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Our concept of causability is a measure of whether and to what 

extent humans can understand a given machine explanation. 

We motivate causability with a clinical case from cancer research. 

We argue for using causability in medical artificial intelligence 

(AI) to develop and evaluate future human–AI interfaces. 

A chieving human-level artificial intelligence 
(AI) has been the ambition since the emer-
gence of this field. Because of the availabil-
ity of big data and the necessary computing 

power, statistical machine learning, especially deep learn-
ing, has now made tremendous progress, even in domains 
as complex as medicine. For example, the work of the Stan-
ford machine learning group on dermatology1 was popu-
larized in Europe as “AI is better than doctors.” The group 
trained a deep learning model directly from dermatolog-
ical images by using only pixels and disease labels as the 

inputs for the classification of skin lesions. For pretraining, 
they used 1.3 million images from the 2014 ImageNet chal-
lenge and then 130,000 clinical images with about 2,000 
different diseases. The results, with an average classifica-
tion performance of 92%, were on par with, or even better 
than, those of human dermatologists. This is a remarkable 
achievement, and there is no question that AI will become 
very important for medicine.

Despite these impressive successes, we must be aware 
that these previous approaches rely on statistical mod-
el-free learning. Relying solely on statistical correlations 
can be very dangerous, especially in medicine, because 
correlation must not be confused with causality, which 
is completely missing in current AI. This is a general 
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problem. A specific issue is that these 
methods are so complex, high dimen-
sional, nonlinear, and nonconvex that 
it is difficult, if not impossible, even for 
domain experts, to understand how the 
results were obtained. Consequently, 
these techniques are called black-box 
models. Both problems motivate us to 
make use of the expertise of a human 
in the loop. A human expert can some-
times—but not always—contribute ex
perience, conceptual knowledge, and 
context understanding.

A very recent work on histopathol-
ogy2 showed that machine-generated 
features correlate with certain mor-
phological constructs and ontological 
relationships generated by humans. 
Such overlaps between humans and AI 
can help to solve the current problems, 
and human experience can contribute 
to improve algorithm robustness and 
explainability, which are regarded as the 
grand challenges of current AI.3 Robust-
ness is closely related to the ability to 
generalize, and it is no coincidence that 
we mention robustness and interpret-
ability together: robustness is a ubiq-
uitous feature of biological systems, 
as we humans are. It ensures that spe-
cific functions of the system are main-
tained—despite external and/or inter-
nal perturbations. We all know that our 
best machine learning algorithms are 
very fragile and sensitive to even small 
distortions, arising from the poor data 
quality in the medical domain.

Consequently, a doctor in the loop4 
will play an important role in medical 
AI, at least in the foreseeable future. 
Humans are generally robust, and they 
can sometimes add expertise, con-
ceptual understanding, and implicit 
knowledge to machine learning pro-
cesses. Although humans make mis-
takes, they can adapt quickly, impro-
vise, and exhibit a plasticity that leads 

to sensemaking and understanding in 
the context of an application domain. 
On the other hand, AI is vulnerable to 
even small perturbations. We empha-
size that the current approaches not 
only lack robustness and generalization, 
but more importantly, they are unable 
to build causal models to support deep 
understanding in the user.5 To make 
the current AI even more successful, we 
believe that we should try to take advan-
tage of the respective benefits of both 
statistical machine learning methods 
and model-based approaches. More 
precisely, we envision for the future 
to interactively integrate the existing 
implicit a priori knowledge, human 
experience, and conceptual understand-
ing of human experts into statistical 
learning methods.

This could result in a new hybrid 
approach that fully exploits the advan-
tages of data-driven machine learning 
methods and also integrates human 
conceptual understanding, according to 
individual needs and depending on the 
problem. Such an approach will require  
appropriate human–AI interfaces that 
enable seamless interaction with ma
chine learning methods. However, let 
us first summarize the achievements 
of the explainable AI (XAI) community.

