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ARTIFICIAL INTELLIGENCE/MACHINE LEARNING

A dversarial machine learning (AML) is a recent 
research field that investigates potential 
security issues related to the use of machine 
learning (ML) algorithms in modern artificial 

intelligence (AI)-based systems, along 
with defensive techniques to protect 
ML algorithms against such threats. 
The main threats against ML encom-
pass a set of techniques that aim to 
mislead ML models through adver-
sarial input perturbations. Unlike 
ML-enabled crimes, in which ML 
is used for malicious and offensive 
purposes, and ML-enabled security 
mechanisms, in which ML is used 
for securing existing systems, AML 
techniques exploit and specifically 
address the security vulnerabilities 
of ML algorithms.

Consider, for example, an auto-
matic surveillance camera that uses 
certain ML algorithms. The system 

monitors people entering and leaving a building in real 
time. A person wearing a special T-shirt walks by the build-
ing, but the camera does not detect the person’s presence, as 
the T-shirt has a special pattern that effectively conceals the 
person from the camera. Such a pattern can be constructed 
and optimized against the target system by leveraging 
attack algorithms developed in the AML research field.1
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One of AML’s early real-world appli-
cations was spam filtering. Over time, 
ML-enabled antispam filters learn from 
the users’ reactions, such as marking 
legitimate emails as spam or recover-
ing misclassified spam emails as legit-
imate, to refine the filtering function. 
Under this scenario, attackers can ex-
ploit the learning process of the spam 
filter by manipulating the content of 
their spam emails, for instance, by in-
jecting good words typically present in 
legitimate email but not in spam. This 
eventually causes the antispam filter 
to misclassify legitimate emails con-
taining such words as potential spam. 
The filtering performance of the ML 
algorithm may thus decrease consider-
ably, consequently causing the user to 
disable the antispam filtering service. 
The attack we just described is widely 
known as a poisoning attack, and it as-
sumes that the attacker can manipulate 
the training data to subvert the learning 
process. Poisoning attacks are one of the 
most relevant AML attack techniques. A 
systematic study on AML was first per-
formed in 2006.2 Since deep learning 
techniques, which are a subset of ML, 
achieve excellent results in various in-
telligent tasks, AML attacks to mislead 
deep learning techniques have become 
a very active area of research. An infor-
mative summary of AML development 
over 10 years is available,3 and the de-
rived key insights include reactive and 
proactive security mechanisms. AML 
has been established as a new family of 
attacks against ML. The National Insti-
tute of Standards and Technology (NIST) 
was the first to systematically organize 
and describe the taxonomy family of 
AML.4 The current NIST report presents 
major AML technologies developed in 
the academic community.

MAJOR ATTACK 
CATALOG OF AML
An ML’s lifecycle can be described as 
two main phases: 1) the training phase, 

where the training data and ML model 
configurations are input to generate a 
trained model as the output, and 2) the 
operational phase, where the trained 
model is deployed into services and 
the deployed model is activated. In 
some special scenarios, such as online 
learning, in which the operation input 
and user feedback are continuously in-
put as the training data to update the 
model, the operational phase is looped 
back to the training phase. The exam-
ple given earlier about the antispam 
filter, which is continuously updated 
based on the user’s feedback, can be 
regarded as a paradigmatic example 
of online learning. Based on the ML’s 
lifecycle, five major categories of AML 
attacks are presented as follows (and 
illustrated in Figure 1):

› Poisoning attacks: As described 
in the example of the antispam 
filtering service, poisoning 
attacks manipulate the training 
data to degrade the performance 

of ML services. In particular, 
such attacks can aim to either 
degrade the overall performance 
of the system, causing a denial 
of service, or allow specific mis-
classifications during operation 
(for example, only targeting a 
specific user or set of samples). 
Poisoning attacks are conducted 
during the training phase, 
assuming that the attacker can 
inject poisoning data samples 
into the training set used to 
learn or update the deployed 
model. Data-driven ML-based 
systems, which strongly rely on 
the quality and representative-
ness of the training data sets, 
can indeed be very sensitive to 
poisoning attacks. In the ex-
ample of the antispam filtering 
service, when the performance 
degrades beyond a certain level, 
the service becomes useless or 
even harmful. This implica-
tion is applicable for various 
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FIGURE 1. Major AML attacks. Evasion and privacy attacks are staged during operation 
and include manipulation of operational data to either evade detection or obtain con-
fidential information about the ML model or its users (for example, via model stealing 
and data extraction attacks); feedback from the ML model is typically required to refine 
the attack samples iteratively. Poisoning and backdoor attacks additionally require the 
attacker to manipulate the training data and/or the ML model under design.
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applications such as malware 
detection and network-based 
intrusion detection.

