
Despite any claims to the contrary, this column is
neither a lesson in history nor a promotion of a
“great article” theory of computer science. His-
tory, especially technical history, is problem-

atic and is best left to professionals. Too often, it is used to
justify a current project or give validity to a plan for future
research. Our ideas need to stand for themselves. The fact
that we can connect them to a famous result or prominent
computer scientist does not make them any more valid.

The idea that there are “great ar-
ticles” in our field and that we can
gain something by reading them is
a more intriguing theory. There cer-
tainly are great articles. This column
has highlighted many of the best
contributions that have appeared in
the pages of Computer. Many remain
important pieces of literature. There
is much to be learned on the subject
of software engineering by reading
Barry Boehm’s seminal article, the
spiral model of software engineering,
or Jain, Mao, and Mohiuddin’s treat-
ment of neural networks. (See “Body

Digital Object Identifier 10.1109/MC.2021.3055918
Date of current version: 22 October 2021

Objects in the Mirror
Are Closer Than
They Appear
David Alan Grier, Djaghe, LLC

Ideas emerge into the field of computer science

in different ways. Sometimes they are carried

forward by a single prominent publication. However,

some important ideas, such as object-oriented

programming, are promoted by a stream of articles.

ARTICLE FACTS
» Article: “Object-Oriented and Conventional Analysis

and Design Methodologies”

» Authors: R.G. Fichman and C.F. Kemerer

» Citation: Computer, vol. 25, no. 10, pp. 22–39,

October 1992

» Computer influence rank: #888 with 972 views

and downloads and 91 citations

EDITOR DAVID ALAN GRIER
Djaghe; LLC; grier@gwu.eduBODY OF KNOWLEDGE

C O M P U T E R 0 0 1 8 - 9 1 6 2 / 2 1 © 2 0 2 1 I E E E N O V E M B E R 2 0 2 1 79

80 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

BODY OF KNOWLEDGE

of Knowledge” for April 2020 and June
2020, respectively.) However, not all
influential articles are great, and many
an important field in computer science
lacks a single dominant publication.

Let us take the subject of object-ori-
ented programming. It is clearly an im-
portant topic. Every student is asked to
master the concepts of objects, inher-
itance, and messages very early in his
or her career. We have a whole genera-
tion of developers who cannot imagine
creating a software system with any
other kind of language.

However, there is no prominent and
influential article on the subject in the
back issues of Computer. You have to dig
fairly deep to find the work that we are
considering in this essay. It is ranked
number 888 on our list of influential
articles. While that is a commendable
showing, it does not suggest that “Ob-
ject-Oriented and Conventional Analysis
and Design Methodologies”1 was a docu-
ment that shaped the thinking and prac-
tices of IEEE Computer Society members
(see “Article Facts”). However, if we con-
sider it in context, we quickly find that it
shows us how computer scientists em-
braced this new programming paradigm
and the lessons that they had to learn.

The roots of object-oriented program-
ming go back to the 1960s and 1970s,
with the language Simula (1967) and the
language Smalltalk (1972). However, the
approach did not become widely used
until the 1980s. At universities, the lan-
guage Common Lisp (1984) encouraged
academics to cast their ideas in an ob-
ject-oriented framework. In industry,
C++ (1985) gave the same impetus to
commercial software.

However, the existence of object-ori-
ented languages was not enough to
guarantee that object-oriented program-
ming would be used. The history of pro-
gramming is littered with examples that
promised to change the nature of coding
but, ultimately, fretted and strutted their
brief moment on the stage before they
vanished and were forgotten.

The success of object-oriented pro-
gramming never depended upon a sin-
gle language any more than it relied on

a single great article. If we look at Com-
puter between 1990 and 2000, we see a
steady stream of articles on object-ori-
ented programming. After publishing
16 such articles in the prior decade,
the magazine published 10–12 articles
a year on the subject. For two years,
1996 and 1997, it published 24 articles
a year, roughly a quarter of its output.

If you look at these articles from the
1990s, you find that many of them at-
tempt to fit a specific application within
an object-oriented framework: expert
systems and graphical user interfaces
(1990); databases and distributed systems
(1991); 3D graphics, audio processing, and
real-time programming (1992); and dis-
tributed processing, parallel processing,
computer-oriented engineering (1993).
The list of topics continues to grow for the
remainder of the decade.