EXPLAINABILITY
The XAI community is very active in 
developing methods for making black-
box approaches explainable.6 The suc-
cessful approaches focus on visualiz-
ing the elements that have contributed 
to each decision, for example, through 
heatmapping, which means highlight-
ing which input parameters contribute 
most to a certain classification result.7

Such “mechanical explanations” can 
be reached by using various procedures. 
The simplest method works with gradi-
ents as a multivariable generalization 

of the derivative, where the deep neural 
network is seen as a function and the 
explanation relies on the function’s gra-
dient, which is available from the back-
propagation algorithm.8

Another possibility is to use decom-
position methods, that is, to break up the 
more complex larger parts into smaller, 
more manageable, parts, for example, 
pixel-wise relevance propagation, lay-
er-wise relevance propagation, or deep 
Taylor decomposition. These very ver-
satile approaches also work on graph-
based data.9 Other methods include 
deconvolution, which involves revers-
ing the effects of convolution and gen-
erating from two functions a third func-
tion that is then the product of both, as 
well as guided backpropagation.10

All of these methods constitute an 
excellent preprocessing step. Here we 
want to emphasize two issues: 1) results 
are human interpretable when they clas-
sify objects on the basis of features that 
a human can perceive and understand 
and 2) in the medical domain, there is 
a pressing need for a medical expert to 
be able to understand the causality of 
a learned representation and use it for 
medical decision support. This is called 
etiology in medicine: the science of 
causes and effects of pathologies.

EXPLAINABILITY AND 
CAUSABILITY
The terms interpretation and explanation 
are often used synonymously. Before 
we introduce the concept of causability, 
we distinguish between interpretation, 
which can be defined as a mapping of 
an abstract statement into a domain or 
space that the human expert can per-
ceive, comprehend, and understand, 
and explanation, which can be defined 
as a collection of the features of the 
interpretable domain or space that 
have contributed to a given example 
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to produce a statement. In an ideal 
world, both human and AI statements 
would be identical and congruent with 
the ground truth, which is defined for AI 
and humans equally.

However, in the real world we face 
two problems. 1) The ground truth can-
not always be well defined, especially 
when making a medical diagnosis. 
2) Human (scientific) models are often 
based on causality as an ultimate aim for 
understanding the underlying explana-
tory mechanisms, and while correla-
tion is accepted as a basis for decisions, 
it must be viewed as an intermediate 
step. This is highly relevant in the med-
ical domain because of the importance 
of validity and the necessity to build 
human trust and also the need to build 
“AI experience.”11 As we have men-
tioned, the most successful algorithms 
are based on probabilistic models and 
provide only a rudimentary basis for 
establishing causal models. Conse-
quently, when we discuss the explain-
ability of a machine statement, we have 
to carefully distinguish among the fol-
lowing terms:

1.	 Explainability: In a technical 
sense, explainability highlights 
decision-relevant parts of the 
used machine representations 
of the algorithms and active 
parts in the algorithmic model 
that contribute either to the 
model accuracy on the training 
set or to a specific prediction 
for one particular observation. 
It does not refer to an explicit 
human model. 

2.	 Usability: This term refers to the 
measurable extent to which a 
system achieves a specified level 
of usability for a user with effec-
tiveness, efficiency, and satisfac-
tion in a specified context of use.

3.	 Causability: Causability is the 
measurable extent to which 
an explanation of a statement 
to a human expert achieves a 
specified level of causal under-
standing with effectiveness, 
efficiency, and satisfaction in 
a specified context of use. As 
causability is measured in terms 
of effectiveness, efficiency, and 
(human) satisfaction related to 
causal understanding and its 
transparency for an expert user, 
it refers to a human-understand-
able model.

This is always possible for an expla-
nation of a human statement, as the 
explanation is, per se, defined related to 
a human model. However, to measure 
the causability of an explanation of a 
machine statement, it must be based on 
a causal model in the sense of Pearl,12 
that is, to represent causal relationships 
and to allow inferences about those 
causal relationships from data. This is 
not the case for most AI algorithms, so a 
mapping between both must be defined. 
Here we must distinguish between the 
explainable model (XAI) and an expla-
nation interface, which makes the results 
gained in the explainable model not 
only usable but also useful to the expert. 
When is it useful? It is useful when 
the system is able to provide causes of 
observed phenomena13 in a comprehen-
sible and interactive manner. This is 
done through, for example, a linguistic 
description or question/answer dialogs 
of its logical and causal relationships, 
enabling one to understand the causal-
ity of the learned representations rele-
vant not only for sensemaking, but also 
for judging the quality of explanations. 
This might be unnecessary for certain 
areas where we want full automation, 
but for the medical domain, especially 

when trying to achieve an explainable 
medicine, this is indispensable.14

HUMAN–AI INTERFACES: 
EFFECTIVE MAPPING OF 
EXPLAINABILITY WITH 
CAUSABILITY
The key to effective human–AI inter-
action and, consequently, the success 
of future human–AI interfaces lies in 
an efficient and consistent mapping 
of explainability with causability. This 
“mapping” (or “map metaphor”) is about 
establishing connections and relation-
ships between existing areas, not about 
drawing a new map. Rather, it is about 
identifying the same, or at least simi-
lar, areas in two completely different 
“maps” of AI explainability and human 
causability. That is why mapping is a 
very good term. Effective and efficient 
mapping is necessary, but of course it 
still will not be sufficient for under-
standing an explanation. Whether and 
to what extent an explanation has been 
understood depends on additional fac-
tors, including prior knowledge and 
expectations on the human side. To fully 
understand the importance of this map-
ping, let us look at Figure 1.

