
On 22 and 23 April, at the two-day Leaders’ 
Summit on Climate 2021, global heads of 
state announced ambitious targets to man-
age the climate crisis. It was announced 

that, by 2030, the United States would cut its green-
house gas emissions by 50%. The European Union 
targeted a 55% reduction in net greenhouse gases by 
2030. China promised to strengthen its controls on 
greenhouse gas emissions beyond carbon dioxide and 
decelerate coal consumption. Conversely, according to 
a 2019 estimation, in the field of artificial intelligence 
(AI), the carbon footprint of training a state-of-the-art 
language model equates to that of five U.S. cars’ entire 

lifetimes,1 as depicted in Figure 1. More-
over, the carbon footprint of AI models 
is still increasing at a fast pace. Energy 
consumption is a key factor. Power re-
quirements of modern AI are growing 
at a faster rate than Moore’s law indi-
cates. Because an AI model’s accuracy 
tends not to increase at the same rate as 
the amount of energy that is invested, 

state-of-the-art AI models become energy hungry; they 
are termed red AI models. By contrast, the development 
of green AI is being promoted to emphasize an energy-
efficient AI research agenda.2

Moore’s law states that the number of transistors in a 
dense integrated circuit doubles every two years. On the 
other hand, the amount of compute resources used in de-
veloping the largest and most advanced AI models dou-
bled every 3.4 months between 2012 and 2018, according 
to statistics from OpenAI.3 Increases in the number of 
transistors cannot maintain pace with the requirements 
for training the latest AI models. As illustrated in Figure 2, 
from 2012 to 2018, a 300,000-fold increase in computation 
requirements was observed, whereas Moore’s law indi-
cated only an eightfold expansion. Modern AI models are 
energy hungry, and the emphasis on such designs seems 
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to continue. Since breakthroughs in AI 
technology deliver invaluable contri-
butions to society, making AI greener 
is an emerging and vital topic in sci-
ence and technology.

ENERGY GUZZLERS
The main driver of energy-hungry 
approaches is the desire to continue 
advancing AI achievements. Several 
key factors encourage power-heavy 

AI implementations, including model 
sizes, training data set sizes, model hy-
perparameters (for example, model ar-
chitecture), and algorithm hyperparam-
eters (for example, the number of epochs 
and optimizers).

Model size is measured by t he 
number of trainable parameters and 
determines the cost of processing 
one datum for training and infer-
ence. State-of-the-art AI models grow 
exponentially to achieve advances. 
Considering language models as an 
example (as shown in Table 1), Embed-
dings From Language Models (ELMo) 
has 94 million parameters, whereas 
Generative Pretrained Transformer 
3 (GPT-3) has 175 billion. The size of 
training data sets is another factor; the 
use of a large training data set to opti-
mize model accuracy is a common ap-
proach. Again, as illustrated in Table 1, 
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FIGURE 1. Carbon dioxide emissions, in pounds, based on data from Strubell et al.1
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the ELMo training data set has 5.5 bil-
lion words, whereas that of GPT-3 has 
hundreds of billions.

In addition to model and training 
data set sizes, model and algorithm 
hyperparameters are key factors in en-
ergy consumption. Designing a neural 
network architecture is critical to the 
final model performance, but the pro-
cess can be energy intensive. A proper 
activation function helps in the pro-
duction of a model with optimal accu-
racy; the search process repeats a con-
siderable number of experiment runs 
on various types of AI models.8

Although only AI model train-
ing was considered in the preceding 
discussions, model inference may 
also considerably contribute to the 
energy consumption involved in AI 
applications. The required energy for 
one-time model inference is limited. 
However, the overall energy con-
sumption can be significant because 
the number of model queries can be 
markedly high and increase continu-
ally. Chatbot services are an example. 
Assume that a user conducts a conver-
sation with a chatbot when he or she 
encounters some impediment during 
online shopping. According to 2021 
statistics,9 approximately 2.14 billion 
users had completed an online pur-
chase. Assuming that 1% of them ini-
tiate a chatbot conversation per day, at 
least 10 million model inference runs 
would be necessary, where the actual 
cost also depends on the conversation 
length. Moreover, the chatbot market 
is expected to expand at a compound 
annual growth rate of 24.9% from 2021 
to 2028.10

TOWARD GREENER AI
Beyond environment protection, three 
incentives motivate green AI develop-
ment. The first is diminishing returns 
in some mainstream models.2 As re-
searchers seek more accurate mod-
els by any means, a diminishing re-
turns scenario is always taking place, 
whereby the same increases in model 
and training data set sizes generate 
fewer advances in accuracy. In other 

words, using a more extensive model 
no longer guarantees greater accu-
racy. The second impetus is a desire for 
inclusive AI development. When com-
putation becomes an entry barrier, 
an ordinary researcher has difficulty 
operating AI research programs. The 
third motivation relates to business 
considerations. Edge AI products have 
restricted energy efficiency require-
ments for deployment, whereas cloud 

AI services can be developed on the 
back end of a cloud infrastructure on a 
limited budget.

