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Robots have spread from manufacturing floors to spaces 

occupied by humans. Although robots in these settings 

may improve the way humans work, the programming 

by hand of collaborative robots in such environments is 

increasingly difficult. We predict that recent breakthroughs 

in large-scale simulations, deep reinforcement learning, 

and computer vision collectively bring forth a basic level 

of cognitive abilities to robots that will lead to significant 

improvements of robotic applications over the next few years.

To maintain a safe environment, robotic appli­
cations traditionally restrict people from hav­
ing access to the work area while the robots 
are active. Consequently, various uses requir­

ing human intervention cannot be automated by robotic 

systems because such systems are unable to adapt 
to the many types of human behavior. However, im­
proved basic cognition in robots will enable them to 
function in work areas previously occupied only by 
their human counterparts. Equipped with a sensorimo­
tor feedback loop, including force feedback, collision 
detection, and computer vision, they will be safe at work 
alongside people.
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Recent advances in the field of ma­
chine learning and computer vision, 
including object detection, deep reinforce­
ment learning, and imitation learning, 
combined with large-scale simulation in 
virtual reality are enabling robots to adapt 
more quickly to an ever-changing set of 
tasks. Freed from programming by hand, 
we predict that 2020 will be the year 
when progress in cognitive abilities, that 
is, the ability to sense, understand, and 
interact, will lead to new and significant 
improvements in robotic applications.

IMPACT
Cognition impacts numerous applica­
tion domains for robotics, including pick 
and placement, tending, manufactur­
ing tasks, inspection, and collabora­
tion and assistance.

Pick and placement
Pick and placement is the task of picking 
a physical item from a bin and placing 
it in a different location. Surprisingly, 
despite the pervasiveness of robots in 
manufacturing, pick and placement 
remains dependent on human labor. It 
is also one of the most recurrent tasks 
performed by workers and can lead to 
repetitive strain injury.

Pick and placement is commonly 
found in the packaging process of prod­
ucts. Before products leave a manu­
facturing facility, they must be prop­
erly prepared for shipment. This may 
include shrink-wrapping, boxing, and 
packaging. Typically, these tasks are 
repetitive and involve small payloads, 
making them ideal for robots. In many 
industries, however, frequent prod­
uct changeover makes it impossible 
to keep up with the reprogramming 
of these robots. Even innocuous prod­
uct changes may require time-con­
suming program changes. Cognitive 
skills, including sensing and computer 

vision, allow for the quick adaptation of 
robots to changing production lines. 
Examples of additional cognitive skills  
include transfer learning, which en­
ables a system to benefit from what it 
learned in one domain and apply it in a 
new domain, and continuous learning, 
which allows for the system to improve 
in perpetuity.1

Tending
Tending to machines is a task that is 
highly dependent on human labor. Op­
erators are required to stand and watch 
machines for hours to address sudden 
operational needs. This includes tool 
changes or supplying raw materials. 
Having a robot take the tedium out 
of this task is challenging due to the 
wide range of scenarios that the robot 
is required to handle. Traditional robot 
programming does not scale to this 
need; however, by training a cognitive 
robot on a very large set of simulated 
scenarios, it may be able to handle and 
generalize common tasks to such an 
extent that it can safely handle unusual 
events never previously encountered.

Manufacturing tasks
Manufacturing tasks play an import­
ant role in production lines and are 
often handled by people. Examples of 
these tasks include gluing, dispensing, 
welding, and finishing. A tool is often 
required to carry out the task and inter­
action with the product can be difficult. 
Manufacturing tasks often require sig­
nificant training for new workers.

Conventional programming of robots 
for handling manufacturing tasks is very 
challenging. The key reason is because 
the successful execution of these tasks 
inherently relies on a feedback loop 
involving the proper application of force, 
repetition, accuracy, and vision. In static 
settings, such as long-lasting production 

lines, it is feasible to automate this type 
of task, but the moment we face rap­
idly changing product dimensions and 
shapes, conventional reprogramming 
ceases to scale. A cognitive robot could be 
trained to master a welding technique, 
independent of the product’s dimensions.

Inspection
A quality inspection of parts usually 
involves the use of high-resolution im­
ages for comparison against bench­
mark models. Cognitive robots are able 
to effectively probe objects in a rapidly 
changing production line without costly 
reprogramming. They can even learn 
from their own inspections and become 
increasingly skilled at detecting faults.

Collaboration and assistance
Without the cages and barriers that 
surround traditional robots, collab­
orative robots and people share the 
same workspace. One of the benefits of 
collaborative robots is that their preci­
sion, power, and endurance are com­
bined with the individual skills and 
abilities of people.

