
70 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 1 6 / $ 3 3 . 0 0 © 2 0 1 6 I E E E

VIRTUAL ROUNDTABLE

What Happened to
Formal Methods for Security?
Kim Scha� er and Je� rey Voas, National Institute of Standards
and Technology

A panel of seven experts discusses the state

of the practice of formal methods (FM) in

software development, with a focus on FM’s

relevance to security.

In a 1996 article, formal methods
(FM) advocate Tony Hoare asked,
“How Did Software Get So Reli-
able without Proof?”1 Twenty years

later, in the same vein, we wondered:
How did software get so insecure with
proof? Given daily media accounts
of new malware, data breaches, and
privacy loss, is FM still relevant to
 security—or was it ever?

To explore whether the application
of FM is as suitable for today’s “build
it, hack it, patch it” mindset as it has
been for safety-critical system design,
we posed seven questions to a panel
of seven experts: Paul E. Black of the
National Institute of Standards and
Technology (NIST); Connie Heitmeyer

of the US Naval Research Laboratory
(NRL); Joseph Kiniry of Galois, Inc.;
Karl Levitt of the University of Cali-
fornia, Davis; John McLean of NRL;
Eugene Spa� ord of Purdue University;
and ICT executive Joseph Williams.
See the “Roundtable Panelists” sidebar
for more information about the panel
members. Their unique personal in-
sights are presented below.

FM Suitability for Security

Computer: FM has been highly success-
ful in safety-critical systems over re-
cent decades. It’s claimed that much of
that success stems from such systems

being deployed in regulated indus-
tries. If you agree with this claim, it
begs two questions: is FM well suited
to security concerns, and is assurance
primarily the result of compliance and
self-governance?

Joseph Williams: FM has indeed been
successfully applied to safety- critical
systems. One reason is the overwhelm-
ing evidence that it results in safer
systems. The application of FM also
satis� es a legal burden of proof re-
garding due diligence. It’s likely that
as researchers endeavor to squeeze
more accuracy out of their analyti-
cal models— for example, for pricing
or voice translation—FM will � nd a
niche, but such instances will inevita-
bly be market driven.

Eugene Spa� ord: Failures in safety-
critical systems are costly, so invest-
ment in better design and use of tools,
including FM, is economically justi-
� ed. Currently, security issues in most
non–safety-critical systems, except
some highly regulated ones, don’t have
the same economic pressures and

A U G U S T 2 0 1 6 71

constraints. Most consumer software
development still stresses time to mar-
ket rather than quality. The burgeon-
ing Internet of Things is moving even
further in this direction.

Market pressure is thus unlikely
to have much e� ect. Regulation and,
eventually, higher insurance costs
could make a di� erence. However,
putting a monetary � gure on secu-
rity and privacy breaches is di� cult,
and most losses to date seem to be
temporary— few or no signi� cant com-
panies have gone out of business be-
cause of poor security.

Paul E. Black: Yes, FM is well suited to
security concerns. Modeling and com-
plete evaluation can discover problems
that testing or human review wouldn’t.

FM will only answer posed ques-
tions, and models are limited re� ec-
tions of reality. Hence Donald Knuth’s
warning, despite the application of
FM, to beware of bugs in code: “I have
only proved it correct, not tried it.”
Nevertheless, methods based on logic
and mathematics can greatly increase
the security of most software.

FM aims to do the job correctly in the
� rst place by reducing the need for ex-
tensive testing and uncertainty in the
test schedule. Software with signi� -
cantly fewer bugs also helps preserve
the developer’s reputation and mini-
mizes the costs of recalls or patches.

John McLean: Security certainly has
a large compliance component: ver-
i� cation can’t prevent a hacker from
gaining access to a system if users
choose easily guessed passwords.
However, time-consuming compli-
ance requirements, such as keeping a
system’s patches up to date, stem from
implementation bugs that could have
been prevented by formal methods.
FM can detect programming mis-
takes leading to security vulnerabili-
ties, such as bu� er over� ows, as well
as subtle errors that permit side- or
covert- channel attacks.

Ironically, what makes FM—or any
sort of veri� cation—di� cult makes

formal analysis so important: secu-
rity, unlike functional correctness,
isn’t always easy to specify. That’s
why some of the earliest applications
of FM to computer security focused
on models— formal security speci-
� cations and analyses—rather than
code veri� cation.

Joseph Kiniry: While a small number
of regulated industries have “forced”
the application of FM, I believe that
the vast majority of FM work is unre-
lated to aircraft and driverless trains.
In fact, virtually all of our work is for
customers outside of these industries.

FM is extremely well suited to secu-
rity concerns. Galois’s 50-odd technol-
ogists spend most of their time solving
our customers’ R&D challenges, and
many of those solutions result in tools
that our customers use henceforth to
solve their correctness and security
challenges rather than pointwise solu-
tions to their immediate problems.

Traditional compliance and process-
centric evaluations are a good means
by which to ensure system correctness
or security. Organizational use of an
ISO 9001–certi� ed process has little to
no weight with our customers. What
constitutes evidence of a system’s cor-
rectness and security is a set of con-
crete technical artifacts that can be
evaluated by arbitrary third parties,
preferably in an automated fashion.
Formal and traceable speci� cations,
theorems, and proofs hold far more
weight than checklists and hand-over-
heart promises.

