
114	 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y � 0 0 1 8 - 9 1 6 2 / 1 5 / $ 3 1 . 0 0 © 2 0 1 5 I E E E

COMPUTING EDUCATION

Just over a year ago, the Association for Computing
Machinery and the IEEE Computer Society jointly
published the Computer Science Curricula 2013
(CS2013) (www.acm.org/education/CS2013-final

-report.pdf), an update to the undergraduate computing
programs guidelines they’ve been publishing about once
every decade since 1968.

If you’re like most people, undergraduate computer
science curricula guidelines aren’t foremost on your
mind, unless you are or soon will be an undergraduate
student, a faculty member teaching undergraduates, or
someone concerned with computer science accredita-
tion or the funding of computer science programs and

research. CS2013 provides a baseline
for expectations of computer science
graduates. Thus, you might also care
about this if you’re hiring and man-
aging or depending on technology
created by new CS graduates.

Computing has changed since
2001, which was the last time the
guidelines were completely updated
(though there was a partial update
in 2008). We started CS2013 by ask-

ing how the previous guidelines were used; we surveyed
approximately 1,500 computer science (and related dis-
ciplines) department chairs and undergraduate studies
directors in the US, and an additional 2,000 department
chairs internationally. Respondents were from a wide
range of institutions—research universities, teaching
universities, undergraduate-only and liberal arts institu-
tions, and community colleges. These institutions range
in size from less than 1,000 to more than 50,000 students.

According to the survey, the Body of Knowledge (BOK)
is the most-used feature of the guidelines. In addition,
respondents’ two most common comments about the
BOK were that new topics—such as security, distributed

CS2013:
Computer Science
Curricula 2013
Steven Roach, Exelis

Mehran Sahami, Stanford University

An overview of major changes in ACM/IEEE CS’s

Computer Science Curricula 2013—the most

recent update of the undergraduate education

guidelines for computer science.

	 M A R C H 2 0 1 5 � 115

COMPUTING EDUCATION
EDITOR ANN E.K. SOBEL

Miami University; sobelae@muohio.edu

and parallel processing, mobile com-
puting, networking, and professional
skills—need to be added, and that
parts of the BOK from 2001 and 2008
are indeed still relevant. We view both
of these as positive signs of a maturing
but still vibrant and dynamic field.

NEW TOPICS
The BOK is divided into knowledge
areas (KAs) that embody a set of related
topics. New KAs have been added to
address major changes in the field in
the past 14 years.

Recent headlines are proof enough
that the world increasingly relies
on information technology, and as a
result we’re more vulnerable to attacks
on our information systems. The new
Information Assurance and Security
KA encompasses the set of techni-
cal and policy controls and processes
intended to protect and defend infor-
mation systems by ensuring their con-
fidentiality, integrity, and availability
while providing for their authentica-
tion and nonrepudiation.

To addresses issues related to the
design and development of software
applications that reside on Web-,
mobile-, industrial-, and game-specific
platforms, we developed the Platform-
Based Development KA. Such plat-
forms are often characterized by
specialized API use, distinct delivery/
update mechanisms, and being ab-
stracted away from the machine level.
Although a number of platforms have
become prominent, we didn’t recom-
mend specific platforms for every CS
program. Instead, many popular plat-
forms are highlighted.

The growth in multiprocessor com-
puting, multicore processors, and
distributed datacenters continues—
indeed, it’s now difficult to buy a
single-processor machine. Although
CS2008 identified this trend, CS2013
directly addresses it by changing it
from a largely elective topic to a core

component of undergraduate com-
puting curricula. The Parallel and
Distributed Computing KA addresses
the logically simultaneous execution
of multiple processes, in which opera-
tions have the potential to interleave
in complex ways.

FUNDAMENTAL IDEAS
In her keynote lecture at the IEEE
International Conference on Software
Engineering Education and Training
(CSEE&T) 2011, Mary Shaw argued
that we need to teach “fundamental
ideas in the context of current prac-
tice” (http://conferences.computer.org
/cseet/2011/CSEET_2011/downloads
/CSEET_2011_Key note_Ma r yShaw
.ppt). Her list of fundamental ideas
included abstraction, linear versus
exponential growth, problem-solving
approaches, tradeoffs, symbolic rep-
resentations, logic, models, and cor-
rectness. The KAs in CS2013 include
such fundamental and enduring con-
cepts as differences between best,
expected, and worst-case behaviors of
an algorithm; finite state machines;
data structures; memory hierarchies;
caching; and parallel versus sequen-
tial computation.

The current report also features
extensive revisions of existing KAs
from previous curricular volumes. The
Architecture and Organization KA
has increased emphasis on multicore
parallelism, virtual machine support,
and power constraints. The Compu-
tational Science KA includes elective
material to prepare students for cross-
disciplinary work such as computa-
tional biology, bioinformatics, and
eco-informatics. The Intelligent

Systems KA has increased emphasis
on machine learning and data mining.
And the Social Issues and Professional
Practice KA reflects the past decade’s
shift in understanding intellectual
property in the digital domain and
digital rights management, the need

for awareness of global issues such as
software piracy and how computing’s
rapid changes impact society, and a
growing concern for privacy.