The interactions required between 
humans and robots to jointly accom­
plish a task put immense demands on 
the robot’s cognitive skills. Evolution 
has equipped humans with a wide range 
of tools for collaboration, including the 
use of language, gestures, touch, and 
facial expressions to facilitate interac­
tion. Robots must support many of these 
communication methods to effectively 
and naturally collaborate with or assist 
a human.

Imagine a nursing robot that is tasked 
with feeding a patient. Not only should 
the robot be able to follow the patient’s 
head movements, it would also need to 
understand the subtle signals that indi­
cate when the patient is ready for the 
next piece of food. The robot must be able 
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to clearly interpret the patient’s voice, 
facial expressions, and gestures to safely 
carry out its task. The robot may also be 
required to express itself through voice, 
gesture, and graphical interfaces.

TECHNOLOGY CHALLENGES
We have identified a necessary para­
digm shift when it comes to develop­
ing robots with cognitive skills. These 
systems are so intricate that they are 
practically impossible to program by 
hand. Instead, we must mimic nature 
and leverage the biological concept 
of learning from experience. For this, 
we use a variety of machine-learning 
techniques. At its core, machine learn­
ing is driven by large amounts of data, 
also known as experience. Such experi­
ence may come from real-world inter­
actions or through simulation.

Synthetic environments
It is not always safe nor scalable to 
train robots in their physical environ­
ments. Aside from the obvious risks 
of robots destroying themselves and 
injuring nearby humans, wall clock 
time is simply too slow of a method to 
generate enough data within a reason­
able timeframe. Physical trials are slow 
and costly, and the learned behaviors 
henceforth are very limited. Therefore, 
we mimic the physical environment in 
3D game-like simulators, such as Uni­
ty’s real-time 3D rendering platform.2 
Deployed in a highly scalable cloud 
infrastructure and running at a speed 
of several thousands of data frames per 
second, the equivalent of hundreds of 
years of experience can be generated in 
a matter of hours.

Simulated environments feature 3D 
space, time, and basic physical proper­
ties in an integrated setting, as shown 
in Figure 1. With the creation of static 
environments, like the floor, walls, and 

ceiling, we provide a framework for 
the dynamic generation of scenar­
ios involving the robot, people, and 
moveable objects. By training a virtual 
robot in countless situations such as 
low-probability scenarios, it is the objec­
tive of the system to learn to generalize 
from these scenarios and safely handle 
future, yet unseen, scenarios. Further­
more, when the training is performed 
in a simulated environment in which 
core physical properties, namely, grav­
ity, friction coefficients, and the objects’ 
visual appearances, are randomized, 
it becomes apparent that the learned 
models successfully transfer to the 
physical robots despite being trained 
entirely in simulation.3 This technique 
is also known as domain randomization.4

Procedural content generation5 is 
used to systematically generate scenar­
ios. This includes novel and random sce­
narios that need not be anticipated by a 
human knowledge engineer. The sheer 
scale of the simulation allows for many 
low-probability scenarios to be included 
in the data generation process. Addi­
tionally, real-world data, for instance, 
the sun’s position, cities, weather, and 
traffic patterns, can be used to inform 
the scenario’s creation.

Simulation environments can also 
feature a wealth of simulated sensors, 

including a variety of cameras and lenses, 
lidar, radar, and sonar. High-fidelity graph­
ics and realistically generated signals 
ensure compatibility with the equivalent 
sensors in the physical world.

Learning methods
In cognitive robotics, it is our desire to 
provide robots with cognitive skills sim­
ilar to those of humans and animals. As 
such, we must take an inclusive view of 
the system, including its motor and per­
ceptual systems as well as its environ­
mental interactions. The acquisition of 
knowledge through actions or percep­
tion is an important focus of cognitive 
robotics research.7

Let us use imitation learning as a 
starting point for teaching robots people 
skills. The goal of imitation learning is 
to mimic the human behavior used for a 
given task. Employing human demon­
strations, a robot is trained to perform 
a task by learning a mapping between 
observations and actions.8 Demonstra­
tions in connections with virtual reality 
and motion capture permit the efficient 
and scalable recording of demonstration 
data. Having an experienced human 
operator provide good examples to learn 
from speeds up the process of learning 
for a performant model.