Connie Heitmeyer: There are many
notable successes in applying FM to
safety-critical systems. For exam-
ple, NASA has e� ectively applied it to
aerospace software.2,3 However, the
use of FM in developing and evalu-
ating safety-critical software is still
an exception and far from the state of
the practice. The US and other govern-
ments regulate safety-critical systems,
such as nuclear power plants, avionics
systems, and medical devices such
as pacemakers and infusion pumps.

Similarly, they also regulate security-
critical systems. Since the 1970s, for-
mal modeling and formal veri� cation
have been applied to security-critical
systems—in many cases, to satisfy
government regulations.4–7 FM is just
as well suited to security concerns as it
is to safety concerns.

Karl Levitt: FM proofs have been ap-
plied successfully to safety-critical
systems because such systems lack
unnecessary complexity. Systems
for which security is important typi-
cally are built on complex commercial
software. Lightweight FM has been
applied for security. Many current
attacks could be thwarted through
identi� cation of vulnerabilities—for
example, bu� er over� ows could be
prevented through code analysis, and
SQL injection through formal analysis
of SQL queries at runtime with respect
to speci� cation of allowable queries.

The Department of Defense Trusted
Computer System Evaluation Criteria,
or Orange Book, posed various levels
of certi� cation. The requirement that
code be subject to the kind of checking
for vulnerabilities o� ered by various
static analysis tools is worth consid-
ering. Similarly, protocols could be re-
quired to be analyzed.

FM and Time to Market

Computer: Minimizing time to market
for apps and consumer, online, and re-
tail market IT systems is a major con-
cern in product releases. To our knowl-
edge, FM doesn’t have the reputation
of decreasing time to market. Is this
a misconception, or is there another
viewpoint to consider?

Spa� ord: This is the general percep-
tion. Although the higher quality of
software designed with FM arguably
means faster development and less
time debugging and patching, there’s
insu� cient evidence of that being the
case in typical software production
environments. Current development

72 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

VIRTUAL ROUNDTABLE

depends on legacy software, which
wasn’t developed with FM, nor is it
amenable to retrospective FM. Few
developers know FM, and it isn’t com-
monly taught in college. High-assurance
development doesn’t add obvious value
in most vertical processes. Together

these factors suggest that there’s little
awareness or interest in employing FM
more widely.

Levitt: No, this isn’t a misconception.
Many organizations look askance at
any activities that delay the realization

of working code. Of course, we “formal
methodists” claim that the early dis-
covery of errors can save much effort
downstream in the form of recalls.

McLean: Some studies indicate that
extra time spent upfront applying FM

ROUNDTABLE PANELISTS
PAUL E. BLACK is a computer scientist in the Software Quality Group, Systems and
Software Division, Information Technology Laboratory, at the National Institute of
Standards and Technology. He has nearly 20 years of industrial experience developing
software for integrated circuit design and verification, assuring software quality, and
managing business data processing and has published in the areas of static analysis,
software testing, software configuration control, networks and queuing analysis, FM,
software verification, quantum computing, and computer forensics. He also founded and

edits the online Dictionary of Algorithms and Data Structures (www.nist.gov/dads). Black received a PhD in
computer science from Brigham Young University. He’s a member of ACM and the IEEE Computer Society
and a Senior Member of IEEE. Contact him at paul.black@nist.gov.

CONNIE HEITMEYER heads the Software Engineering Section of the Center for High
Assurance Computer Systems at the US Naval Research Laboratory (NRL). Her research
focuses on the formal modeling and analysis of critical software systems using software
tools. She has published more than 150 technical papers covering a range of software-
related research topics including requirements modeling, specification, and validation;
formal verification using model checking and theorem proving; invariant generation;
model- based test generation; security modeling; and real-time computing. A frequent

invited speaker on software topics, Heitmeyer is the chief designer of NRL’s Requirements Toolset, a set of
tools for modeling, specifying, validating, and verifying critical systems adopted by more than 200 industry,
government, and university groups. Heitmeyer received an MA in mathematics from the University of
Michigan. She’s an IEEE Fellow and a member of ACM. Contact her at constance.heitmeyer@nrl.navy.mil.

JOSEPH KINIRY is the Research Lead at Galois, Inc., of several programs—Rigorous
Software Engineering, Verifiable Elections, High-Assurance Cryptography, and Audits-
for-Good—as well as the CEO and Chief Scientist of Free & Fair, a Galois spin-off focusing
on high- assurance election technologies and services. Prior to joining Galois in 2014, he
was a full professor at the Technical University of Denmark, where he headed the
Software Engineering section. He has extensive experience in FM, high-assurance
software engineering, foundations of computer science and mathematics, and informa-

tion security. Specific areas that he has worked in include software verification foundations and tools,
digital election systems, smart cards, smartphones, critical systems for nation states, and CAD systems
for asynchronous hardware. Kiniry received a PhD in computer science from Caltech. He’s a member of
ACM, IEEE, the IEEE Computer Society, the American Mathematical Society, and USENIX. Contact him at
kiniry@galois .com.

 A U G U S T 2 0 1 6 73

doesn’t increase total development
time due to the time saved debug-
ging faulty software later. However,
FM does lock in a development sched-
ule with a relatively late- appearing
testable version of the complete
system, reducing f lexibility. If I’m

developing an app and learn that my
competition is going to release its
version next month, I might be will-
ing to release a relatively buggy ver-
sion this month to be first to market.
If I employed FM, that buggy version
might not be available.