 › Backdoor attacks: These attacks 
are accomplished in two steps. 
First, special patterns are em-
bedded in the targeted model 
during the training phase, 
which is typically achieved by 
poisoning training data. Second, 
the attack is activated during 
the operational phase by feeding 
an input with a trigger into 
the targeted model. The model 
then provides a maliciously 
predefined output. For instance, 
a backdoor ML-based road sign 
classifier can misclassify a stop 
sign as a speed-limit sign. Here, 
the stop sign is patched with a 
special sticker that functions 
as the trigger. Because open-
sourced training data and 
pretrained models are popular 
and widely used, they are prone 
to manipulations and exposed to 
the threat of backdoor attacks.

 › Evasion attacks: Attackers care-
fully craft perturbed input, the 
so-called adversarial examples, to 
mislead the targeted ML model 
into outputting an incorrect 
prediction. A typical example of 
image-based evasion attacks in 
cyberspace is that a dog image 
with adversarial-crafted noises 
may be identified as a cat image. 
Special T-shirts or eyeglass 
frames that evade ML-based 
security and biometric authen-
tication is another example of 
image-based evasion in the real 
world. The evasion attacks indi-
cate that, although ML models 
are efficient, they have limita-
tions. Furthermore, adversarial 
examples exhibit transferability. 
An adversarial example gen-
erated against an ML model is 
effective against other models 
when these models operate on 
the same or similar tasks.

 › Model stealing attacks: These 
attacks are conducted in the 

operational phase. By querying 
the targeted model, the attackers 
can generate an approximation 
of the original model, whereas 
the attackers may be able to 
obtain model parameters by ex-
ploiting system vulnerabilities. 
Both of these attack approaches 
allow attackers to conduct strong 
evasion attacks on the targeted 
model. Model stealing attacks 
also cause concerns of intellec-
tual property theft.

 › Data extraction attacks: In these 
attacks, the attackers attempt 
to invert training data out of 
the targeted model or at least 
distinguish whether a given da-
tum belongs to the training data 
or not during operation. When 
the targeted training data, such 
as bioauthentication informa-
tion and medical records, are 
sensitive private data, extraction 
attacks cause serious data pri-
vacy violations. For instance, an 
approximated facial image can 
be reconstructed from a name 
and query access to the facial 
recognition system.

Various ML services and applications 
are vulnerable to different threats. For 
instance, a cloud-based ML service us-
ing a large-sized model may face model 
stealing attacks in which attackers can 
steal the model’s capability. An end-de-
vice ML application using a small model 
may face model stealing attacks in which 
attackers can simply extract model pa-
rameters from the device by exploiting 
system vulnerabilities.

TOWARD REAL-WORLD 
AML ATTACKS
The aforementioned attacks are first 
developed in laboratories and then 
gradually adopted in various (nearly) 
real-world applications in different 
business domains. A gap exists be-
tween the technical results from lab-
oratories and the real-world attacks. 
However, some attacks are proving 
exceedingly effective. These attacks 

are propagated by using real-world 
training data or by mapping AML at-
tack techniques in the physical world. 
Here, we introduce a collection of those 
(nearly) real-world attacks.

 › Real-world text-based poisoning 
incident: Tay was designed as 
an ML-based chatterbot for the 
18- to 24-year-old demographic 
and deployed on Twitter in 
2016.5 Tay rapidly learned from 
online conversations but elicited 
unintended effects. Tay started 
delivering offensive and hurtful 
tweets after being poisoned by 
adversarial interactions with 
other malicious twitters. Tay 
was shut down only 16 h after 
its launch.

 › Real-world audio-based evasion 
attacks: Adversarial examples 
are developed for automated 
speech recognition systems in 
the physical world. For in-
stance, in the attack on Mozilla 
DeepSpeech speech-to-text 
automated speech recogni-
tion,6 the addition of nearly 
inaudible noises resulted in the 
system recognizing the wave-
form of any sentence as the 
targeted sentence. This attack 
requires full knowledge of the 
targeted model. An advanced 
audio-based evasion attack, 
called Devil’s Whisper, was sub-
sequently developed to target 
commercial speech recognition 
devices; this attack approach 
required zero knowledge of the 
model parameters.7 Four speech 
API services, including Google 
Cloud Speech-to-Text, Micro-
soft Bing Speech Service, IBM 
Speech-to-Text, and Amazon 
Transcribe, were targeted. These 
examples indicated that attacks 
can be launched on connected 
intelligent devices such as 
Google Assistant, Google Home, 
Microsoft Cortana, and Amazon 
Echo. Adversarial examples 
containing inaudible command 
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audio clips are indistinguish-
able from clean audio clips. 
Therefore, attackers can activate 
some services through inaudible 
commands without the real user 
being aware.

 › Real-world image-based evasion 
attacks: Adversarial examples 
targeting image classifica-
tions and object detectors were 
developed in the physical world. 
To evade image classifiers, 
objects in the real world are 
patched with 2D printed phys-
ical perturbations.8 The main 
determinants of the effective-
ness of the attack were various 
environmental conditions 
such as varying distances and 
angles. Experimental results of 
physical perturbations on road 
sign classifiers in the field have 
revealed high attack success 
rates within certain ranges of 
distances and angles. Object de-
tection tasks detect and classify 
multiple objects. For instance, 
a front-facing, vehicle-mounted 
camera detects multiple road 
signs and traffic lights and 
classifies them. Physical pertur-
bations evading YOLO v2 object 
detectors have been developed to 
render stop signs invisible.9 Ex-
perimental results revealed that 
these attacks can be effectively 
launched indoors and outdoors 
in a laboratory environment. 
Despite physical attacks on ML 
models that have been demon-
strated effectively, current 
analyses have been limited to 
reporting few paradigmatic 
examples, while a large-scale 
analysis on the effectiveness and 
concrete impact of such attacks 
on ML models is still lacking.