Deep reinforcement learning rep­
resents an important step toward build­
ing cognitive systems with a higher level 
understanding of the physical world. In 
the past few years, reinforcement learn­
ing has scaled to previously intracta­
ble problems, in particular, learning to 
play video games directly from pixels.9 
Although deep reinforcement learn­
ing is essentially learning from the sim­
ple trial-and-error method, it possesses 
a great capacity to learn to solve compli­
cated tasks “from scratch” without any 
handcrafted rules. We refer to this as 
tabula rasa, or learning from a clean slate. 

FIGURE 1. A simulated robotic environ-
ment.6 (Source: Unity Technologies; used 
with permission.)
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This learning technique is extremely 
data hungry, and its success has pri­
marily been driven by the availability of 
large-scale simulations.

Imitation learning and reinforce­
ment learning can be combined with 
curriculum learning. It is well known 
that people learn better when training 
examples are not randomly presented 
but, rather, systematically organized 
in a manner that introduces and illus­
trates more (complex) concepts in a 
gradual manner. A similar phenome­
non is found in machine learning, as 
experiments have shown that signifi­
cant improvements in learning can be 
achieved this way.10 For example, to 
train a packaging robot, one would first 
train it to simply move an object from 
one place on a table to another. When 
it has learned that task, one would con­
secutively introduce the conveyor belt, 
followed by the bins, and finally, the 
packaging container.

There are some classes of problems, 
specifically, very sparse reward spaces, 
that become intractable for reinforce­
ment learning with random explora­
tion. However, recent breakthroughs 
in modeling human and animal curios­
ity has demonstrated that these limita­
tions can be overcome.11 It is inherently 
difficult to implement robots that must 
interact with fragile objects. A common 
approach has been to penalize the robot 
for nongentleness, which can be defined 
as excessive impact force. However, solely 
penalizing the robot impairs learning 
in a significant way because the robot 
will then avoid all contact with the envi­
ronment. We have seen approaches that 
employ curiosity and deep reinforce­
ment learning to train models that are 
gentle during exploration and task exe­
cution. Based on the predicting force­
ful contacts, the concept of curiosity 
has a further benefit: It encourages 

exploration the same way that children 
engage in physical risk-seeking play to 
probe their boundaries.12

Machine theory of mind
Because robots and people will work 
in close proximity to each other, we 
must draw inspiration from nature as to 
how people successfully interact with 
each other. People’s ability to predict 
the intentions of others is essential for 
productive social interactions. Under­
standing the behavior of other people 
is a very important skill. Developments 
in neuroscience suggest that distinct 
regions of the brain encode personality 
traits that have evolved through long-
term evolution and that the brain com­
bines these traits to represent individ­
uals with whom we meet and interact. 
The brain then uses this personalized 
model to predict the behavior of people 
in novel situations.13

Recent research has demonstrated 
the aptitude to train a machine to build 
such models too. These systems use 
metalearning to build models of the 
agents it encounters, from observations 
of their behavior alone.14 The capacity 
for learning rich models of others will 
improve decision making in complex, 
collaborative robotic systems. This is 
an area ripe for new developments due 
to the varying definitions of cogni­
tion and the inherent intricacy of the 
human cognitive system, whose work­
ings are not yet fully understood.15

Safety
The International Organization for 
Standardization (ISO) published a stan­
dard16 that provides guidance for collab­
orative robot operation where a robot 
system and people share the same work­
space. In such operations, the integrity 
of the safety control system is important, 
particularly when system parameters, 

for instance, the speed and force, are 
controlled. According to the ISO stan­
dard, a comprehensive risk assessment 
is required to assess not only the robot 
system itself but also the environment 
in which it is placed.

Having safety standards and regu­
latory oversight in place is important 
for the widespread adoption of cogni­
tive robotics applications. For people to 
effectively interact with these devices, 
they must trust them. For a patient to 
be nursed by a robot, he or she cannot 
fear it. Regulatory safety standards 
also provide guidance to developers of 
cognitive robots and will provide them 
with a cross-industry safety framework 
to operate within.

Hardware
In the most recent decade, the robotics 
field has observed increased diversity 
in the hardware technology available 
for robotics applications beyond the tra­
ditional domain on factory floors. Ver­
satile robotic arms with grippers and 
suction cups, notably, the desktop-sized 
UR5 arm from Universal Robots,17 are 
making their way into manufactur­
ing (see Figure 2). Among the more 
advanced examples of robotic hard­
ware are human-like robotic hands, for 
example, the Dexterous Hand from the 
Shadow Robot Company.18 Other areas 
of rapid development include a wide 
variety of sensors, such as pressure, 
vision/imaging, lidar, sonar, and radar. 
The reduced cost of acquisition, owner­
ship, and maintenance, combined with 
ease of use, will accelerate the develop­
ment of cognitive robotics.