The NRL’s Jim Kirby notes that a
fundamental challenge to the US gov-
ernment and the economy in general is
growing dependence on software cou-
pled with an inability to quickly and
affordably create and sustain quality
software, where “quality” refers to low

KARL LEVITT has been a professor in the Department of Computer Science at the
University of California, Davis, since 1986. From 2005 to 2009, he was also a program
director at the National Science Foundation, where he helped manage various security
research programs and participated in interagency activities involving security. Levitt
was previously at SRI International, where he was director of the Computer Science
Laboratory from 1983 to 1986. With UC Davis colleagues and students, he participated
in some of the early work on intrusion detection, including the first work on specification-

based intrusion detection. His current research is focused on the generalization of intrusion detection to
systems and networks that can also respond to detected attacks to minimize the risk to an operational
model. He has had a longstanding interest in FM for program verification and for testing supported by
symbolic evaluation. Levitt received a PhD in error-correcting codes from New York University. He is a
member of ACM and the IEEE Computer Society. Contact him at levitt@cs.ucdavis.edu.

JOHN MCLEAN is superintendent of NRL’s Information Technology Division (ITD) and
helped create ITD’s Center for High Assurance Computer Systems, establishing and
heading its Formal Methods Section. As principal investigator for several NRL research
projects, he published widely in the areas of FM and formal modeling for computer
security. He has also held positions as an adjunct professor of computer science at the
University of Maryland, the National Cryptologic School, and Troisième Cycle
Romand d’Informatique. McLean received an MS in computer science and a PhD in

philosophy from the University of North Carolina at Chapel Hill. He has served as an associate editor
of Distributed Computing, the Journal of Computer Security, and ACM Transactions on Information
and System Security and is a Senior Member of IEEE. Contact him at john.mclean@nrl.navy.mil.

EUGENE SPAFFORD is a professor in the Department of Computer Science and
founder and executive director of the Center for Education and Research in Information
Assurance and Security (CERIAS) at Purdue University. His current research focuses on
computer and network security, cybercrime and ethics, technology policy, and the social
impact of computing. Spafford received a PhD in information and computer science
from Georgia Tech. He’s editor in chief of Computers & Security; a Fellow of IEEE, ACM,
the American Association for the Advancement of Science (AAAS), and the International

Information Systems Security Certification Consortium (ISC)2; and a Distinguished Fellow of the Informa-
tion Systems Security Association (ISSA). Contact him at spaf@purdue.edu.

JOSEPH WILLIAMS is the ICT sector lead and policy advisor for the State of Washing-
ton’s Governor Jay Inslee. He’s a seasoned technology executive who recently has been
working with numerous companies grappling with the business and economics of
cloud computing. His research agenda has lately focused on the use of collaboration
technology to enable workplace and workforce redesign. Williams received a PhD in
business from the University of Texas at Austin. He is a member of IEEE. Contact him at
joseph.williams@commerce.wa.gov.

74 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

VIRTUAL ROUNDTABLE

software defect rates as well as secu-
rity, robustness, and throughput. Half
of cyber vulnerabilities are software
defects, and the cost of avoiding and
mitigating software errors approaches
$100 billion annually. And this doesn’t
even begin to address the problem of
sustaining software.

Williams: A lamentable aspect of
FM is the drag it imposes on time to
market. Newer tools can close the gap,
but there’s no denying the added time
cost. So, in a typical context, the race
to minimum viable product doesn’t
really allow for FM. That said, as prod-
ucts and offerings mature, increas-
ing accuracy and system robustness
become key differentiators. Mature
products and services will also de-
mand the better security practices af-
forded by FM.

Black: FM likely won’t reduce time
to market because many releases are
driven by preset calendar dates, not by
quality targets.

Heitmeyer: The benefit of using FM
is greater confidence in a software
product’s security or safety. The in-
creased cost and time needed for FM
can be reduced. First, FM might only
be applied to a small portion of the
software. In one NRL project,8 formal
modeling and verification were only
applied to the small code segment that
implemented the separation kernel,
which mitigated each memory access
to ensure that data separation wasn’t
violated. Second, model checkers can
significantly reduce the time and ef-
fort needed to check for security and
safety violations. Third, tests that
are systematically generated from
a formal model9 can eliminate the
redundancy often found in conven-
tional software testing, reducing the
number of tests and the time needed
for testing.

Kiniry: The time to market for a
high-assurance product depends on
five main factors:

 › What is the technology framing
of the product or service? Does it
use “reasonable” foundations that
lend themselves to formal verifi-
cation? Was the system built from
scratch for high assurance?

 › What level of assurance is neces-
sary? Is it enough to prove that
the system will never crash, or
must we formally verify how it
behaves? What class of adver-
sary must be considered in the
system’s threat analysis and
security requirements?

 › Is new research necessary to ac-
complish the rigorous engineer-
ing of a product or service?

 › Is there a team with the exper-
tise to directly execute a project?

 › With the emergence of machine-
checkable assurance evidence,
can testing and evaluation done
by governing agencies and their
proxies—think FIPS (Federal
Information Processing Stan-
dard) labs and voting system test
labs—be made more efficient,
improving time to market?

In 15 years of applying FM in R&D,
it’s our experience that the design and
development of high-assurance sys-
tems is at least as expedient as alterna-
tive approaches, and sometimes more
efficient. Note that the team’s quality
is very much a factor.

