
102 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y U.S. Government work not protected by U.S. Copyright.

C
O

P
Y

R
IG

H
T

 IS
T

O
C

K
P

H
O

T
O

, C
R

E
D

IT
:L

V
C

A
N

D
Y

SOFTWARE ENGINEERING

Imagine a time where software teams can avoid all
documentation activities because the development
framework and other tools can capture enough arti-
facts along the way to generate and keep current any

documentation artifact, such as re-
quirements specifications, design
documents, or user manuals. Even
reverse engineering requirements
specifications from the end-prod-
uct could be possible. Now picture
a forward engineering path where
a requirements specification could
automatically be generated from
a few key word s, or content cap-
tured via brainstorming sessions,
and extrapolated to a specification
using generative artificial intelli-
gence (AI). These scenarios may be
in our future.

While the state of the practice
in software d o c u m e n t a t i o n i s

lacking, I am conf licted about using automatic gen-
eration of software documentation (autodocumen-
tation), such as requirements specifications, design
documents, user manuals, and so on. Is autodocu-
mentation of these artifacts good or bad? Will the use
of generative AI be a positive or negative driver of
autodocumentation?

Digital Object Identifier 10.1109/MC.2024.3374008
Date of current version: 6 May 2024

Use a Pencil: On
Writing Software
Documentation
Well and the Role of
Auto documentation
Phil Laplante , IEEE Fellow

Proficiency in technical writing is an important

skill that all software engineers should develop,

but there is a trend toward automation of

documentation. This article discusses the past,

present, and future of software documentation.

SOFTWARE ENGINEERING

https://orcid.org/0000-0002-0415-271X

 M AY 2 0 2 4 103

EDITOR PHIL LAPLANTE
IEEE Fellow;

plaplante@psu.edu

GOOD SOFTWARE
DOCUMENTATION IS GOOD
TECHNICAL WRITING
All software documentation are forms
of technical writing. There is no uni-
versally accepted definition of “tech-
nical writing” to differentiate it from
other forms of writing, but there are
two main differences: precision and
intent. Precision is crucial in techni-
cal writing. When you express an idea
in technical writing, it may be real-
ized in some device or process. If the
idea is wrong, the device or process
will also be wrong: syntax is destiny.
Technical writing should also not pro-
voke an emotional response from the
reader. The technical writer should
convey information as concisely and
correctly as possible. This is char-
acteristically different than poetry,
prose, news reporting, and even busi-
ness writing, where the reader’s emo-
tional persuasion and possible reac-
tion are desired.1

There are no official standards
for technical writing, but there are
many writing style guides, for exam-
ple, Chicago, American Psychological
Association, Modern Language Asso-
ciation, and IEEE’s own. These largely
dictate the correct use of pronouns,
punctuation, etc., and are of marginal
importance in technical writing of
software documentation; really, the
style guide of the entity underwrit-
ing the software will prevail. But for
all technical writing there are some
principles to be obeyed. I called my
favored set principles The 5 Cs of Tech-
nical Writing (5 Cs), and I use these

in my own writing and to judge the
quality of the writings of technical
documentation, ar ticles, and so on.
Briefly, the 5 Cs represent correctness,
clarity, completeness, consistency, and
changeability. The 5 Cs are also closely
related to the IEEE 29148 qualities for
good requirements specifications.
The 5 Cs are self-explanatory, but a
good discussion of them can be found
in Laplante.1

Achieving the 5 Cs in any signif-
icant writing is not easy and takes
constant practice and refinement. One
of my favorite books on basic writing
principles is On Writing Well.2 This
book has profoundly influenced and
improved my technical (and nontech-
nical) writing (and the title of this
a r ticle) and it should be consulted
by everyone.

But there are ways to improve one’s
technical writing. Spinellis recom-
mends that new software engineer-
ing students should read (study) well-
written code before even attempt-
ing to write code.3 I wholeheartedly
agree and suggest that this principle
should be extended to software doc-
umentation. Perhaps before writing
any software documentation artifacts
new software engineers should study
exemplars of that artifact. For exam-
ple, if you want to write high-quality
design documents, review high-qual-
ity ones first.

While every organization should
have a set of these, not all do, and I
think there should be public libraries
of good software documents for study
(but not copying). But this raises in-
tellectual and proprietary issues (the
best design documents probably won’t

be shared). Deciding which software
documentation is of high quality is a
problem without standards, review
panels, etc., however, and the subject
of evaluating software documentation
quality is left for future discussion.

AUTODOCUMENTATION
PAST, PRESENT,
AND FUTURE
Automatic documentation tools are
not new. Early programming lan-
guages were cast as automatic pro-
gram generators [they could translate
a “specification” automatically into
(assembly) code]. The “specification”
(for example, the Fortran program)
was the code documentation.4 Over
the years, other tools, such automatic
f lowchart generators, emerged to
extract and format code comments

into a kind of design specification.
Since the emergence of the first high-
level programming languages, there
have been myths of “self-document-
ing code” generators, and I have wit-
nessed these come and go. All of these
attempts remind me of the 1888 Paige
Compositor, an automated typeset-
ting machine, which one might con-
sider to be the first autodocumenta-
tion machine. Alas, it was a financial
failure, costing investor Mark Twain
most of his fortune.5

There is no question that high-
quality software documentation is
important, yet it is also well known
that it is not always given priority
due to market pressures, which has
perpetuated this quest for practical
autodocumentation generators. For
example, Aghajani et al.6 surveyed
146 practitioners and found that

DISCLAIMER
The author is completely responsi-
ble for the content in this message.
The opinions expressed here are
his own. Autogenerated text is so
noted.

If the idea is wrong, the device or process will also
be wrong: syntax is destiny.

