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Now that drones have evolved from bulky platforms 

to agile devices, a challenge is to combine multiple 

drones into an integrated autonomous system, offering 

functionality that individual drones cannot achieve. Such 

multidrone systems require connectivity, communication, 

and coordination. We discuss these building blocks 

along with case studies and lessons learned. 

Small and human-friendly drones enable novel 
applications in many domains.1,2 They assist 
rescue personnel with real-time aerial videos 
and transport urgent goods in case of disasters 

or lockdowns. They play a prominent role in precision 
agriculture and inspection of infrastructure.

First-generation drones were remote-controlled 
unmanned aerial vehicles (UAVs) with limited sensing 

and navigation capabilities. Today’s 2G systems feature 
automated waypoint flights, high-resolution sensors, 
and wireless connectivity. Third-generation drones will 
offer a higher level of autonomy in terms of navigation 
and decision making. Systems in which single drones 
operate in isolation evolve toward systems in which 
multiple drones operate collectively as an integrated 
networked system. Of course, multiple drones perform 
certain missions faster or better than a single drone. But 
beyond this, drones can coordinate and collaborate for 
new functionality that is more than the sum of its parts. 
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In aerial inspection, for example, we 
need several coordinated drones in the 
air to perceive an area simultaneously 
from different viewpoints and then 
exchange and fuse the data.

Such multidrone systems (MDSs) 
have been the subject of our research at 
the University of Klagenfurt, Austria,  
for more than 10 years (go to uav.aau.
at). This article addresses the three key 
building blocks required to transform 
multiple single drones into an MDS: 
connectivity, communication, and 
coordination. Connectivity provides the 
hardware and software for wireless 
interconnection among the drones and 
to the ground; communication handles 
data distribution on top of connectiv-
ity; and coordination manages the tasks 
that need to be executed. We discuss the 
functionalities and design challenges of  
these blocks, considering the limited 
onboard resources; report about three 
case studies with different implementa-
tions of the building blocks; and conclude 
with a discussion of lessons learned.

FROM SINGLE SYSTEM 
TO MDS
The basic data processing on board a  
typical drone follows a sense-process- 
act cycle executed at multiple levels. 

Low-level f light control samples and 
fuses the data from sensors—such as 
an inertial measurement unit, a global 
navigation satellite system (GNSS), a 
barometer, and cameras—and exe-
cutes control algorithms to set the 
actuators for the rotors at rates of 
100–1,000 Hz. It stabilizes the drone 
in position and attitude and provides 
basic control modes, such as man-
ual and waypoint flights. Advanced 
flight control can be assigned to mid-
level processing. It exploits additional 
sensors—such as more cameras and 
range sensors—to monitor the nearby 
surroundings and react to obstacles. 
Additional data fusion and object detec-
tion are required, typically processed 
at a rate of 2–30 Hz. Data from cameras 
and related sensors are used to generate 
map-like representations of the envi-
ronment, which serve as input to long-
term reasoning on how to complete the 
overall mission. Long-term reasoning 
is essential for increased autonomy and 
includes learning, planning, and opti-
mization. The timing requirements for 
high-level reasoning are more relaxed 
than those for low-level control.

Figure 1 depicts the architecture  
of an MDS with the extended sense- 
process-act cycle in each drone. The blue 

arcs indicate the dataflow from the  
sensors to the actuators, and the blocks 
represent the key functional units. The 
central block subsumes the onboard 
high-level processing, including the 
encoded knowledge and the available 
reasoning. This knowledge includes 
information about the drone (for 
instance, sensing and motion capabili-
ties, position, and attitude), its environ-
ment (such as map data and positions 
of other drones and objects), and the 
mission (for example, routes and tar-
get positions). The knowledge is pro-
vided before the mission begins and 
is continuously updated during the 
mission. The orange components in 
Figure 1 depict the fundamental com-
ponents for converting the individual 
drones into an MDS. Communication 
distributes data among the drones and 
relies on the connectivity components. 
Coordination is responsible for shar-
ing knowledge among the drones and 
adapting the reasoning techniques such 
that drones jointly act toward complet-
ing the mission.