FM versus Testing

Computer: Testing currently is the pri-
mary means to support claims that
specific security policies have been im-
plemented properly. Should FM become
the dominant approach? If so, how do
we introduce this change, and how
should it be combined with testing?

Williams: The state of testing is in
disarray, not from a lack of tools or
methodology but from the relentless
pressure to release and public accep-
tance of rapid release of patches and
updates, which penalizes deep testing.

Obviously, in fields such as safety or
security, testing is still a paramount
concern. The economic costs of secu-
rity lapses that lead to breaches will
likely drive the increasing application
of FM to large-scale software develop-
ment. Three costs arise from breaches:

 › commercial impact (for exam-
ple, Target),

 › downtime and distraction (for
example, Sony Pictures), and

 › legal liability (for example, any
of the many HIPAA breaches).

The rise of sophisticated pricing/
risk models is making it clear to data-
driven companies that incorporating
FM into their testing environment pro-
duces superior results.10

Spafford: I don’t see FM replacing test-
ing in general use in my lifetime. I also
don’t see developers adding FM unless
it’s shown to be highly cost-effective.
That includes learning the techniques,
acquiring the tools, and using the tools
without any significant cost increase
over current methods. FM would also
have to be shown to be incrementally
effective—adding new features should
be quick rather than requiring reitera-
tion of the whole method.

I don’t see developers throwing out
all that legacy code and redoing it us-
ing FM without some very significant
forcing function. There needs to be ei-
ther a suite of FM tools that’s fast, easy
to use, and applicable to the legacy code
and methods in use or a stringent regu-
latory requirement (and cost-recovery
pathway) to motivate adoption.

Gradual FM adoption or use in some
vertical processes is possible, espe-
cially in “new” areas that don’t depend
on minimal development time and cost
and thus can avoid legacy code reuse
and the “penetrate and patch” mindset.

Kiniry: Testing and quality-assurance
methods aren’t a path toward high
assurance. Providing high assurance
in the real world, both in terms of a
system’s correctness and its security,

 A U G U S T 2 0 1 6 75

requires FM. That said, FM feeds test-
ing and vice versa. Testing and FM ar-
en’t at odds, but instead complement
each other. The goal of testing has less
to do with the properties of the system
than with the properties of the verifica-
tion. Model validation—ensuring that
formal models accurately reflect valid
assumptions about the real world—is
the key to formal verification, and the
most realistic means to validate mod-
els is to compare them against real-
world conditions using testing.

FM is becoming the dominant ap-
proach to creating high-assurance
systems, but it’s doing so as part of the
integrated development environment,
programming language, or software
engineering philosophy currently in
vogue—what my colleague Dan Zim-
merman and I call “secret ninja” FM.11

Levitt: Testing supported by analysis
and tools is lightweight FM. To auto-
mate testing, assertions can be sup-
plied against which executing code
can be evaluated; the assertions can
capture security properties, such as
access control or acceptable flows.
Test cases can be created manually or
automated via symbolic evaluation to
identify code paths that could affect
security assertions and to generate
test cases that could cause the security
assertions to be false.

Heitmeyer: FM can be applied to a
small part of the code. However, test-
ing will continue to play an important
role in the development of safety- and
security-critical software. Whereas
formal modeling and verification can
produce proofs that the software sat-
isfies specified security properties,
testing and simulation can be used to
validate its intended behavior.

Black: FM should be the dominant
approach, supported by selected tests.
I see three avenues to moving the em-
phasis to FM:

 › Supply FM claims of security
through, for instance, assurance

cases, fully formal proofs, or
partially formal arguments. As
other developers see how these
security claims can be justified,
some will follow suit.

 › Support FM through, for ex-
ample, procurement contracts
requiring formal justification
of certain parts, insurance
discounts for formal justifica-
tion of security, and promotion
of FM use reported at computer
science conferences.

 › Publicize test cases that failed to
locate security vulnerabilities
FM would find. Such case studies
would, as a side effect, provide
FM arguments for security prop-
erties of the target in question,
once it’s fixed.

Ideally, begin by thoroughly sup-
porting all claims with FM-based ar-
guments and exercises. Then, with the
assurance that, in theory, the security
policies will be implemented properly,
supplement the assurance with test-
ing. Clean-room or combinatorial tests
should be run to confirm that there
are no serious limitations or errors in
the models, reasoning, assumptions,
or implementation chain (compilers,
libraries, hardware, and so on). In
practice, the FM-based approach could
be in parallel with testing, but they
should be independent.

McLean: Testing might be the domi-
nant approach, but some systems, such
as US Department of Defense–grade
cryptographic devices, require FM.
Edsger Dijkstra’s adage that testing
can show the presence of bugs but not
their absence still applies today, espe-
cially for security. Consider a random
password generator. No amount of
testing can reveal whether the pass-
words being generated are encryp-
tions of confidential documents; this
can be revealed only by analysis of the
code itself. Testing might be sufficient
for some properties due to the cost of
FM, but other properties— for example,
real- time response constraints—might

be best addressed by testing. But even
so, there are FM approaches for veri-
fying certain temporal properties.12
FM can also be useful in showing that,
for example, certain inputs can’t influ-
ence the response time.

