased to
the point where AI tools are now open
workbenches where SE can adjust and
improve the software.

For example, in “Software-Engi-
neering Design Patterns for Machine
Learning Applications,” H. Washizaki
and colleagues explore repeated pat-
terns in how developers use machine
learning (ML) algorithms. To illus-
trate the approach, one such pattern
(“distinguish business logic from ML
model”) tells future developers that it
is crucial to isolate failures between
the business logic and ML learning
layer (to help debug ML application
systems). Results like this help bridge
the gap between traditional software
and ML application systems (concern-
ing design). In another work, S.J. War-
nett and U. Zdun discuss core issues
in the generation of ML applications.
In “Architectural Design Decisions

for the Machine Learning Workflow,”
they argue that bringing ML models
to production is challenging, partially
due to the disparity between SE and ML
practices but also because of knowl-
edge gaps at the level of the individual
practitioner. Their novel architectural
design decision model supports all the
choices needed to bring an ML model
to production.

Increasingly, risk management has
been playing an essential role in engi-
neering processes tailored to robotic soft-
ware and systems. Hence, we include the
article by J.B. Adigun and colleagues, “Col-
laborative Artificial Intelligence Needs
Stronger Assurances Driven by Risks.”
These researchers apply a risk repre-
sentation method based on the RiskML
language to International Organiza-
tion for Standardization requirements
for industrial AI robots. This approach
offers many advantages, including iden-
tifying preconditions of unsafe behavior
(by exploring the worst case branches
on decision trees). Another challenge is
the daunting task of how to test adap-
tive AI systems. Z. Khaliq and colleagues
address that in “Transformers for GUI
Testing: A Plausible Solution to Auto-
mated Test Case Generation and Flaky
Tests.” In their learning-based approach,
tests are generated directly from a GUI
(instead of evaluations in a tedious
manual and error-prone manner).
Using GPT-2 as a few-shot learner, their
method fine-tunes test flows generated
from GUI descriptions.

Finally, in “Green Configuration:
Can Artificial Intelligence Help
Reduce Energy Consumption

of Configurable Software Systems?,”
N. Siegmund and colleagues com-
ment that largely untapped potential
arises from the configuration options

INCREASINGLY, RISK MANAGEMENT HAS
BEEN PLAYING AN ESSENTIAL ROLE IN

ENGINEERING PROCESSES TAILORED TO
ROBOTIC SOFTWARE AND SYSTEMS.

	 M A R C H 2 0 2 2 � 27

a software system provides by adapt-
ing to the application scenario, work-
load, and underlying hardware. While
humans may be daunted by the config-
uration options available in a system,
automatic AI agents can find valuable
arrangements. For example, in the
article, the authors explore how AI
configuration tools can explore the
energy consumption of software. The
editors of this special issue would like
to thank the production team of Com-
puter for supporting the creation of
this issue. Special mention is also due
to our reviewers, who processed all our
submissions. Many thanks!

REFERENCES
1.	 J. Anvik and G. C. Murphy, “Reduc-

ing the effort of bug report tri-
age: Recommenders for develop-
ment-oriented decisions,” ACM
Trans. Softw. Eng. Methodol., vol.
20, no. 3, pp. 10:1–10:35, 2011, doi:
10.1145/2000791.2000794.

2.	 A. Bajaj and O. P. Sangwan, “Test case
prioritization using bat algorithm,”
Recent Adv. Comput. Sci. Commun.
(Formerly: Recent Patents Comput. Sci.),
vol. 14, no. 2, pp. 593–598, 2021, doi:
10.2174/2213275912666190226154344.

3.	 A. D. Carleton, E. Harper, T. Menzies,
T. Xie, S. Eldh, and M. R. Lyu, “The AI
effect: Working at the intersection
of AI and SE,” IEEE Softw., vol. 37,
no. 4, pp. 26–35, 2020, doi: 10.1109/
MS.2020.2987666.

4.	 H. K. Dam, T. Tran, J. Grundy, A.
Ghose, and Y. Kamei, “Towards effec-
tive AI-powered agile project man-
agement,” in Proc. IEEE/ACM 41st
Int. Conf. Softw. Eng. New Ideas Emerg.
Results (ICSE-NIER), 2019, pp. 41–44,
doi: 10.1109/ICSE-NIER.2019.00019.

5.	 R. Dutra, K. Laeufer, J. Bachrach,
and K. Sen, “Efficient sampling
of sat solutions for testing,” in

Proc. 40th Int. Conf. Softw. Eng.,
ICSE ’18, 2018, pp. 549–559, doi:
10.1145/3180155.3180248.

6.	 V.-S. Ionescu, “An approach to soft-
ware development effort estimation
using machine learning,” in Proc. 13th
IEEE Int. Conf. Intell. Comput. Commun.
Process. (ICCP), 2017, pp. 197–203, doi:
10.1109/ICCP.2017.8117004.

7.	 G. Mathew, T. Menzies, N. A. Ernst,
and J. Klein, “SHORT” er reasoning
about larger requirements models,”
in Proc. IEEE 25th Int. Requirements

Eng. Conf. (RE), 2017, pp. 154–163, doi:
10.1109/RE.2017.31.

8.	 T. Menzies and T. Zimmermann,
“Software analytics: What’s
next?” IEEE Softw., vol. 35, no. 5,
pp. 64–70, Sep. 2018, doi: 10.1109/
MS.2018.290111035.