An MDS is a distributed, embedded  
system with tight, real-time requirements 
and dynamically changing constraints 
on processing, sensing, and energy. 
Thus, all functions must be well aligned 

FIGURE 1. The architecture of an MDS: the fundamental data processing of individual drones is expanded by the essential functional-
ities of connectivity, communication, and coordination.
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with the available resources and mis-
sion requirements. In some settings, the 
available resources on board are insuf-
ficient, making it necessary to offload 
the computation along with the relevant 
data to a ground station or other infra-
structure at the edge of the network. Fig-
ure 2 shows the distributed processing 
in an MDS, where computation can take 
place either on or off board.

The offloading of computations must 
consider the additional latency. The 
decision for a transfer is based on the 
turnaround time of the offboard com-
putation T, which can be estimated as

T P

S

D

R
2 ,τ= + + � (1)

where P represents the onboard pro-
cessing time, S the speedup of edge 
over drone computation, τ the commu-
nication delay, D the amount of trans-
ferred data to and from the offboard 
unit, and R the data transfer rate.

COORDINATION
Coordination is concerned with sharing 
knowledge, joint decision making, and 
allocation of computation tasks to pro-
cessing nodes. Different levels of coor-
dination exist—ranging from high-
level functions, like the assignment of 
system-wide tasks and resources, down 
to low-level control, like collision avoid-
ance, flight formations, and joint sen-
sor usage for state estimation. The way 
coordination is resolved in a particular 
MDS strongly depends on the mission 
type and the importance of different 
constraints. In fact, the design space 
is huge: different constraints have to 
be taken into account, such as energy, 
connectivity, deadlines, and physical 
payload. Furthermore, varying means 
of realization (offline versus online, 
centralized versus decentralized, fixed 
versus adaptive, and explicit versus 
implicit data exchange) and optimiza-
tion methods are used.3

Offline coordination occurs before 
the mission begins, often casts the 
mission as an optimization problem 
with various constraints, and exploits 
advanced optimization or approxima-
tion techniques to find (near-)optimal 
solutions.4 The computational effort 
for offline coordination is less critical, 
but it can leverage information about 
the mission only before it starts. For 
example, unexpected changes caused 
by the system dynamics or failures 
must be compensated for by online 
techniques during the mission. 

The computational effort becomes 
more important for online coordi-
nation. In centralized online coordi-
nation, a single entity is responsible 
for the coordination and therefore 
requires complete information about 
the mission’s evolution. In distrib-
uted online coordination, processing 
occurs at multiple entities, each with 
partial information about the mission. 
Self-organization represents a special 
case of distributed online coordina-
tion, where a coherent group behavior 
emerges from multiple drones execut-
ing simple rules.

WIRELESS CONNECTIVITY
MDSs need robust, high-rate, and low-la-
tency connectivity to transfer com-
mands, images and videos, and other 
data. Various communication tech-
niques, protocols, and systems have 
been studied in this context.5,6 Since 
Wi-Fi does not always meet the require-
ments of drone applications, there is a 
demand to integrate drones into cur-
rent and future cellular networks. A 
key observation in current systems is 
that aerial devices are served by the 
sidelobes of the base station anten-
nas. Therefore, they typically experi-
ence lower throughput than ground 
users and establish line-of-sight radio 

FIGURE 2. Computation in an MDS takes place locally (onboard processing of local data) 
and in collaboration with other drones (onboard processing of data received from others). 
Because of resource constraints, computations may be offloaded to an edge computing 
infrastructure or a ground station.
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links to distant base stations nor-
mally invisible to ground users. These 
untypical links cause problems as they 
lead to interference7 and frequent han-
dovers.8 The performance suffers, in 
both up- and downlink, affecting even 
normal ground users, especially when 
many drones are deployed. Experi-
ments made with a drone connected 
to a commercial 4G network show 
that the average downlink throughput 
drops from 65 Mbit/s at the ground to 
about 20 Mbit/s at a typical flight alti-
tude of 150 m in a certain setup.9

These challenges have been taken 
up by the 3rd Generation Partnership 
Project standardization, where dif-
ferent working groups want to ensure 
that 5G networks meet the demands 
of drone applications. Once wire-
less connectivity solutions have been 
deployed, drones can communicate 
over this infrastructure with a high 
rate and low latency to exploit it for 
other purposes, such as computation 
and data fusion.