I’m most concerned about prov-
ing properties in intelligent systems
whose behavior changes over time as
the system learns. One possible solu-
tion is a non-bypassable system gov-
ernor (similar to a reference monitor)
that monitors all behavior and can be
formally proven to prevent certain be-
haviors. This wouldn’t be an easy ap-
plication for FM, but I think it would be
an even harder application for the test-
ing community, especially in an en-
vironment where an adversary could
manipulate the learning experiences
the system was exposed to.

Detecting Unknown
Vulnerabilities

Computer: Can FM predict or detect
unknown vulnerabilities in existing
software products? If this is already
being done, can you provide specific
examples or educational resources?

Black: It’s not likely that FM can pre-
dict or detect entirely new classes of
vulnerabilities. Most new types of at-
tacks are precisely those that contra-
vene assumptions or models, exercise
unforeseen interactions, or involve
operations that were dismissed as
infeasible. Although FM might turn
up surprising attack paths, generally
we must limit what we ask of FM for
practicality. That said, FM can readily
detect unknown instances of vulner-
abilities in existing software. A good
rule of thumb is that if an FM approach
newly applied to a large piece of exist-
ing software does not find some prob-
lem, the approach probably wasn’t ap-
plied correctly.

Williams: Prediction and detection
of software vulnerabilities is an in-
teresting challenge. Obviously no

76 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

VIRTUAL ROUNDTABLE

software system is 100 percent secure
or reliable, but there’s real economic
value in getting as close as possible.
The Barr Group’s analysis of Toyota’s
spaghetti code behind its Camry’s
unintended acceleration couldn’t de
finitively identify the causative agent
for the failure but did predict that
problems were likely to arise, so the
application of FM would likely have
helped.13 CIOs are starting to pay at
tention to the value of provably correct
software,14 and financial regulators
are also looking at a modeling ap
proach that could leverage FM.15

McLean: One of the earliest FM suc
cess stories was in the area of crypto

graphic protocol analysis. Richard
Kemmerer, Catherine Meadows, and
Jon Millen each used FM to find pre
viously unknown flaws in a crypto
graphic protocol as early as 1994.16
FM also revealed problems in early de
signs for an NRLdeveloped embedded
security device.8 In addition, there are
various approaches for applying FM
to object code, for both reengineering
the code and finding software bugs,
but this remains expensive. That said,
although reengineering object code
with formal tools is hard, I suspect
that reengineering code without them
is even harder.

Heitmeyer: Static analysis tools, such
as Coverity17 and Astrée,18 are FM
tools that analyze source code without
executing it. They automatically de
tect vulnerabilities such as buffer and
integer overflows, memory leaks, race
conditions, and null pointer derefer
ences in C, C++, and other source code.

The advantage of such tools, which are
increasingly being used to find soft
ware bugs, is that ordinary software
engineers can use them. Moreover,
they scale to millionline code bases.
Recently, Astrée was used to prove
the absence of runtime errors in the
primary flightcontrol software, im
plemented in C, of the Airbus A340.19
Even with “false alarms,” warnings
about defects that can’t occur in the
real system, static analysis is still
more efficient than many other forms
of bug finding, since typically little
time is needed to dismiss a spurious
software defect.

An important industrialstrength
static analysis tool is Microsoft’s

Static Driver Verifier (SDV). Micro
soft found that bugs in device drivers
cause 85 percent of system crashes in
Windows XP. To detect such bugs, it
developed SDV based on the onthe
fly model checker SLAM, which uses a
set of interface rules and an OS model
to determine whether a device driver
correctly interacts with the OS kernel.
During Windows 7 development, Mic
rosoft applied SDV, after all other bug
finding tools, to 140 device drivers and
found 270 real bugs.20

Levitt: Starting with MOPS (Model
checking Programs for Security prop
erties)21 and, more recently, Coverity,

there are static analysis tools that can
expose unknown vulnerabilities— in
known classes of vulnerabilities. As
an aside, it would be informative to
analyze the systems that have been re
cently attacked successfully to deter
mine if the exploited vulnerabilities
would’ve been detected by existing

static analysis tools. It’ll be necessary
to augment current static analysis
tools to accommodate the specifica
tion beyond known classes of vulner
abilities. More conventional FM tools
could detect unknown attacks.

Kiniry: FM tools can be used to exam
ine existing software products that
weren’t developed with FM in mind
and have no formal specifications.
This situation is becoming more com
mon every day due to three trends:

 › many new FM analysis technol
ogies reason at the binary level
without need of source code or
other artifacts;

 › theoreticians and tool builders
are learning from the past and
not assuming users will learn a
whole new language and write
detailed formal specifications—
thus, they’re increasingly using
elements like programs as speci
fications; and

 › tools’ default specification—and
consequently the power of their
default reasoning behavior—has
strengthened considerably over
the years.

FM and Software Liability

Computer: Software liability waivers,
disclaimers, and insurance are pro
posed ways for companies to mitigate
the consequences of data breaches and
other security problems that impact
shareholders, consumer confidence,
and business continuity. What role, if
any, can FM play here?

McLean: It’s hard to see how software
liability (legal or financial) can play a
major role in the adoption of FM until

 › customers and the courts start
holding software vendors
responsible for software faults
despite vendor assertions that
their products come with no
warranty, and

There are FM tools that drastically reduce the
time for certain types of analysis, but a major

breakthrough is needed to make FM tools cost-
effective for all software development.

 A U G U S T 2 0 1 6 77

 › FM starts being seen as a neces-
sary component of due diligence
in software development and
sustainment.

