
104 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 1 5 / $ 3 1 . 0 0 © 2 0 1 5 I E E E

See www.computer.org/
computer-multimedia
for multimedia content
related to this article.

EDITOR DAVID ALAN GRIER
George Washington University; grier@gwu.eduTHE ERRANT HASHTAG

Do We Need
a Software Czar?
David Alan Grier, George Washington University

We need to temper authoritarian leadership

with the insights of individual programmers.

In my travels through the world of
technology, I’ve met many peo-
ple who believe that software has
gone astray and that we desper-

ately need to take action to put things
right. My colleague Curtiss is one such
person. He believes that our e� orts to
produce open, � exible, and reusable

software have utterly failed. Instead
of developing a body of software that’s
getting better and better, he says we’ve
been creating programs that are brit-
tle, incomprehensible, and nearly im-
possible to change. Our e� orts to solve
this problem with open standards and
the free � ow of information have been
misguided. According to him, we need
to ap point a software czar, someone
vested with absolute authority to bring
some order to the � eld.

I suspect that Curtiss would like to
be that software czar. I also suspect
that he’d like me to help him get this
position. I acknowledge some of the
� aws he sees in software, but I’d argue
that we need to be more subtle in our

leadership of software projects. We
need to temper authoritarian leader-
ship with the insights of individual
programmers.

We start designing software by
drawing boxes on a whiteboard that
represent di� erent system modules,
and then we divide our programming

sta� into groups that correspond to
those boxes. Each of these groups is
responsible for their own code. They
can’t concentrate on their assignment
if they have to know every detail about
every other module. Yet, the quality of
the system will be determined by how
well those groups and the modules
they create work together.

Pioneering computer scientist Da-
vid Parnas famously observed that the
connections between software mod-
ules are more than technical speci� ca-
tions. These connections are assump-
tions that the modules make about
each other—or, more accurately—
assumptions that programming
groups make about the work that other
programming groups are doing.

Although the free exchange of in-
formation often helps clarify assump-
tions, it can also have side e� ects. It
can allow individual programmers to

impose their ideas upon others. Pro-
grammers can � nd unintended uses
for libraries, exploit coincidences in
structures, and conclude that data
follows a pattern where none exists.
Through any of these actions, pro-
grammers can introduce an unantici-
pated assumption into the system.

Over the past few decades, we’ve
increasingly used open, market-based
techniques to manage software proj-
ects. However, markets don’t antici-
pate change well, and open informa-
tion can hide important facts. Software
development projects can’t be success-
ful without some form of leadership,
which helps a programming team de-
cide which ideas will produce a strong,
� exible system and which won’t. Many
developers � nd it di� cult to provide
that judgment, as it’s easy to let a proj-
ect drift from one extreme to another
by either dictating every detail of the
system or by accepting every contribu-
tion from every programmer.

One successful CTO claims that his
software teams produce the best work
when his leadership style is closer to the
role of a judge. “If you want to make any
change to the plan,” he told his team,
“you have to bring it to me and con-
vince me that it’s a good change. If you
believe the idea isn’t worth bringing to
me, then it isn’t worth putting in the
system.” However, this role isn’t as easy
or as passive as he makes it sound. He
gets his team together to make sure that
information about the design has been
thoroughly reviewed and is understood
by all. He also reviews the code to make
sure the developers are following his
direction. He’s a strong leader but not
the type who would dictate the future
of software—he’s not a software czar.

DAVID ALAN GRIER is the author of When
Computers Were Human (Princeton Univ.
Press, 2007) and the producer of the new
podcast series “How We Manage Stu� ”
(http://itunes.managestu� .net). Contact
him at grier@computer.org.

The connections between software modules
are more than technical specifi cations.