COMMUNICATION
A communication component in every 
drone is responsible for exchanging 
and distributing sensed data, con-
trol, and coordination information to 
the ground and other aerial devices. 
Communication must support other 
components, especially local process-
ing and overall coordination activ-
ities, to reach a satisfactory system 
performance.10 The data to be com-
municated are diverse (for example, 
in terms of size, utility, priority, and 
sender–receiver patterns) and depend 
on the specific mission, but they typi-
cally involve images, image fragments 
or descriptors, maps, status infor-
mation, mission objectives and com-
mands, and traffic involved in joint 
decision making and coordination. 

Decisions and communication pro-
cesses must happen in real time with 
constraints in terms of computation 
and energy.

In the multirobot systems commu-
nity, communication is often framed 
as optimizing data distribution, that 
is, deciding what data to exchange 
when, how, and with whom to achieve 
good overall system performance 
while minimizing resource utiliza-
tion. Our work addresses the close 
interdependence of communication, 
coordination, and sensing10 and pro-
poses a utility model to evaluate and 
optimize communication strategies.11 
Other approaches come from optimi-
zation, transport, and game theory, 
among other fields.12

Edge computing offers interesting 
options for offloading processing tasks 
from drones. Some of these options 
are 1) offloading naturally centralized 
tasks, for example, building an overall 
map from individual map fragments 
provided by the MDS devices; 2) off-
loading heavy computations, such as 
image feature detection and tracking 
in a vision-based navigation MDS mis-
sion; and 3) offloading the full low-
level control cycle of the drones plus 
their coordination, for instance, when 
very resource-constrained drones act 
only as “flying sensors.” In all cases 
and as indicated in (1), the wireless con-
nectivity must guarantee high data 
rates. More importantly, the require-
ments on low-latency communica-
tion and swift responses from the edge 
increase for the three examples given, 
with the latter one representing a true 
5G use case of ultrareliable low-la-
tency communication.

MULTIDRONE CASE STUDIES
Our three case studies differ signifi-
ca nt ly i n i mplement i ng t he M DS 

functionalities of coordination and 
connectivity but share similarities 
in low-level processing and appli-
cation scenarios.

Area monitoring
Drones equipped with cameras moni-
tor an area of interest to assist rescue 
personnel in a disaster situation. The 
drones fly periodically over the area, 
capture images, and send them to a 
ground station, where an overview 
image is generated and analyzed. At 
the beginning of the mission, the oper-
ator specifies the area of interest and 
parameters such as no-fly zones, tar-
get resolution, and priority regions in 
an electronic map.

The system applies offline coordi-
nation with relaxed timing require-
ments. In particular, area partitioning, 
allocation of positions for image cap-
turing, and route planning are mod-
eled as a mixed-integer linear program-
ming problem approximated using 
advanced heuristics at the ground 
station. The resulting f light plans 
are uploaded to the drones before the 
mission begins. During the mission, 
the drones automatically follow their 
plans, capture images at the requested 
quality, and send them to the ground. 
The operator can follow the updates 
of the overview image during mis-
sion execution.

Connectivity and latency of image 
delivery are critical for rescue oper-
ations. To reduce latency, especially 
in areas with low connectivity, we 
progressively encode the images in 
multiple quality levels on board and 
perform a prioritized data transfer to 
the ground. Each image is split into 
different layers containing different 
resolution parts scheduled for deliv-
ery in five priority queues. Low-resolu-
tion parts of newly covered areas have 
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top priority, and high-resolution parts 
have lower priorities. Each priority 
queue is a first-in, first-out queue, and 
an image layer is transferred only if all 
higher priority queues are empty. Fig-
ure 3 depicts the effect of prioritized 
data delivery. Even if a drone is mon-
itoring an area with low connectivity 
[green traces of the drones’ routes in 
Figure 3(a)], the delivery of high-prior-
ity data is hardly stalled, and low-res-
olution images become available at 
the ground station immediately after 
image capturing, except for images 
from drone 3 (UAV3) during mission 
period [70, 160] s in Figure 3(b). How-
ever, the delivery of full-resolution 
images from drones 2 and 3 is signifi-
cantly delayed [Figure 3(c)].  