Kiniry: Companies and governments
understand legal contracts, not FM.
Assurance to a real-world customer
has everything to do with culpability,
warranties, and financial guarantees,
and nothing to do with mathemati-
cal proof. Consequently, I expect that
liability policy underwriters will be
forced to begin to deeply understand
the power and implications of the use
of FM to make sound judgments about
new policy demands. I know that
some product companies are beginning
to pursue fiscal assurances that are
backed by mathematical ones.

Spafford: If collected metrics can
show FM lessening the number and
severity of failures, insurance compa-
nies might offer reduced rates for prod-
ucts developed using FM. This might
encourage businesses to adopt FM in
their development. It won’t be quick,
however, either to gather the neces-
sary actuarial data or for customers to
be willing to adopt. As it is, insurance
in this space isn’t yet widely adopted.

Williams: Legal liability arises wher-
ever there’s harm. One critical defense
a company can assert is due diligence
(and the plaintiff would point to a lack
of due diligence). The pivot around due
diligence is the prevailing or reason-
able standard of care. The application
of competent FM would provide evi-
dentiary collateral that helps meet the
due-diligence standard of care. The
flurry of interest in driverless cars will
motivate automobile manufacturers
to demonstrate that they applied very
modern techniques for testing and
safety prediction.22

Levitt: Vendors of safety-critical sys-
tems are surely liable for damages
associated with attacks that exploit
vulnerabilities in their systems. I
could imagine a regulatory agency

mandating the use of certain kinds of
FM by vendors. The vendors would be
absolved of liability for errors that ar-
en’t addressed by the mandated FM.

Heitmeyer: While the use of FM isn’t
mandated, formal evidence can help
demonstrate the safety and security
of software products. Concerned about
the safety of software-intensive medical
devices such as infusion pumps and
pacemakers, the US Food and Drug
Administration and private agencies
such as the Association for the Ad-
vancement of Medical Instrumentation
recently recommended that vendors
submit “safety assurance cases” for
their devices. A safety assurance case
is a systematic, structured method for
supporting a stated claim with a top-
level claim of safety. Formal models
and proofs can provide part of the ev-
idence supporting the claim.

Toward Automated FM

Computer: To our knowledge, FM still
requires considerable manual effort;
FM isn’t as automated as one might
hope. If you agree, is that changing?

Williams: Current FM tools are clumsy
and difficult to use, and aren’t really
accessible to researchers without in-
depth training. If FM use grows, the
tools will inevitably improve, just as
they have for data visualization.

Black: FM is far more automated than
it once was, and such improvements
will continue. However, FM will never
be as automated as we would like.
When one system becomes easy or rou-
tine to use, society will want solutions
that demand bigger and more complex
systems. As our satisfiability (SAT)
solvers and model checkers handle
thousands of variables at the push of a
button, we’ll forge ahead to solve prob-
lems involving millions of variables.

Spafford: I’m unaware of recent de-
velopments in the field—I don’t follow

FM work closely. If there were break-
throughs in making it more auto mated,
I’d expect to see that make a difference
in how and where the tools are used.

Kiniry: Modern FM tools are signifi-
cantly more automated than those of
the past. Automation requires rich
foundations (like default specifica-
tions), making tough decisions (such as
trading off soundness for automation),
and putting in hard work (such as de-
ciding a tool is going to be complete and
automated and thus its tooling is sig-
nificantly more complicated for myriad
theoretical and practical reasons).

Automation is pervasive today.
A driver for automation is the main-
stream adoption of tooling that, unbe-
known to the developer, is using FM;
examples include advanced type sys-
tems, behavioral refactoring tools, au-
tomated test generation, and program
synthesis. These technologies and oth-
ers, especially when incorporated into
mainstream development environ-
ments, create a feedback cycle for the
adoption and impact of FM.

The manual effort, in my experi-
ence, is still focused on the creation
of novel artifacts: domain models, re-
quirements, designs, assertions—all of
which amount to specifications. And,
while the automation of specifications
has seen some advancement (for ex-
ample, from the extraction of system
architectures to the abstraction of
formal specifications), we still have a
long way to go before we can wave our
hands and say, “… and it should be se-
cure!” After all, even Geordi and Data
had to program by hand in Star Trek:
The Next Generation.

McLean: There are FM tools that dras-
tically reduce the time for certain types
of analysis—NRL’s Software Cost Re-
duction toolset (www.nrl.navy.mil/itd
/chacs/5546/scr) comes to mind—but a
major breakthrough is needed to make
FM tools cost-effective for all software
development and sustainment. The
trick with such tools now is limiting
their use to those sections of code that

78 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

VIRTUAL ROUNDTABLE

you have to formally analyze to guar-
antee a property.8 This approach lowers
the cost of production by limiting the
application of FM to a manageable com-
ponent as well as sustainment, since
functional aspects of the system can
be changed without affecting the secu-
rity verification. Just as David Parnas
advocates modularizing those aspects
of a system that might change,23 one
should also modularize those aspects
of a system that are important enough
to use formal verification.

Heitmeyer: Numerous powerful tools
have recently been developed that re-
duce the effort in applying FM. Cer-
tain relatively automatic, easy-to-use
static analysis tools are customized
to find certain classes of software de-
fects, code vulnerabilities (Coverity
and Astrée), and device driver bugs
(SDV). Moreover, they don’t require
users to create models or to formulate
assertions, properties that the code is
expected to satisfy.