The first step toward greener AI is 
having an appropriate quantitative 
tool. With that, the energy consump-
tion of an AI model can be described 
and later compared with that of alter-
nate models and with a greener version 
of the present one. The Allen Institute 
for AI proposed using the number of 
floating-point operations as a metric 
and encouraged researchers to mea-
sure and document it in their work. 
Another machine learning emissions 
calculator11 was proposed based on 
hardware types, cloud providers, and 
geographical regions.12 OpenAI tracks 
the energy efficiency of state-of-the-
art AI models in terms of vision and 
translation.13 On the basis of the 

efficiency benchmark—which quan-
tifies the energy consumption as-
sociated with the computational gain 
yielded by algorithmic progress—im-
age classification now has 44 times 
fewer computational requirements for 
training a neural network to the level 
of AlexNet than it did in 2012.

To advance the green AI movement, 
energy-efficient approaches in edge 
AI may inspire broader innovation. In 

edge AI research, common strategies 
for improving model inference energy 
efficiency include model compression 
and special hardware designs. Model 
compression aims to convert an origi-
nal model to a functionally equivalent 
yet smaller one that consumes less 
energy during inference. Typical tech-
niques include knowledge distillation, 
quantization, and pruning. Knowledge  
distillation transfers information from  
an original model to a target one thr
ough a training process applied to the 
latter. As the amount of data used in 
the training process grows, the target 
model functions increasingly simi-
larly to the original. Quantization is 
employed to represent typically 64-bit  
floating-point model parameters as 
smaller ones, such as 32-bit, 16-bit, and 
even 1-bit integers. Pruning removes 

TABLE 1. Characteristics of selected AI language models.

Model
Model size 
(parameters)

Training data set  
size (words) Year

ELMo4 94 million 5.5 billion 2018

BERT (large)5 350 million 3 billion 2018

GPT-26 1.5 billion 40 billion 2019

GPT-37 175 billion Hundreds of billions 2020

ELMo: Embeddings From Language Models; BERT: Bidirectional Encoder Representations From Transformers; 
GPT: Generative Pretrained Transformer.

In the field of artificial intelligence, the carbon 
footprint of training a state-of-the-art language 

model equates to that of five U.S. cars’  
entire lifetimes.
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less-critical neurons from a network 
to obtain a smaller model with ac-
ceptable accuracy loss. Tiny machine 
learning is an example of applying 
model compression to reduce the size 
sufficiently for a model to run on edge 
devices.14

Special hardware design is another 
common approach for enhancing en-
ergy efficiency in edge AI in particu-
lar and the AI field in general. Hard-
ware acceleration for AI operations, 
such as those using tensor processing 
units and neural network processing 
units, has long been in progress. Spe-
cial hardware design for edge AI also 
aims to deliver a range of AI functions 
from the cloud to edge platforms.15 In 
early 2021, IBM announced the results 
of its work on the world’s first ener-
gy-efficient AI chip with low-precision 
training and inference, constructed 
with 7-nm technology.16 The chip in-
tegrates power management with im-
proved model performance and power 
use. Codesign approaches integrat-
ing special AI models and hardware 
to achieve energy efficiency are also 
noteworthy. One example is the com-
bination of spiking neural networks 
and neuromorphic accelerators.17

Reducing the amount of required 
training data is another principle of 
green AI. It remains an active research 
area, where comparatively more is 
learned with less data, as exemplified 
by zero-, one-, and few-shot learning 
for classification tasks. Zero-shot clas-
sification means a model is trained 
on some classes and then predicts 
inference data for a new class, which 
the model has never been exposed to. 
One-shot learning evaluates the pos-
sibility that two pieces of input data 
are in the same class, where one input 
datum serves as a class reference. Few-
shot learning, or low-shot learning, 

classifies inputs among classes even 
when a training data set contains 
only a small amount of data in cer-
tain classes. Zero-, one-, and few-shot 
learning require considerably less in-
formation to learn new classes than 
other conventional learning tech-
niques do.

D u r i ng t he de ve lopment of A I 
models, various experiments are con-
ducted, such as those for tuning hyper-
parameters and model parameters. A 
high-reuse scheme can assist in obtain-
ing better energy efficiency from the 
entire process. For instance, using a pre-
trained model is a common method of 
faster AI model development. It is also  
a more energy-efficient techn iq ue. 
Devising reproducible and portable 
experiments that can be conducted on 
various machine learning frameworks 
is another means of sharing research 
experiences. Approaches for reusing 
and sharing useful intermediate data 
and learned experiences from the de-
velopment of AI models should be fur-
ther explored.

A nother green approach is to 
use AI for energy-efficient 
purposes, such as Google em-

ploying AI to optimize power usage in 
data centers and reduce a cooling sys-
tem’s energy consumption by 40%.18 
AI can substantially lower energy 
consumption in buildings,19 which are 
the source of approximately 40% of all 
U.S. power demand.20

Although modern AI has made 
many groundbreaking achievements 
in computer vision, natural language 
processing, and decision making, 
the human brain is still a more effi-
cient source of intelligence. While 
red AI technology pursuing more cut-
ting-edge technologies with consid-
erable energy investment is expected 
to stimulate AI advances that help 
people overcome burdens and flour-
ish, green AI development should be 
boosted for environment protection 
and inclusiveness. It is going to be a 
colorful world. 
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