In Figure 1 we see that an explana-
tion statement s can either be made by 
a human sh or a machine sm, where s is 
a function s = f (r, k, c) with the follow-
ing parameters: r, representations of an 
unknown (or unobserved) fact ue related 
to an entity; k,  preexisting knowl-
edge, which is embedded in an algo-
rithm for a machine or made up for a 
human by explicit, implicit, and/or tacit 
knowledge; and c, context, which for a 
machine is the technical runtime envi-
ronment and for a human is the physical 
environment in which the decision was 
made (the pragmatic dimension). An 
unknown (or unobserved) fact ue rep-
resents a ground truth gt that we try to 
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model with a machine mm or as a human 
mh. Such unobserved variables can be 
found, for example, in Bayesian models 
or in hidden Markov models (a special 
case of a dynamical Bayesian network).

In summary, we can state that caus-
ability as a measure of whether and to 
what extent something is understood 
consists of two parts. The first part is 
whether the human understands or 
can understand the given explanation 
at all, and the second part is to what 
extent he/she can understand it, that 
is, it is expressed in terms of measuring 
the causability of the explanation em of 
a machine statement sm under a certain 
machine model mm (see Figure 1).  

The central goal is that the state-
ment s is identical with the ground 
truth gt and that a given explanation 
of this statement is a fit to this ground 
truth. In an idealistic situation, both the 

human and the machine statement are 
congruent (mh ≡ mm) and identical to 
the ground truth, which is defined for 
machines and humans within the same 
framework. The problem in the medical 
domain is that the ground truth is not 
well defined and the most successful 
machine learning models are based on 
correlation or related concepts of sim-
ilarity and distance. All of this is prob-
abilistic in nature and therefore must 
be considered as an intermediate step 
that can only provide a basis for further 
causal model building. Explainability 
in a technical sense highlights the deci-
sion-relevant parts of the machine rep-
resentations rm and machine models 
mm, that is, the parts that contributed 
to model accuracy in training or to a 
specific prediction. It is important to 
emphasize that explainability does not 
refer to a human model mh.

Causability is the extent to which 
an explanation of a statement to a user 
achieves a specified level of causal under-
standing with effectiveness, efficiency, 
and satisfaction in a specified context of 
use. As causability is measured in terms 
of effectiveness, efficiency, satisfaction 
related to causal understanding, and 
its transparency for a user, it refers to a 
human-understandable model mh. This 
is always possible for an explanation of 
a human statement as the explanation 
is intrinsically defined related to mh. To 
conclude, to measure the causability of 
an explanation em of a machine state-
ment sm, either mh has to be based on a 
causal model (which is not the case for 
most machine learning algorithms) or 
a mapping between mm and mh must 
be defined.

As we can imagine, this is not triv-
ial because future human–AI interfaces 

FIGURE 1. The process of explanation. Explanations (e) by humans and machines (subscripts h and m) must be congruent with state-
ments (s) and models (m), which, in turn, are based on the ground truth (gt). Statements are a function of representations (r), knowledge 
(k), and context (c). (Source: Holzinger et al. 2020,15 used with permission.) 
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should allow a constant feedback, in
dicating whether and to what extent 
something has been understood, or 
not. In a human-to-human interaction, 
this feedback is very much provided by 
facial expressions. Consequently, con-
cepts of “emotional interfaces”16 will 
become an important part of future 
conversational interfaces for XAI, and 
dialog systems will become important 
for these future “explanation inter-
faces” where affective computing will 
play an important role. Generally, affec-
tive computing17 describes a system in 
which the machine interacts with a 
human by observing his/her actions 
and varying affordances accordingly. 
Here it is important to classify, filter, 
and make use of affective computing 
methods to

1.	 measure the effectiveness of 
explainability (does the user 
really understand a given expla-
nation), which can be measured 
via sensors by the success rate to 
which a given explanation has 
been understood by humans; see 
the examples in the section “A 
Clinical Case”  

2.	 adapt the visual communication 
according to the mental model (a 
priori knowledge) of the user.