Levitt: Model checkers and SAT solv-
ers provide significant proof automa-
tion, as do recent efforts to automate
the generation of loop invariants.

FM Resources

Computer: Where are some good re-
sources that would enable novices in-
terested in computer/software/IT se-
curity to quickly and efficiently learn
about FM?

Kiniry: By recognizing how nov-
ices today already apply (hidden) FM,
practitioners can get over the fear or
worry that goes along with diving into
this rich discipline. Examples include
new programming languages with a
rich type system, such as Scala (www
.scala-lang.org), Rust (www.rust-lang
.org), TypeScript (www.typescriptlang
.org), and Haskell (www.haskell.org);
automated specification and reason-
ing systems that look and feel like
programming languages, such as

Microsoft Research’s F* (https://
fstar-lang.org) and Galois’s Cryptol
(http://cryptol.net); and various tools
available in the Microsoft .Net, Java
virtual machine (JVM), and LLVM
software development platforms,
such as Code Contracts (https://
msdn.microsoft.com/en-us/library
/dd264808(v=vs.110).aspx), the Java
Modeling Language (JML; www.eecs
.ucf.edu/~leavens/JML), and the Clang
Static Analyzer (http://clang-analyzer
.llvm.org), respectively.

I challenge readers to begin to dig
into the foundations of modern FM
and work toward understanding how
these languages, reasoning systems,
and tools operate and can dramatically
improve both productivity and prod-
uct quality.

Williams: With 80+ conferences in
2016 that address FM in whole or part,
there’s no lack of opportunity to net-
work with researchers and learn about
the field. Jonathan Bowen and Mike
Hinchey’s article “Ten Commandments
of Formal Methods … Ten Years Later”24
is a good reference, though it needs
an update. There’s also a 45-lecture
introduction to FM available for free
online at http://onlinevideolecture
.com/?course_id=1306, as well as
numerous useful materials on FM
from IEEE and other professional
organizations.

McLean: My article on “Security Mod-
els” in the Encyclopedia of Software
Engineering,25 though a bit dated, is
still considered to be a good general
summary of the application of FM to
the analysis of security properties.
For a more historical overview, see
my oral history for the Charles Bab-
bage Institute,26 which also shows
the controversies that can arise when
formally analyzing security proper-
ties. An interesting discussion of the
culture and sociology surrounding
FM can be found in Donald Macken-
zie’s Mechanizing Proof: Computing,
Risk, and Trust (MIT Press, 2004). Many
computer security texts—for example,

Ross Anderson’s Security Engineering:
A Guide to Building Dependable Distrib-
uted Systems (2nd ed., Wiley, 2008),
Matt Bishop’s Computer Security: Art
and Science (Addison-Wesley, 2002),
and Rita Summers’s Secure Computing:
Threats and Safeguards (McGraw-Hill,
1997)—also contain sections on the ap-
plication of FM to security.

Spafford: I have no idea. If some-
thing accessible and concise becomes
available, I’ll read it and provide it to
my students.

Black: Perhaps we can prevail upon
Donald Knuth to make FM the subject
of a new volume of The Art of Com-
puter Programming.

Levitt: Currently popular and robust
verification tools are well documented
and suitable for classroom use. There
are several excellent tutorials on the
current theorem provers, including
the University of Texas’s ACL2 (www
.cs.utexas.edu/users/moore/acl2) and
SRI International’s Prototype Verifi-
cation System (PVS; www.csl.sri.com
/projects/pvs).

We thank the panelists in
our roundtable discussion
for sharing their exper-

tise and for their candor. What do
you think: Is FM relevant to security?
And, if so, what’s the best way to in-
corporate FM into software develop-
ment and delivery?

References
1. C.A.R. Hoare, “How Did Software Get

So Reliable without Proof?,” FME’96:
Industrial Benefit and Advances in
Formal Methods, M.-C. Gaudel and
J. Woodcock, eds., LNCS 1051, 1996,
Springer, pp. 1–17.

2. K. Havelund, M. Lowry, and J. Pe-
nix, “Formal Analysis of a Space-
craft Controller Using SPIN,” IEEE
Trans. Software Eng., vol. 27, no. 8,
2001, pp. 749–765.

 A U G U S T 2 0 1 6 79

3. G.J. Holzmann, “Mars Code,” Comm.
ACM, vol. 57, no. 2, 2014, pp. 64–73.

4. L. Robinson and K.N. Levitt, “Proof
Techniques for Hierarchically Struc-
tured Programs,” Comm. ACM, vol.
20, no. 4, 1977, pp. 271–283.

5. C.E. Landwehr, C.L. Heitmeyer, and
J. McLean, “A Security Model for Mil-
itary Message Systems: Retrospec-
tive,” ACM Trans. Computer Systems,
vol. 2, no. 3, 1984, pp. 198–222.

6. C. Meadows, “Analysis of the Inter-
net Key Exchange protocol Using the
NRL Protocol Analyzer,” Proc. IEEE
Symp. Security and Privacy (SP 99),
1999, pp. 216–231.

7. D. Greve, M. Wilding, and W.M. Van-
fleet, “A Separation Kernel Formal
Security Policy,” Proc. 4th Int’l Work-
shop ACL2 Theorem Prover and Its
Applications (ACL2 03), 2003; www
.cs.utexas.edu/users/moore/acl2
/workshop-2003/contrib/greve
-wilding-vanfleet/security-policy.pdf.