Disaster situations often extend 
over wide areas that cannot be covered 
by a single ground station. For this rea-
son, it makes sense to augment coordi-
nation with connectivity and plan the 
flight routes such that connectivity 
is maintained via relay drones to the 
ground station.4 Since this routing 
problem is NP-hard, we apply coop-
erative planning heuristics that effi-
ciently find routes with short overall 
coverage time.

Emergent patterns
There are many phenomena in nature 
where entities coordinate in a self-or-
ganizing way. Important examples 
are synchronization (coordination in 
time) and swarming (coordination 
in space). These two processes were 
treated largely independently from 
each other until a mathematical model 
was proposed that introduced an inter-
action between them.14 For example, 
neighboring entities may synchronize 
faster, and entities in close synchronic-
ity may attract each other in space. The 
entities defined in this model, called 

FIGURE 3. Prioritized data delivery for area monitoring. (a) Computed flight routes  
and received signal strength indicator (RSSI) values, (b) top priority data received over 
mission time, and (c) complete image data received over mission time. (Adapted from 
Wischounig-Strucl and Rinner13, with permission from Springer.) 
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swarmalators, emerge into different 
types of spatiotemporal patterns.

We ad apted a nd ex tended t he 
swarmalator model for use in mobile 
robotics.15 Besides being visually attrac-
tive, the formation of such patterns 
is also beneficial for stereophotogra-
phy, artistic drone shows, and other 
applications. Our doctoral students 
implemented the model on Crazyflie 
quadcopters and showcased an aerial 
swarm in our dronehall (see Figure 4). 
The main challenge in transferring 
from theory to practice is to map the 
t i me-cont i nuous, delay-f ree cou-
pl i ng model into a time-discrete, 
delay-robust protocol for resource-ef-
ficient interaction.

Using this approach, drones can 
form 2D and 3D patterns—like circles 
or spheres, either static or moving. 
The patterns emerge without explicit 
programming of the flight paths and 
are self-adaptive, which means that 
drones leaving or joining the for-
mation are hand led by t he sys-
t e m .  T h e  online algorithm can, in 
principle, run either on board or cen-
trally through a ser ver. It involves 
the exchange of low-volume data 
(positions and temporal states) but 
requires robust connectivity.

Autonomous navigation
Autonomous navigation requires that 
drones reliably localize themselves, 
find efficient routes to target posi-
tions, and safely move along these 
routes. Ideally, all this functional-
ity is available in the MDS and works 
in unknown environments without 
human inter vention. Today’s route- 
planning approaches often use classi-
cal sampling-, grid-, or learning-based 
methods.16 Navigation relies predomi-
nantly on visual and inertial sensor 
data and is complemented by GNSS 

data where available. An edge server 
may support the drones beyond just 
vision-based navigation tasks and 
serves as an entity to ensure colli-
sion-free movement and create a con-
sistent overall map. Significant com-
putational power on the edge server 
is required to justify off loading. In 

addition, low-latency, high-rate con-
nectivity is necessary to transmit the 
high-volume data to the edge.

