
Artificial Intelligence and
Software Engineering:
Are We Ready?

Digital Object Identifier 10.1109/MC.2022.3144805
Date of current version: 11 March 2022

Atif Mashkoor, Johannes Kepler University

Tim Menzies, North Carolina State University

Alexander Egyed, Johannes Kepler University

Rudolf Ramler, Software Competence Center Hagenberg

24	 C O M P U T E R   P U B L I S H E D  B Y  T H E  I E E E  C O M P U T E R  S O C I E T Y � 0 0 1 8 - 9 1 6 2 / 2 2 © 2 0 2 2 I E E E

COVER FEATURE GUEST EDITORS’ INTRODUCTION



	 M A R C H  2 0 2 2 � 25

Artificial intelligence and software engineering complement 

each other in various ways. This special issue highlights 

how this relationship is developing over time to address 

the challenges faced in modern-day computing.

Artificial intelligence (AI) 
has disrupted all walks of 
life. According to a recent 
Ipsos survey16 for the World 

Economic Forum, on average, six out of 
10 adults expect that products and ser-
vices using AI will profoundly change 
their daily life in the next three to five 
years. This change is due to the incor-
poration of AI into products and ser-
vices such as recommender systems; 
incorporation into workflows and pro-
cesses such as the rise of bots for auto-
mated tasks; and advanced analytical 
capabilities, including identif ying  
optimal resources for tasks.

According to the latest report pub-
lished by McKinsey, “The State of AI in 
2021,”17 the top use cases of AI include 
service operation optimization, prod-
uct enhancement, supply chain man-
agement, manufacturing, and so on. 
One of the most notable benefits of 
using AI in all those areas is a signifi-
cant cost decrease—up to 51% in some 
cases. However, one of the prime rea-
sons for such high gains is adherence 
to the core and advanced best prac-
tices already rooted in software engi-
neering (SE), for example, the use of 
design thinking when developing AI 
tools; internal testing, verification, 
and validation before deployment; a 
framework for AI model development; 
a lifecycle approach; and reusability. 
While SE is already helping AI prosper, 
the same is true in reverse. AI and SE 
can interact across iterative and agile 
software process lifecycles. For exam-
ple, Shafiq et al.10 provide an overview 
of how AI is disrupting various lifecy-
cle stages of software development. 
Another view of the connection of AI 

and SE adapted from Carleton et al.3 is 
presented in Figure 1.

For the planning stage, AI can help 
find the most critical issues that need 
to be fixed on a priority basis11 and help 
agile project management, includ-
ing identifying and refining backlog 
items for sprint planning and manag-
ing risks.4 For the requirements stage, 
AI can assist with recommendation 
approaches for task allocation.12 This 
is helpful for finding the most suit-
able resource person for a task,1 evenly 
distributing knowledge among team 
members, and finding solutions that 
satisfy the different needs of various 
stakeholders.7 For the design stage, 
patterns play an essential role. Using 
AI, we can identif y and recognize 
design patterns in software through 
source code and user interface (UI) 

layouts. For example, see the Washi-
zaki et al. article in this issue as well 
as the article by Nguyen et al.,13 who 
propose an approach to semiautomate 
design tasks by learning from previ-
ous UI design patterns. Another area 
where AI helps in designing software 
is development effort estimation.6, 14

Developers face numerous tuning 
options once a system design is trans-
lated into a product. At that time, tools 
such as multiobjective genetic algo-
rithms could help configure software. 
Once configured and executed, the 
software can be monitored and opti-
mized by AI tools that reduce the cloud 
resources that are needed.15 For more 
on AI tools that support better con-
figuration, see the Apel et al. article 
in this issue. Also, when sharing soft-
ware, teams find it helpful to build test 
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FIGURE 1. The AI-inspired SE lifecycle.
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suites5 that check to see whether any-
one’s changes have hurt the system. AI 
tools can learn test suites to reach all 
parts of a software system. For more 
on testing, see the article by Khaliq 
et al. Large test suites can be slow and 
expensive to run nightly in a cloud 
environment. To reduce that cost and 
give developers faster feedback, AI 
tools2 can learn how to prioritize tests 
that are most likely to fail.