Software
The open source software movement 
has helped spur research in robotics 
as well. One notable effort is the robot 
operating system (ROS), which helps 
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create robot applications.19 ROS is 
not actually an operating system but, 
rather, a middleware framework for 
designing robot software. It consists of 
a collection of tools, libraries, and con­
ventions, with the objective of simpli­
fying the task of creating complex and 
robust robot behavior across a wide 
variety of robotic hardware platforms.

Gazebo is an open source robot sim­
ulator that makes it possible to test algo­
rithms, design robots, perform regres­
sion testing, and train machine-learning 
systems using realistic scenarios.20 
Gazebo tests robots in virtual indoor 
and outdoor environments and consists 
of a combination of a physics engine, 
graphical rendering, and programma­
tic interfaces.

RoboMaker, a cloud offering from 
Amazon Web Services,21 is a solution for 
robot development that centers on ROS 
and Gazebo and removes some of the hur­
dles that robot developers face. There is 
less software to install, and the scalability 
of the cloud enables large-scale parallelism 

in simulation. Adjacent services, includ­
ing video streaming, object recognition, 
voice command and response, and data 
collection, are available for integration 
with robotic applications.

The successful integration of middle­
ware, simulation, and machine-learn­
ing open source packages, in combi­
nation with the scale and convenience 
of the cloud, may disrupt the software 
development process for robot applica­
tions and make cognitive robots a real­
ity sooner rather than later.

RISKS TO PREDICTION
As discussed previously, numerous new 
and rapidly evolving technologies are 
available to aid with cognitive robot­
ics. As a result, this prediction is not 
entirely without risk. We believe that 
risks may arise from the key areas of 
learning methods, model transparency, 
and safety and regulation.

Learning methods
Recently, we have seen considerable 
growth in research into machine-learning 
methods, where drastically new innova­
tions are the norm, rather than the excep­
tion. Although significant resources 
continue to pour into the robotics field 
from governments, academia, and corpo­
rate initiatives, we may risk encountering 
presently unknown limitations of deep 
learning,22 a technology that has been a 
significant driver behind most of the prog­
ress made in recent years.

Another area of concern is the valid­
ity of purely synthetic training data. 
Robotics simulation is still a young 
and emerging field. It may be that we 
cannot generate the quality and rele­
vant training data needed to properly 
model the physical world. Generated 
scenarios may not lead to sufficient 
generalization for the robot to effectively 
interact with humans.

Model transparency
Cognitive robots use deep neural net­
works often described as opaque black 
boxes that, generally, are uninterpreta­
ble. Even if we have a complete descrip­
tion of all their weights, it is, in most 
cases, impossible for humans to even 
partially understand what patterns they 
are exploiting or know of potentially 
embedded f laws. Because we expe­
rience deep interaction and collabo­
ration with cognitive robots, the need 
to better understand these underlying 
models may slow the deployment of 
this technology.

Robustness and predictability have 
been a recurring theme for robotic 
development; machine learning dra­
matically challenges that mind-set. 
The meaning of certification, source 
code auditing, and bug fixes changes 
as a result of this new technology. 
This may create adversarial situations, 
which can severely delay the adoption 
of cognitive robots.

Safety and regulation
Previously, we mentioned safety and regu­
latory initiatives as a positive endeavor 
and something that can help accelerate 
the development and adoption of cog­
nitive robots. However, we may also be 
only one terrifying accident away from 
“putting the brakes” on this technology. 
Having robots and humans interacting 
and engaging in mutual physical contact 
carries an inherent risk. The developers of 
these technologies must be cognizant 
of safety considerations and collaborate 
on the methods and best practices neces­
sary to foster deep interaction among peo­
ple and robots.

W hether robots must rapidly 
adapt to changing produc­
tion and packaging lines 

FIGURE 2. A desktop-sized UR5 arm.17 
(Source: Universal Robots; used with 
permission.)
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or engage in direct collaboration with 
humans, cognition is poised to thrive 
in the field of robotics. A number of 
technological areas expected to accel­
erate the cognitive abilities of robots 
was presented in this article. A shift 
from conventional programming to 
the use of large-scale simulations, 
deep reinforcement learning, and 
computer vision is likely to provide 
a basic level of cognitive abilities to 
robots, which will lead to significant 
improvements in robotic applications 
over the next few years. Regulatory 
safety initiatives may temporarily 
slow the progress in this area as may a 
slowdown in the previously fast-paced 
field of machine learning and artifi­
cial intelligence. 
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