9.	 A. Mesbah, A. Rice, E. Johnston, N.
Glorioso, and E. Aftandilian, “Deep-
delta: Learning to repair compilation
errors,” in Proc. 27th ACM Joint Meet-
ing European Softw. Eng. Conf. Symp.
Foundations of Softw. Eng., ESEC/

ABOUT THE AUTHORS
ATIF MASHKOOR is a senior research scientist at Johannes Kepler University,
Austria, and the founding managing director of the Sino-Pak Center for AI at
Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology,
Haripur, 22621, Pakistan. His research interests include requirements engi-
neering, formal methods, and artificial intelligence-inspired software engi-
neering. Mashkoor received a Ph.D. in computer science from the University of
Lorraine, France. Contact him at atif.mashkoor@jku.at.

TIM MENZIES is a full professor of computer science at North Carolina State
University, Raleigh, North Carolina, 27695, USA, where he is the director of the
Real World AI for SE lab. His research interests include software engineering,
data mining, artificial intelligence, and open access science. Menzies received
a Ph.D. from the University of New South Wales, Australia, in 1995. He is a Fel-
low of IEEE. Contact him at timm@ieee.org.

ALEXANDER EGYED is a professor of software-intensive systems and heads
the Institute for Software Systems Engineering at Johannes Kepler Univer-
sity, Linz, 4040, Austria. His research interests include software engineering,
requirements engineering, and consistency checking. Egyed received a Ph.D.
from the University of Southern California, Los Angeles. He is a Senior Member
of IEEE. Contact him at alexander.egyed@jku.at.

RUDOLF RAMLER is a research manager at Software Competence Center
Hagenberg, Hagenberg, 4232, Austria. His research interests include software
engineering and testing, software analytics, and application lifecycle manage-
ment. Ramler received an M.Sc. from Johannes Kepler University. Contact him
at rudolf.ramler@scch.at.

GUEST EDITORS’ INTRODUCTION

28 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

FSE 2019, 2019, pp. 925–936, doi:
10.1145/3338906.3340455.

10. S. Shafiq, A. Mashkoor, C. Mayr-
Dorn, and A. Egyed, “A literature
review of using machine learn-
ing in software development life
cycle stages,” IEEE Access, vol. 9,
pp. 140,896–140,920, Oct. 2021, doi:
10.1109/ACCESS.2021.3119746.

11. S. Shafiq, A. Mashkoor, C. Mayr-
Dorn, and A. Egyed, “NLP4IP:
Natural language processing-based
recommendation approach for issues
prioritization,” in Proc. 47th Euromi-
cro Conf. Softw. Eng. Adv. Appl. (SEAA
2021), 2021, pp. 99–108, doi: 10.1109/
SEAA53835.2021.00022.

12. S. Shafiq, A. Mashkoor, C. Mayr-
Dorn, and A. Egyed, “Taskallocator:
A recommendation approach for

role-based tasks allocation in
agile software development,” in Proc.
15th IEEE/ACM Joint Int. Conf.
Softw. Syst. Process. 16th ACM/IEEE
Int. Conf. Global Softw. Eng. ICSSP/
ICGSE 2021, 2021, pp. 39–49,
doi: 10.1109/ICSSP-ICGSE52873.
2021.00014.

13. M. White, C. Vendome, M. Lin-
ares-Vasquez, and D. Poshyvanyk,
“Toward deep learning software
repositories,” in Proc. IEEE/ACM 12th
Working Conf. Mining Softw. Reposito-
ries, 2015, pp. 334–345.

14. T. Xia, R. Shu, X. Shen, and T. Men-
zies, “Sequential model optimi-
zation for software effort esti-
mation,” IEEE Trans. Softw. Eng.,
early access, 2020, doi: 10.1109/
TSE.2020.3047072.

15. L. Zuo, L. Shu, S. Dong, C. Zhu, and
T. Hara, “A multi-objective optimi-
zation scheduling method based on
the ant colony algorithm in cloud
computing,” IEEE Access, vol. 3,
pp. 2687–2699, Dec. 2015, doi:
10.1109/ACCESS.2015.2508940.

16. N. Boyon, “Opinions about AI
vary depending on countries’
level of economic development.”
Ipsos. https://www.ipsos.com/en/
global-opinions-about-ai-january-2022
(Accessed: Jan. 25, 2022).

17. M. Chui, B. Hall, A. Singla, and A.
Sukharevsky, “The state of AI in
2021.” McKinsey & Co. https://www.
mckinsey.com/business-func
tions/mckinsey-analytics/our-in
sights/global-survey-the-state-of-ai
-in-2021 (Accessed: Jan. 25, 2022).

Computing in Science
& Engineering
The computational and data-centric problems faced
by scientists and engineers transcend disciplines.
There is a need to share knowledge of algorithms,
software, and architectures, and to transmit lessons-
learned to a broad scientific audience. Computing in
Science & Engineering (CiSE) is a cross-disciplinary,
international publication that meets this need
by presenting contributions of high interest and
educational value from a variety of fields, including
physics, biology, chemistry, and astronomy. CiSE
emphasizes innovative applications in cutting-edge
techniques. CiSE publishes peer-reviewed research
articles, as well as departments spanning news and
analyses, topical reviews, tutorials, case studies, and
more.

Read CiSE today! www.computer.org/cise

Digital Object Identifier 10.1109/MC.2022.3150821