Once systems are running and test 
case results are available, AI can sup-
port the software development process 
again. For example, AI tools9 can auto-
matically find and repair buggy code. 
Finally, suppose we log all these activities. 

In that case, AI tools can learn from 
quality models that predict features 
about these systems. For example, AI 
tools can study code repository sys-
tems, such as GitHub (https://github.
com/), and their issue tracking sys-
tems to learn qualit y models that 
predict software development time, 
bug locations, how long issues will 
take to resolve, antipatterns in soft-
ware development, and much more.8 
For an example of that antipattern 
kind of analysis, see the article by  
Adigun et al.

With so many technical options 
available for AI, it is reasonable to ask 
whether AI technologies are mature 
enough to use. Hence, in this special 
issue, we asked: “AI and SE: Are we 

ready?” Based on our submissions, 
the answer is a resounding yes. We 
posted an open call to the SE commu-
nity. Overall, nine articles featuring 
39 authors from seven countries were 
submitted and rigorously screened 
by at least three reviewers (in multi-
ple rounds). In the end, after several 
revisions, five articles were accepted. 
Taken together, they illustrate what is 
now possible with the SE of AI systems. 
AI is no longer a black box, incompre-
hensible, or unimprovable. Instead, 
SE knowledge of AI has increased to 
the point where AI tools are now open 
workbenches where SE can adjust and 
improve the software.

For example, in “Software-Engi-
neering Design Patterns for Machine 
Learning Applications,” H. Washizaki 
and colleagues explore repeated pat-
terns in how developers use machine 
learning (ML) algorithms. To illus-
trate the approach, one such pattern 
(“distinguish business logic from ML 
model”) tells future developers that it 
is crucial to isolate failures between 
the business logic and ML learning 
layer (to help debug ML application 
systems). Results like this help bridge 
the gap between traditional software 
and ML application systems (concern-
ing design). In another work, S.J. War-
nett and U. Zdun discuss core issues 
in the generation of ML applications. 
In “Architectural Design Decisions 

for the Machine Learning Workflow,” 
they argue that bringing ML models 
to production is challenging, partially 
due to the disparity between SE and ML 
practices but also because of knowl-
edge gaps at the level of the individual 
practitioner. Their novel architectural 
design decision model supports all the 
choices needed to bring an ML model 
to production.

Increasingly, risk management has 
been playing an essential role in engi-
neering processes tailored to robotic soft-
ware and systems. Hence, we include the 
article by J.B. Adigun and colleagues, “Col-
laborative Artificial Intelligence Needs 
Stronger Assurances Driven by Risks.” 
These researchers apply a risk repre-
sentation method based on the RiskML 
language to International Organiza-
tion for Standardization requirements 
for industrial AI robots. This approach 
offers many advantages, including iden-
tifying preconditions of unsafe behavior 
(by exploring the worst case branches 
on decision trees). Another challenge is 
the daunting task of how to test adap-
tive AI systems. Z. Khaliq and colleagues 
address that in “Transformers for GUI 
Testing: A Plausible Solution to Auto-
mated Test Case Generation and Flaky 
Tests.” In their learning-based approach, 
tests are generated directly from a GUI 
(instead of evaluations in a tedious 
manual and error-prone manner). 
Using GPT-2 as a few-shot learner, their 
method fine-tunes test flows generated 
from GUI descriptions.

Finally, in “Green Configuration: 
Can Artificial Intelligence Help 
Reduce Energy Consumption 

of Configurable Software Systems?,” 
N. Siegmund and colleagues com-
ment that largely untapped potential 
arises from the configuration options 

INCREASINGLY, RISK MANAGEMENT HAS 
BEEN PLAYING AN ESSENTIAL ROLE IN 

ENGINEERING PROCESSES TAILORED TO 
ROBOTIC SOFTWARE AND SYSTEMS.



	 M A R C H  2 0 2 2 � 27

a software system provides by adapt-
ing to the application scenario, work-
load, and underlying hardware. While 
humans may be daunted by the config-
uration options available in a system, 
automatic AI agents can find valuable 
arrangements. For example, in the 
article, the authors explore how AI 
configuration tools can explore the 
energy consumption of software. The 
editors of this special issue would like 
to thank the production team of Com-
puter for supporting the creation of 
this issue. Special mention is also due 
to our reviewers, who processed all our 
submissions. Many thanks!  