Using advanced biometric technol-
ogy including 2D/3D cameras and eye 
trackers, heart sensors (for electro-
myography, electrocardiography, pho-
toplethysmography, and galvanic skin 
response), acoustic microphone arrays, 
and other sensors (potentially machine 
vision), an affective computing envi-
ronment may enhance the effective-
ness of navigation. In particular, when 
an expert user is actually reading text 
or looking at an image, the system 
will “know” how much time he/she is 

spending on what. The longer a user 
looks at a particular word, sentence, 
paragraph, or data feature, the more 
important the system will assume it to 
be for that user. A very important aspect 
lies in fusing the information from dif-
ferent sensor signals and also allowing 
the metrics of importance to be changed 
in the background, thereby automati-
cally “bringing up” features of the great-
est similarity or utility—augmented by 
a potential explanation of how and why. 
The user will similarly be able to weight 
the importance of the affective element 
via sophisticated interaction elements 
(face recognition, gestures, and so on). 
Other tools for navigating the data will 
include a virtual “important features” 
pile (possibly on the right of the screen) 
that can be selected by gaze or mouse 
click, which can interactively be over-
ridden to show any features of interest. 
Alternatively, the user data will be “cap-
tured” without any user interaction; 
that is, through a set of rich sensors, the 
“machine” will get reliable information 
about the understanding.

There are two main types of sensor 
input data: 1) facial expression analy-
sis by multiple cameras and 3D sensors 
(compare the recent developments in 
augmented reality toolkits) and 2) gaze 
patterns—which can be experimentally 
contrasted and fused with other sen-
sor data—and they can be very useful. 
These data can be used to exploit affec-
tive computing methods to massively 
improve the affordances generated by 
a system,18 using the fact that there are 
computational models that are associ-
ated with human behavior.  

In Figure 2, we outline a model for 
the information flow between humans 
and an AI system. On the interaction 
surface, which can be seen as a “bor-
der” between human intelligence and 
AI, the information flow is maximal. As 

one gradually goes “deeper” into the AI 
system, the information flow decreases; 
at the same time, the semantic richness 
(SR) of potential information objects 
increases. In traditional human–com-
puter interactions, the information 
flow is extremely asymmetrical; that 
is, much more information is shown 
by high-resolution displays compared 
to mouse and/or textual input—not to 
mention other input modalities (see the 
dotted line in Figure 2).

A CLINICAL CASE
A clinical case of lung cancer will serve 
as a practical example. The survival 
of patients with lung cancer can be 
improved by the use of immunothera-
pies directed against programmed cell 
death 1-ligand 1 (PD-L1) and its receptor 
PD-1. PD-L1 is a surface protein involved 
in the inhibition of the immune response. 
PD-L1 protein expression has emerged 
as an effective biomarker that can pre-
dict which patients are more likely to 
respond to immunotherapy.19 Whether 
a tumor can spread in the body depends 
on whether one’s immune system rec-
ognizes the degenerate cells leading 
to the tumor as a potential danger and 
attacks them. The immune system 
scans all cells to distinguish the body’s 
own cells from foreign ones. T cells 
are an important component of the 
immune system in this process. Cancer 
cells can be recognized by T cells, but 
they are not attacked by the immune 
system because they are able to cam-
ouflage themselves by producing the 
protein PD-L1. PD-L1 is like a disguise 
that helps cancer cells to conceal them-
selves and remain undetected, and one 
way to detect PD-L1 is by using immu-
nohistochemistry. In Figure 3 we see 
a typical part of a whole slide image 
that is used in an ongoing validation 
study (see the ethics declaration in the 
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“Acknowledgments”), focusing both on 
the clinical performance and also on 
the human–AI interface.

To this end, the pathologist surveys 
the tissue by encircling PD-L1 stained 
immune cell (IC) scored aggregates (the IC 
score indicates the percentage of the area 
of PD-L1 positive immune cells from the 
area of vital tumor cells). The pathologist 
then places them in relation to the tumor 
area and can estimate the percentage rele-
vant for making a diagnosis.

In Figures 4 and 5 we can see the pro-
cess assisted by an AI algorithm. With the 
results in Figure 4, the pathologist can see 
from the corner of his/her eye that the 
explanation of the algorithm is correct; 
thus, there is congruence, as previously 
explained in the model, and the patholo-
gist will be satisfied and in agreement.