We analyzed a standard vision-
based navigation algorithm (multi-
state constraint Kalman filter) and 
studied three options for offloading 
low-level localization tasks to an edge 

FIGURE 4. Drones fly as swarmalators in the Klagenfurt dronehall. In this example, they 
emerge into the pattern “static async,” a static disk with uniformly distributed, spatially 
sorted temporal states (colors). (Photo by D. Waschnig for the University of Klagenfurt; 
used with permission.)
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server: complete onboard processing, 
complete offloading to the edge, and 
partial off loading.18 Analyzing (1) 
helps to assess the three options. The 
onboard processing capacity of the 
current small drones is insufficient 
for accurate and fast vision-based 
drone navigation. Only low-resolu-
tion images can be analyzed, leading 
to inaccurate state estimation and 
low state update rates of only a few 
hertz. Full offloading requires high 

uplink data rates R, low latencies τ, 
and significant processing power S at 
the edge, as envisioned in 5G systems. 
Only if these conditions apply will full 
transfer of high-resolution images and 
processing on the edge improve the 
accuracy and agility of drone flights. 
Up to a certain uplink rate, partial 
of f loading is bet ter t han f ul l of f-
loading for a given edge computing 
power. Unti l f ul l 5G performance 
with uplink data rates of several 

hundreds of Mbits/s becomes avail-
able, exploring and utilizing partial 
off loading options will be preferable 
in our case studies.

T he d i s t r i b ut ion of  lo w-le ve l 
navigation and localization tasks 
within the MDS represents another 
alternative for improving resource 
efficiency. Furthermore, collabora-
tively analyzing all available sensor 
data leads to superior performance of 
the MDS compared to local data anal-
ysis of multiple drones. We investi-
gated collaborative state estimation 
methods,17 which enable drones to 
move seamlessly along their routes 
in areas with heavily distorted or 
even unavailable sensor signals. The 
required information, such as the 
global position, is then propagated 
through other drones operating in 
areas well covered by GNSSs (Fig-
ure 5). This allows the MDS to explore 
areas noncollaborative drones can-
not reach. Collaborative state estima-
tion is a task with challenging pro-
cessing and latency requirements. It 
requires a complex interplay between 
communication and coordination to 
decide what data must be propagated 
to the drones in weakly covered areas. 
This propagation must happen in a 
probabilistically consistent fashion 
to maintain overall consistent and 
robust swarm-state estimation. Modu-
lar multisensor fusion19 can be used to 
tackle this issue. Naive data exchange 
ha rd ly scales, as ever y encounter  
with another drone requires additional 
book keeping of each other’s state 
uncertainty. Our approach17 linearly 
scales with the number of drones in 
the system yet shows consistent esti-
mator behavior.

Table 1 summarizes the case stud-
ies with respect to the essential MDS 
building blocks.

FIGURE 5. Estimated trajectories demonstrating collaborative state estimation of drones 
D1 and D2 in red and green, respectively. D1 obtains absolute position measurements, 
whereas D2 receives only relative position measurements from t = 5 s on (explaining the 
large estimation errors in the beginning before the relative measurements). (Adapted 
from Jung et al.17.) 
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TABLE 1. A summary of case studies.

Area monitoring Emergent patterns 
Autonomous  
navigation 

Coordination Centralized offline 
planning before mission; 
independent flights 
without coordination 
during mission 

No flight planning; 
distributed or 
centralized online 
coordination during 
mission 

Hybrid distributed/
centralized (edge) 
online coordination; 
offloading decisions 

Connectivity Data transfers to ground 
only; no interdrone 
connectivity required 

Low-rate connectivity 
between drones or to 
ground station 

Low-latency, high-rate 
connectivity including 
drones and edge 

Communication Decisions as to which 
image quality layer(s) 
to transfer and when to 
do so

Simple periodic exchange 
of position data and 
temporal states 

Offloading decisions 
and data transfer; 
complex data exchange 
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MULTIDRONE APPLICATIONS
Multidrone applications will have a 
multibillion U.S. dollar market poten-
tial20 and achieve significant socio-
economic impact.1 However, to reach 
broad application, many challenges 
still need to be solved. They include 
general issues, such as security, auton-
omy, and robustness, but also many 
application-specific aspects. Table 2 
compares application domains with 
their key performance indicators 
(KPIs) and states some challenges for 
the building blocks connectivity, com-
munication, and coordination. Several 
surveys2,3,5 provide an in-depth dis-
cussion on applications.

LESSONS LEARNED
We draw the following lessons from 
our experience in experimental MDS 

research in general and the case stud-
ies in particular.