 › Real-world lidar-based evasion 
attacks: Three-dimensional adver-
sarial examples have been devel-
oped in the physical world. A 3D 
adversarial example is first care-
fully crafted and 3D printed as a 
physical object.10 This 3D physical 

object evades the targeted vehi-
cle-mounted lidar detector system 
such that it is invisible to the 
system. Subsequently, this attack 
evolves to be more powerful. The 
3D-printed physical object can ex-
tend invisibility to its immediate 
neighboring objects.11 By placing 
a 3D-printed adversarial example 
object on top of a vehicle, the vehi-
cle becomes (partially) invisible to 
the targeted lidar detector system.

 › Real-world model stealing attacks: 
The imitation of real-world 
machine translation production 
systems from Google, Bing, and 

Systran constitutes real-world 
model stealing attacks.12 Approx-
imations of the original models 
are developed using a collection 
of query-response data from 
machine translation services. The 
ultimate purpose of the attacks 
is to evade machine translations. 
Adversarial examples are gener-
ated from the imitation models 
and then applied online on the 
targeted models. Experiments 
conducted on English-to-German 
machine translations revealed 
that adversarial examples are 
effective in real-world systems. 
An effective adversarial example 
is the translation of “Save me, it’s 
over 102 °F” by Google into “Rette 
mich, es ist über 22 °C.” This effec-
tively changed the temperature 
from 102 °F to 72 °F.

INITIAL COUNTERMEASURES 
AGAINST AML THREATS
AML attacks have emerged as novel 
threats to safety, security, and privacy. 
The importance of securing ML systems 
against adversarial attacks has gained 

considerable attention not only in the 
academic research community but also 
in industry and standardization orga-
nizations. We summarized three main 
types of initial countermeasures against 
AML threats.

 › Threat analysis: An initial threat 
analysis provides an overview of 
the threats encountered by ML-
based services and facilitates the 
identification of interfaces for 
system developers and service 
providers. Microsoft and MITRE 
derive and maintain a frame-
work of AML threat matrix as a 

reference tool13 of known attack 
techniques against ML systems 
to assist security analysts. Ten-
cent also publishes an AI threat 
matrix report (currently only 
available in Chinese), in which 
known attacks are presented 
and initial defense suggestions 
are provided.14 Based on a cus-
tomized threat analysis, suitable 
security controls can be decided 
and applied to mitigate potential 
AML threats.

 › Mitigations: ETSI Industry 
Standard Group of Securing 
Artificial Intelligence (SAI) 
has developed a work item, 
ETSI-SAI-005-GR, which is a 
technical report of mitigation 
strategy.15 This report describes 
mitigation approaches, such 
as data sanitization, adver-
sarial example detection, and 
model hardening, against the 
introduced five attacks. It also 
collates and summarizes exist-
ing defense techniques against 
AML threats. Those mitigations 
can build strategies to prevent, 

The importance of securing ML systems against 
adversarial attacks has gained considerable attention 

not only in the academic research community but 
also in industry and standardization organizations.
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detect, or respond against  
AML threats.

 › Security by design: This approach 
is recommended as a proactive 
security mechanism. Thus, 
proactive security is achieved by 
embedding security design and 
implementation into the ML de-
velopment and operation lifecy-
cle. The security, development, 
and operations (SecDevOps) 
from the software development 
lifecycle is adopted. In the 
context of ML development and 
operations, the process also 
includes continuous integration, 
delivery, and training. Limited 
studies have investigated this 
topic. Embedding security 
requirements in system design, 
implementing security controls, 
and verifying whether security 
requirements are satisfied are 
three major steps in this ap-
proach. Embedding security re-
quirements in the system design 
may be regulated by legislation. 
Implementing security controls 
and verifying whether security 
requirements are satisfied re-
quire strong technical support of 
security hardening and security 
testing techniques.

As ML systems and services have 
become a part of daily life, consider-
able progress has been achieved in 
the development of advanced tools to 
ease the securing of ML against AML 
threats. It is still an arms race, and 
hence there is a long way to go.

W e have discussed AML at-
tack techniques, their i m-
pl icat ions i n rea l-world 

applications, and initial countermea-
sures. Various communities of differ-
ent business domains should perform 
further research in AML and imple-
ment suitable mitigations for ML-
based systems and services. More than 
making the ML-based systems just 
secure, an endeavor should be made 

toward making them trustworthy. More 
challenging topics such as explain-
ability, fairness, and accountability 
should be addressed. We hope to discuss 
them further in the future. 
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