However, in Figure 5, we see an image 
where the AI solution found the wrong 

FIGURE 2. On the upper part of vertical line, explanations are visualized and displayed to the user. Parallel to the visualization, 
sensor data are captured and analyzed (see the lower part of vertical line) with less information density. Only when a rich set of 
sensor inputs, for example, cameras, microphones, and movement sensors, is used can the explanation process adapt to the 
prior knowledge of the user. Semantic richness (SR) can be measured via scores and entropy measures and used for  
appropriate feedback. 

Human Machine

Displays
Human Perception

Sensors
Machine Perception

Information Flow
For Example, Bits/s

Explainability

Mental Model

SR
For Example,
SRscore, Entropy

FIGURE 3. The human pathologist sees the tumor above and below in the image. In the 
middle the stroma can be seen (the tumor identification is 100% positive). 
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tumor areas. In this case, the emotion 
on the pathologist’s face will be imme-
diately visible, and the pupil widths will 
increase, which can be easily detected 
by the sensors of modern eye-tracking 
systems. These indicators, which can 

be measured very precisely by sensors 
and are therefore also comparable, 
will show that there is no congruence 
between the explanation provided by 
the machine and the explanation of the 
human pathologist.

Statistical machine learning is 
extremely successful and has 
made AI very popular again, 

even in the complex application area of 
medicine. Whether AI will be used or 
not in this field is not up for debate; in 

FIGURE 4. (a) A visualization of the benign (nontumorous area) in the middle and the malignant (tumorous areas) above and below. (b) 
The detected positive cells are marked. If a pathologist evaluates this, he/she intuitively sees with “one look” that the explanation of the 
AI solution is correct and sufficient. In this case, there is congruence between machine and human (mh ≡ mm). 

(a) (b)

(a) (b)

FIGURE 5. (a) The same visualization method is applied, but now (b) the AI solution found the wrong tumor areas (in the middle); also the cell 
detection, for both positive and negative cells, did not work. In this case we have incongruence between machine and human. (mh  mm). 
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the future, the use of medical AI will be 
practically indispensable.

However, the most successful AI meth-
ods are so-called black boxes, which 
means that they are so complicated 
that it is difficult or even impossible for 
a human expert to understand how a 
result was obtained. Because of increas-
ing legal requirements,20 in the future 
it will be imperative for results to be 
made retraceable, comprehensible, and 
understandable to a human expert. 
The fast-growing XAI research commu-
nity has already developed a number 
of very successful methods of explain-
ability. Explainability in the technical 
sense of the XAI community means 
highlighting decision-relevant parts of 
a result. However, another important 
aspect is that these explanations do not 
refer to an explicit human model. This 
motivated us to introduce our concept 
of causability. Causability is intended 
as a measure of whether and to what 
extent something is understood, and it 
basically consists of two parts. The first 
part is whether a human understands 
or can understand a given explanation 
at all, and the second part is to what 
extent, that is, in terms of measuring, it 
is understandable by a human. Conse-
quently, causability will become import-
ant for the design, development, test-
ing, and evaluation of future human–AI 
interfaces. Such interfaces are needed 
not only for enabling a human to under-
stand an explanation, but also to capac-
itate an interaction of the human with 
the AI. This is needed because a human 
in the loop can (sometimes) provide 
conceptual knowledge, experience, and 
context understanding—which to date 
no AI can do.

In our newly established causabil-
ity laboratory, we currently study how 
pathologists make judgments and deci-
sions. Central questions include the 

following: How do physicians make 
causal judgments? What role, if any, do 
counterfactuals play in this process? 
From theory, we know that counterfac-
tual theories of causal judgments pre-
dict that people compare what actually 
happened with what would have hap-
pened if the possible cause had not been 
present. Common theories also state 
that people focus only on what actu-
ally happened to judge the mechanism 
linking the cause and the outcome. To 
test this, for example, we propose in the 
future not only to record the expert’s eye 
movements, but also to compare them 
with other circumstantial evidence rel-
evant to the decision. Here it is import-
ant to analyze in real time, and we plan 
to do this according to our causability 
model, using various methods, includ-
ing analysis of eye movements, facial 
expressions, and micromovements 
such as head nods. In this future work, 
we plan to combine and analyze these 
metrics. The results obtained will be 
useful for the development of novel 
human–AI interfaces that will benefit 
medical experts and also lead to further 
contributions to the international XAI 
research community. 
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