The building blocks of  
MDSs are strongly 
application dependent
The low-level control of a drone today 
relies on well-established algorithms 
and commercial off-the-shelf com-
ponent s. However, developi ng a n 
MDS requires an application-specific 
design of the high-level functional 
blocks due to the diverse mission spec-
ifications and differences in the drone 
capabilities. Suitable algorithms for 
reasoning, coordination, and com-
munication must be selected indi-
vidually, which requires an assess-
ment on a case-by-case basis as to 
whether the relevant resource require-
ments can be fulfilled.

Collaborative sensing  
is an alternative to  
resource-intensive drones
The payload of aerial vehicles needs 
to be carefully selected. Any added 
weight reduces the drone’s endurance 
and agility. Depending on the mission, 
lightweight drones in the MDS may be 
more effective and increase endurance 
and reachability. Such drones obtain 
information through collaborative 
state estimation from heavier drones 
with more capable sensors but ener-
gy-saving flight behavior.

Edge computing drives 
advanced drone control but 
requires high uplink rates
Autonomous systems can readily ben-
efit from edge computing, for exam-
ple, for vision-based drone navigation. 

TABLE 2. Multidrone applications and challenges for connectivity, communication, and coordination.

Application Characteristics and KPIs
Connectivity and  
communication challenges Coordination challenges 

Monitoring Drones capture data from medium-size areas; 
preplanned routes with online adaptation;  
limited time 
KPI: coverage time 

3D wireless connectivity; prioritized 
data transfer for state updates 

Communication-aware, dynamic 
route planning; collaborative state 
estimation and navigation; edge 
computing support 

Search and  
rescue

Heterogeneous drones explore large areas for  
long missions; real-time analytics; user interaction 
KPIs: detection time/rate; quality of service 

Reliable and low-latency wireless 
connectivity; wide radio coverage; 
high-volume multimedia data transfer 

Decentralized online planning; 
self-organized decision making; 
dynamic resource management 

Delivery Drones deliver goods from depots to customers; 
high level of autonomy; continuous operation 
KPIs: throughput; waiting time 

Robust wireless connectivity 
(spoofing, jamming, and so on); 
secure data communication 

Large-scale system optimization; 
continuous safety monitoring 

Networking Drones provide temporary radio access; preplanned 
coverage 
KPIs: network connections; bandwidth 

Integration into existing networks; 
radio resource management; 
handovers; multitier and cross-layer 
network design 

Demand-driven relay placement 
(dynamic network planning); 
resource management (bandwidth, 
energy, transmit power, and so on) 

Entertainment Drones create dynamic formations; preplanned 
routes; tight timing and position constraints 
KPIs: formation size and speed 

Scalable network topology; position-
aware communication 

Dynamic coalition forming; 
collaborative positioning 
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High-rate uplinks are crucial in this 
setting, enabling fast, high-resolution 
image transfer to and processing on an 
edge server and, eventually, accurate 
and agile flights. Low network latency, 
substantial edge processing perfor-
mance, and reliability are relevant as 
well. 5G networks are expected to pro-
vide the conditions for agile autono-
mous flights in the years to come.

Experimental research on MDSs 
is complex but worth the effort
Hands-on research with several drones 
is demanding but pays off in the long 
run. Ideally, it is carried out by an inter-
disciplinary team with researchers from 
robotics, control engineering, commu-
nication and networking, computer 
vision, signal processing, and software 
engineering. Flight operations of mul-
tiple drones must meet a wide range of 
regulatory and safety requirements. 
Research on real-world problems in 
actual environments provides import-
ant insights that cannot be gained 
by purely mathematical and simula-
tion-based work. In this way, relevant 
topics are fed back into basic research.

W ireless connectivity, com-
munication, and coordina-
tion are the building blocks 

to transform single drones into an  
MDS. Its special feature is that drones 
collaborate as an integrated system, 
where the team behavior is more 
important than individual actions. 
This collaboration provides function-
ality that would be impossible with 
individual drones. However, this fea-
ture does not come free: the building 
blocks must be carefully designed, 
taking into account their mutual 
interactions and the resource con-
straints of the drones. 
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