REFERENCES
1.	 J. Anvik and G. C. Murphy, “Reduc-

ing the effort of bug report tri-
age: Recommenders for develop-
ment-oriented decisions,” ACM 
Trans. Softw. Eng. Methodol., vol. 
20, no. 3, pp. 10:1–10:35, 2011, doi: 
10.1145/2000791.2000794.

2.	 A. Bajaj and O. P. Sangwan, “Test case 
prioritization using bat algorithm,” 
Recent Adv. Comput. Sci. Commun. 
(Formerly: Recent Patents Comput. Sci.), 
vol. 14, no. 2, pp. 593–598, 2021, doi: 
10.2174/2213275912666190226154344.

3.	 A. D. Carleton, E. Harper, T. Menzies, 
T. Xie, S. Eldh, and M. R. Lyu, “The AI 
effect: Working at the intersection 
of AI and SE,” IEEE Softw., vol. 37, 
no. 4, pp. 26–35, 2020, doi: 10.1109/
MS.2020.2987666.

4.	 H. K. Dam, T. Tran, J. Grundy, A. 
Ghose, and Y. Kamei, “Towards effec-
tive AI-powered agile project man-
agement,” in Proc. IEEE/ACM 41st 
Int. Conf. Softw. Eng. New Ideas Emerg. 
Results (ICSE-NIER), 2019, pp. 41–44, 
doi: 10.1109/ICSE-NIER.2019.00019.

5.	 R. Dutra, K. Laeufer, J. Bachrach, 
and K. Sen, “Efficient sampling 
of sat solutions for testing,” in 

Proc. 40th Int. Conf. Softw. Eng., 
ICSE ’18, 2018, pp. 549–559, doi: 
10.1145/3180155.3180248.

6.	 V.-S. Ionescu, “An approach to soft-
ware development effort estimation 
using machine learning,” in Proc. 13th 
IEEE Int. Conf. Intell. Comput. Commun. 
Process. (ICCP), 2017, pp. 197–203, doi: 
10.1109/ICCP.2017.8117004.

7.	 G. Mathew, T. Menzies, N. A. Ernst, 
and J. Klein, “SHORT” er reasoning 
about larger requirements models,” 
in Proc. IEEE 25th Int. Requirements 

Eng. Conf. (RE), 2017, pp. 154–163, doi: 
10.1109/RE.2017.31.

8.	 T. Menzies and T. Zimmermann, 
“Software analytics: What’s 
next?” IEEE Softw., vol. 35, no. 5, 
pp. 64–70, Sep. 2018, doi: 10.1109/
MS.2018.290111035.

9.	 A. Mesbah, A. Rice, E. Johnston, N. 
Glorioso, and E. Aftandilian, “Deep-
delta: Learning to repair compilation 
errors,” in Proc. 27th ACM Joint Meet-
ing European Softw. Eng. Conf. Symp. 
Foundations of Softw. Eng., ESEC/

ABOUT THE AUTHORS
ATIF MASHKOOR is a senior research scientist at Johannes Kepler University, 
Austria, and the founding managing director of the Sino-Pak Center for AI at 
Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, 
Haripur, 22621, Pakistan. His research interests include requirements engi-
neering, formal methods, and artificial intelligence-inspired software engi-
neering. Mashkoor received a Ph.D. in computer science from the University of 
Lorraine, France. Contact him at atif.mashkoor@jku.at.

TIM MENZIES is a full professor of computer science at North Carolina State 
University, Raleigh, North Carolina, 27695, USA, where he is the director of the 
Real World AI for SE lab. His research interests include software engineering, 
data mining, artificial intelligence, and open access science. Menzies received 
a Ph.D. from the University of New South Wales, Australia, in 1995. He is a Fel-
low of IEEE. Contact him at timm@ieee.org.