Depending on your point of view,
CS2013 might pay too much or not
enough attention to systems. The
term computer systems spans operat-
ing systems, parallel and distributed
systems, communications networks,
and computer architecture. Although
these are often taught as independent
courses, they share fundamental con-
cepts within their respective cores,
including computational paradigms,
parallelism, state and state transi-
tions, cross-layer communications,
and scheduling. A new KA, Systems
Fundamentals, presents a view of sys-
tems concepts common across exist-
ing KAs. We hope this encourages new
approaches to covering these topics.

Despite growth in undergraduate
software engineering programs and
the creation of independent software
engineering curricular guidelines,
many computer science graduates still
go into careers in software develop-
ment. Part of our approach to helping
CS programs address this need is the
KA on Software Development Funda-
mentals (SDF). Regardless of the plat-
form and language used, fundamental
concepts in software creation extend
beyond coding simple programs. SDF

CS programs need new approaches to cover
essential material in the available time.

116	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

COMPUTING EDUCATION

extends the Programming Funda-
mentals KA from CS2001 by drawing
basic algorithm analysis material
from the Algorithms and Complexity
KA, development processes from the
Software Engineering KA, fundamen-
tal data structures from the Discrete
Structures KA, and programming
language concepts from the Program-
ming Languages (PL) KA. Material
specific to particular programming

paradigms (such as object-oriented
or functional methods) was moved
to PL for a more uniform treatment
with complementary material. From
a curriculum design standpoint, this
separates fundamental concepts (for
example, iteration and conditional
execution) from the implementation
specifics related to a particular lan-
guage. We believe this opens the door
to selecting languages best suited to
the student populations at individual
institutions while encouraging cov-
erage of professional software devel-
opment practices early in the curricu-
lum. The Software Engineering KA is
still prominent in the guidelines, and
it has been updated to include modern
software development practices.

FLEXIBILITY IN
CURRICULUM DESIGN
Although the computer science field
is expanding, the number of hours
students spend in undergraduate pro-
grams isn’t. CS programs will need
to consider new approaches to cover-
ing essential material in the available
time. Curriculum design is, in part, a
resource allocation problem. CS2013
manages the amount of material to
be presented to undergraduates in
two ways. First, some previous mate-
rial has reduced emphasis; second, by
specifying essential, highly desirable

elective topics and providing better
guidance as to the level of mastery
expected for each topic, instructors
have more flexibility in choosing the
material to present.

Previous guidelines labeled top-
ics as either core or elective, implying
that every core topic is required. How-
ever, even some strong CS programs
were missing at least one hour of core
material. CS2013 specifies Tier 1 and

Tier 2 core topics. Tier 1 topics should
be required in every CS curriculum.
Tier 2 topics are highly desirable, and
programs are expected to cover the
vast majority of them. However, pro-
grams may sacrifice some Tier 2 top-
ics to provide students with greater
depth in other areas. A CS curriculum
should cover 90 to 100 percent of the
Tier 2 topics, with 80 percent consid-
ered a minimum.

A common problem with BOKs is
that they often identify topics without
giving guidance on the required level
of mastery. CS2013 uses familiarity,
usage, and assessment as the levels
of mastery for each topic. Familiar-
ity implies that the student has basic
awareness and understanding of a
concept. Usage implies that the stu-
dent can use or apply a concept in a
concrete way, for example, including
it in a program or proof. Assessment
implies that the student can consider
a concept from multiple viewpoints
or justify the selection of a particu-
lar approach to solve a problem. Each
topic is matched with one or more
learning outcomes to make the BOK
curricular expectations clearer.

CS2013 includes examples of actual
fielded courses—from a variety of uni-
versities and colleges—to illustrate
how topics in the KAs can be covered
and combined in diverse ways. It also

contains examples of the different
ways a larger collection of courses can
be put together to form a complete cur-
riculum. Providing these examples
promotes greater cross-pollination
of educational ideas within the com-
puting community as well as ongoing
engagement through encouraging
educators to share new courses and
curricula from their own institutions
(or others that they are familiar with)
with the rest of the community.

Any CS curriculum should pre-
pare graduates to succeed in a
rapidly changing field; thus,

it must prepare students for lifelong
learning and include professional
practice elements—communication
skills, working in teams, ethics, and
so on—as components of the under-
graduate experience. CS2013 provides
guidelines that, when implemented,
will enable students to integrate the-
ory with practice, to recognize the
importance of abstraction, and to
appreciate the value of good engineer-
ing design. CS2013 is not a minimal
standard against which a program
can be evaluated, but a guideline for
fostering excellence in CS undergrad-
uate education.

ACKNOWLEDGMENTS
The authors acknowledge the 17 members
of the Computer Science Curricula steer-
ing committee as well as the hundreds of
contributors and reviewers who contrib-
uted to the CS2013 report.

CS2013 includes examples of fielded courses
to illustrate how topics can be covered and

combined in diverse ways.

STEVEN ROACH is an associate
principle software engineer in infor-
mation systems at Exelis Inc. Contact
him at roach.steven1965@gmail.com.

MEHRAN SAHAMI is a professor and
the associate chair for education in
the Department of Computer Science
at Stanford University. Contact him at
sahami@cs.stanford.edu.