In this body of literature, our current
article (“Object-Oriented and Conven-
tional Analysis and Design Method-
ologies”) asks the obvious but highly
important question: what has changed
with this new way of programming?
“Object orientation certainly encom-
passes many novel concepts, and some
have called it a new paradigm for soft-
ware development,” noted the authors.
“Yet, the question of whether object-ori-
ented methodologies represent a rad-
ical change over such conventional
methodologies as structured analysis
remains a subject of much debate.”3

After a great deal of analysis, the
authors conclude that the new form of
programming represented a substantial
change. “Object orientation is founded on
a collection of powerful ideas,” they noted,
“that have firm theoretical foundations.”
At same time, they acknowledged that
there was no commonly accepted method
for creating object-oriented software.
“None of the methodologies reviewed
here,” they concluded, has “achieved the
status of a widely recognized standard.”3
Because of this, they accepted the idea
that “a move to an object-oriented envi-
ronment in general may be seen predom-
inantly as a radical change.”

This conclusion helps us under-
stand the early body of knowledge on

object-oriented programming and
suggests why we do not find a single
dominant article on the subject. In all,
Computer published 134 articles on ob-
ject-oriented programming between
1990 and 2000. Most of these articles
treated specific applications and the
methods for developing them. They
continued and expanded the work of au-
thors Fichman and Kemerer. These arti-
cles considered specific development
techniques and looked at the ways that
object-oriented methods changed them.

There was no single great article
because there was no easy way to com-
bine all of those specific techniques
into a single narrative. The “great arti-
cle” was not one but many. It was the
collection of the 134 Computer articles
that marked the transition from con-
ventional programming to object-ori-
ented languages.

This returns us to the fundamental
approach of this column. It is not inter-
ested in history nor does it promote the
idea of a literature of great articles. It is
concerned with how new ideas emerge
in our field. Currently, there are three or
four major topics coming to the forefront
of our discipline. Among this list, I would
include quantum computing, machine
learning, and blockchain. It would be
useful to understand how these ideas
might become commonplace and affect
ordinary practitioners of our field.

Of the three, machine learning is
the most mature. It has also produced
a body of literature that closely resem-
bles that for object-oriented program-
ming. Over the past decade and a half,
researchers have published more than
100 articles in the field, including the
one that was featured in this column.
Step by step, these works show how
this technology builds on the various
subfields of computer science, such as
cybersecurity, computer vision, data
mining, and modeling. This body of
literature has produced a cohort of
practitioners who use it as their sole
means of engaging with comput-
ing technology. They may do a small
amount of conventional coding, but
they are primarily engaged in the work

 N O V E M B E R 2 0 2 1 81

of designing a neural system, collect-
ing data, training their system, and
evaluating their work.

Quantum computing has not ad-
vanced as far into our community as ma-
chine learning. It has produced literature
in Computer. This magazine has published
more than 60 articles on the subject,
though many are reports on the progress
of the technology. Of all of the topics that
are current in Computer, it could benefit
from a single prominent article, one that
focused on how to use quantum to solve
well-understood problems. We hope for
such an article, although one many not
appear until quantum environments be-
come much more common.

Blockchain is the most interesting
case of the three. It has produced a ma-
jor prominent article, though not one
published in Computer. It has also led to
a stream of publications that illustrates

how it is connected to different fields in
computer science and might solve cer-
tain problems. However, for the moment,
it remains a minor technology, one that
has yet to have a major impact on the field
of computer science.

This is part of the process of how
ideas emerge in our field. Some-
times, they are pushed forward

by a major prominent article that is
read by many members of the IEEE
Computer Society. However, others, as
was the case for object-oriented pro-
gramming, are carried forward by a
multiplicity of articles, which are writ-
ten by many members.

ACKNOWLEDGMENT
For these 2021 columns, “Body of
Knowledge” takes its information

from a report prepared by the IEEE
Publications office on 20 November
2020, and the statistics were current
as of that date. Other citation ser-
v ices ca n a nd do prov ide d i f fer-
ent numbers.

REFERENCE
1. R. G. Fichman and C. F. Kemerer,

“Object-oriented and conventional
analysis and design methodologies,”
Computer, vol. 25, no. 10, pp. 22–39,
1992. doi: 10.1109/2.161278.

DAVID ALAN GRIER is a principal
with Djaghe, LLC, Washington, D.C.,
20003, USA. He is a Fellow of IEEE.
Contact him at grier@gwu.edu.

IEEE Computer Graphics and Applications bridges the theory
and practice of computer graphics. Subscribe to CG&A and

• stay current on the latest tools and applications and gain
invaluable practical and research knowledge,

• discover cutting-edge applications and learn more about
the latest techniques, and

• benefi t from CG&A’s active and connected editorial board.

AA&&GGCC
www.computer.org/cga

Digital Object Identifier 10.1109/MC.2021.3115378