ALEXANDER EGYED is a professor of software-intensive systems and heads 
the Institute for Software Systems Engineering at Johannes Kepler Univer-
sity, Linz, 4040, Austria. His research interests include software engineering, 
requirements engineering, and consistency checking. Egyed received a Ph.D. 
from the University of Southern California, Los Angeles. He is a Senior Member 
of IEEE. Contact him at alexander.egyed@jku.at.

RUDOLF RAMLER is a research manager at Software Competence Center 
Hagenberg, Hagenberg, 4232, Austria. His research interests include software 
engineering and testing, software analytics, and application lifecycle manage-
ment. Ramler received an M.Sc. from Johannes Kepler University. Contact him 
at rudolf.ramler@scch.at.



GUEST EDITORS’ INTRODUCTION

28 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

FSE 2019, 2019, pp. 925–936, doi: 
10.1145/3338906.3340455.

10. S. Shafiq, A. Mashkoor, C. Mayr-
Dorn, and A. Egyed, “A literature 
review of using machine learn-
ing in software development life 
cycle stages,” IEEE Access, vol. 9, 
pp. 140,896–140,920, Oct. 2021, doi: 
10.1109/ACCESS.2021.3119746.

11. S. Shafiq, A. Mashkoor, C. Mayr-
Dorn, and A. Egyed, “NLP4IP: 
Natural language processing-based 
recommendation approach for issues 
prioritization,” in Proc. 47th Euromi-
cro Conf. Softw. Eng. Adv. Appl. (SEAA 
2021), 2021, pp. 99–108, doi: 10.1109/
SEAA53835.2021.00022.

12. S. Shafiq, A. Mashkoor, C. Mayr-
Dorn, and A. Egyed, “Taskallocator: 
A recommendation approach for 

role-based tasks allocation in 
agile software development,” in Proc. 
15th IEEE/ACM Joint Int. Conf. 
Softw. Syst. Process. 16th ACM/IEEE 
Int. Conf. Global Softw. Eng. ICSSP/
ICGSE 2021, 2021, pp. 39–49, 
doi: 10.1109/ICSSP-ICGSE52873.
2021.00014.

13. M. White, C. Vendome, M. Lin-
ares-Vasquez, and D. Poshyvanyk, 
“Toward deep learning software 
repositories,” in Proc. IEEE/ACM 12th 
Working Conf. Mining Softw. Reposito-
ries, 2015, pp. 334–345.

14. T. Xia, R. Shu, X. Shen, and T. Men-
zies, “Sequential model optimi-
zation for software effort esti-
mation,” IEEE Trans. Softw. Eng., 
early access, 2020, doi: 10.1109/
TSE.2020.3047072.

15. L. Zuo, L. Shu, S. Dong, C. Zhu, and 
T. Hara, “A multi-objective optimi-
zation scheduling method based on 
the ant colony algorithm in cloud 
computing,” IEEE Access, vol. 3, 
pp. 2687–2699, Dec. 2015, doi: 
10.1109/ACCESS.2015.2508940.

16. N. Boyon, “Opinions about AI 
vary depending on countries’ 
level of economic development.” 
Ipsos. https://www.ipsos.com/en/
global-opinions-about-ai-january-2022 
(Accessed: Jan. 25, 2022).

17. M. Chui, B. Hall, A. Singla, and A. 
Sukharevsky, “The state of AI in 
2021.” McKinsey & Co. https://www.
mckinsey.com/business-func
tions/mckinsey-analytics/our-in
sights/global-survey-the-state-of-ai
-in-2021 (Accessed: Jan. 25, 2022).

Computing in Science  
& Engineering
The computational and data-centric problems faced 
by scientists and engineers transcend disciplines. 
There is a need to share knowledge of algorithms, 
software, and architectures, and to transmit lessons-
learned to a broad scientific audience. Computing in 
Science & Engineering (CiSE) is a cross-disciplinary, 
international publication that meets this need 
by presenting contributions of high interest and 
educational value from a variety of fields, including 
physics, biology, chemistry, and astronomy. CiSE
emphasizes innovative applications in cutting-edge 
techniques. CiSE publishes peer-reviewed research 
articles, as well as departments spanning news and 
analyses, topical reviews, tutorials, case studies, and 
more.

Read CiSE today! www.computer.org/cise

Digital Object Identifier 10.1109/MC.2022.3150821