8. C.L. Heitmeyer et al., “Applying
Formal Methods to a Certifiably Se-
cure Software System,” IEEE Trans.
Software Eng., vol. 34, no. 1, 2008,
pp. 82–98.

9. A. Gargantini and C. Heitmeyer,
“Using Model Checking to Generate
Tests from Requirements Specifica-
tions,” Software Engineering—ESEC/
FSE’99, O. Nierstrasz and M. Lem-
oine, eds., LNCS 1687, Springer, 1999,
pp. 146–162.

10. W. Lobb, “Business Perspectives on
Provably-Correct Software,” presen-
tation, Bits&Chips Conf., 2015; www
.researchgate.net/publication/2977
32321_Business_Perspectives_on
_Provably-Correct_Software.

11. J.R. Kiniry and D.M. Zimmerman,
“Secret Ninja Formal Methods,”
Proc. 15th Int’l Symp. Formal Methods
(FM 08), 2008, pp. 214–228.

12. N.S. Bjørner et al., “Verifying Temporal
Properties of Reactive Systems: A STeP
Tutorial,” Formal Methods in System
Design, vol. 16, no. 3, 2000, pp. 227–270.

13. M. Barr, “An Update on Toyota and
Unintended Acceleration,” blog, 26
Oct. 2013; http://embeddedgurus
.com/barr-code/2013/10/an-update

-on-toyota-and-unintended
-acceleration.

14. M. Heusser, “Can New Software Test-
ing Frameworks Bring Us to Provably
Correct Software?,” CIO, 13 Feb. 2013;
www.cio.com/article/2388410/agile
-development/can-new-software
-testing-frameworks-bring-us-to
-provably-correct-software-.html.

15. K. Jones, Regulatory Analytics and
Data Architecture (RADAR), CIFR
Working Paper No. WP068/2015,
Centre for Int’l Finance and Regula-
tion, Aug. 2015; http://papers.ssrn
.com/sol3/papers.cfm?abstract_id
=2628939.

16. R. Kemmerer, C. Meadows, and J.
Millen, “Three Systems for Cryp-
tographic Protocol Analysis,” J.
Cryptology, vol. 7, no. 2, 1994,
pp. 79–130.

17. A. Bessey et al., “A Few Billion
Lines of Code Later: Using Static
Analysis to Find Bugs in the Real
World,” Comm. ACM, vol. 53, no. 2,
2010, pp. 66–75, 2010.

18. P. Cousot et al., “The ASTRÉE Ana-
lyzer,” Programming Languages and
Systems, M. Sagiv, ed., LNCS 3444,
Springer, 2005, pp. 21–30.

19. D. Delmas and J. Souyris, “Astrée:
From Research to Industry,” Static
Analysis, H.R. Nielson and G. Filé,
eds., LNCS 4634, Springer, 2007,
pp. 437–451.

20. T. Ball, V. Levin, and S.K. Rajamani,
“A Decade of Software Model Check-
ing with SLAM,” Comm. ACM, vol. 54,
no. 7, 2011, pp. 68–76.

21. H. Chen and D. Wagner, “MOPS: An
Infrastructure for Examining Se-
curity Properties of Software,” Proc.
9th ACM Conf. Computer and Comm.
Security (CCS 02), 2002, pp. 235–244.

22. M. Harris, “Why You Shouldn’t Worry
about Liability for Self-Driving Car
Accidents,” IEEE Spectrum, 12 Oct.
2015; http://spectrum.ieee.org
/cars-that-think/transportation
/self-driving/why-you-shouldnt
-worry-about-liability-for-selfdriving
-car-accidents.

23. C.L Heitmeyer, “Software Cost
Reduction,” Encyclopedia of Software

Engineering, J.J. Marciniak, ed., John
Wiley & Sons, 2002.

24. J.P. Bowen and M. G. Hinchey, “Ten
Commandments of Formal Methods
… Ten Years Later,” Computer, vol. 39,
no. 1, 2006, pp. 40–48.

25. J. McLean, R.R. Schell, and D.L. Brin-
kley, “Security Models,” Encyclopedia
of Software Engineering, J.J. Marcin-
iak, ed., John Wiley & Sons, 2002.

26. J.R. Yost, “An Interview with John
D. McLean,” Charles Babbage
Inst., Univ. of Minnesota, 22 Apr.
2014; http://conservancy.umn.edu
/handle/11299/164989.

DISCLAIMER
Any mention of commercial
products or organizations is for
informational purposes only; it is
not intended to imply recommen-
dation or endorsement by the
National Institute of Standards
and Technology, nor is it in-
tended to imply that the products
identified are necessarily the best
available for the purpose.

KIM SCHAFFER is a researcher at
the National Institute of Standards
and Technology. His research
interests include authentication
and security validation develop-
ment. Schaffer received a DSc
in information assurance from
Capitol Technology University. He
is a Certified Information Systems
Security Professional and a Senior
Member of IEEE. Contact him at kim
.schaffer@nist.gov.

JEFFREY VOAS is a computer
scientist at the National Institute of
Standards and Technology. His re-
search interests include the Internet
of Things and fundamental com-
puter science shortcomings. Voas
received a PhD in computer science
from the College of William and
Mary. He is a contributing editor for
Computer’s Cybertrust column and
a Fellow of IEEE and the American
Association for the Advancement
of Science (AAAS). Contact him at
j.voas@ieee.org.