104 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

SOFTWARE ENGINEERING

“Increasing the budget ded icated
to documentation was a recurring
solution often mentioned by par-
ticipants suggesting that software
documentation does not receive the
attention it deserves.” Behutiye et
al. interviewed 15 practitioners and
conducted workshops in companies

using agile softwa re development,
a nd conc lude d t hat rat her t han
t r a d it iona l documentat ion, tools,
backlogs, iterat ive protot y pes, a nd
a r t i facts, such as epic and stories,
were used to document requirements
if they were documented at all.7
These realities imply the need for
automatic generation of documen-
tation useful for different tasks and
context-aware documentation rec-
ommender systems.6

DevOps and DevSecOps are fo-
cused on increasing the speed and
quality of software development and
delivery by integrating developers
and operations teams, and in the lat-
ter case, addressing security early
and throughout the software devel-
opment lifecycle. These collabora-
tive lifecycle models also emphasize
the need for high-qualit y commu-
nications, particularly written com-
munications, and documentation

throughout the process. DevOps and
DevSecOps are also tool-driven, so
it is no surprise that they help drive
research in autodocumentation. For
e x a mple, one resea rc her built an
autodocumentation system compat-
ible with DevOps style development.
Using Pandoc, LaTeX, and Docker for

deployment on either GitLab or Bit-
bucket, the system can automatically
generate documentation with new re-
leases. This approach resulted in 38%
faster generation of plain text doc-
uments and are claimed to be more
esthetically pleasing than typical for-
matted documents.8

THE DANGERS OF CUT-AND-
PASTE AND GENERATIVE AI
I know of no autodocumentation sys-
tems for software that use generative
AI (yet), but I am sure they are in the
experimental phase in various set-
tings and they will be emerging soon
for commercial use. To test their po-
tential, I tried a little experiment. In
Laplante1 I recount the apocryphal
story of John Thompson, a colonial
hatmaker who wished to create a sign
for his shop. The process of refinement
from a verbose (and expensive) sign
to a short and powerful pictogram
(Figure 1) emphasizes the power of
conciseness and the impor tance
of the human editorial process in
achieving all of the 5 Cs of good tech-
nical writing.

I wanted to see if ChatGPT could
in any way match the Thompson’s
resu lt. In my exper i ment, I gave
ChatGPT t he fol low i ng prompt:
Create a sign for John Thompson, a
maker of hats. ChatGPT created the
following “sign”:

 Welcome to John Thompson’s Hat
Emporium!
Step into a World of Elegance and Style!
Discover the Perfect Hat for Every
Occasion!
Unmatched Quality | Timeless Designs |
Superior Comfort | Attention to Detail
Visit Us Today and Elevate Your Style!
[Address] [Contact Information]
Open Hours: Monday – Saturday: 9:00
a.m. – 7:00 p.m. Sunday: 10:00 a.m. –
5:00 p.m.
Experience the Art of Hat-Making at
John Thompson’s!

Curiously, ChatGPT chose to make
all kinds of unprovable claims about
the hats and even invented store
hours. Here, we see a direct violation
of both characteristics of technical
writing: precision and intent. The
sign is imprecise in its use of immea-
surable qualities, such as “elegance”
and “style.” And it is clearly injecting
unwanted intent. I didn’t ask the auto-
generator to persuade anyone to buy
hats from John Thompson. The sign
may also be wrong. How could it know
if the hours of operations listed are
correct? Only focused human review
could correct any errors introduced by
the tool.

We all know about the dangers:
cut-and-paste reuse facilitates plagia-
rism and the shortcomings of failed
grammar checking. Overreliance on
tools, such as grammar and spelling
checkers, also promotes complacency
with respect to these skills. Word pro-
cessing of software documentations
also facilitates the use of generative
AI. It is so easy to autogenerate draft
writing, then tweak it by hand. This
is not a good approach to writing soft-
ware documentation.

Some might argue that autodocu-
mentation tools can help promote the
5 Cs, but I don’t think that is true. For
example, consistency in a document
can’t be automatically checked be-
cause doing so is a form of the Bool-
ean satisf iabi l it y problem, which
we know is nondeterministic poly-
nomial-time complete. Consistency

FIGURE 1. John Thompson, a colonial
hatmaker, developed this concise sign
for his store after several revisions of the
original text: “John Thompson, Hatter,
Makes and Sells Hats for Ready Money.”

John
Thompson

These collaborative lifecycle models
also emphasize the need for high-quality

communications, particularly written
communications, and documentation throughout

the process.

 M AY 2 0 2 4 105

checking is related to the Goedel
I ncompleteness problem. Cla r it y
(nonambiguity) requires an encoding
of all human knowledge– good luck
with that. Even conciseness is a diffi-
cult quality to automatically capture

(viz my experiment). Perhaps change-
ability—the ease with which changes
in the document can be managed—is
the only one of the 5 Cs that seems
tractable today.

Even if some of the 5 Cs could be
embodied in an autodocumentation
tool, I worry about other aspects,
particularly when using generative
AI. For example, for any significant
system, in addition to all kinds of
unwanted features, autodocumen-
tation of any software artifact could
propagate bad design decisions, code
vulnerabilities, hard to understand
descriptions of functionality, etc.

RECOMMENDATIONS
The real problem is that we need to
instill good technical writing prac-
tices in the humans who build these
tools. We should teach software en-
gineers how to write effectively from
the outset, and this applies to tech-
nical documentation, professional
communications, etc. How can you
recognize problems in software doc-
umentation generated automatically
if your writing stinks? I conclude
that we must be careful with autodo-
cumentation in research, education,
and practice and make the following
recommendations.

 › Teach technical writing early
in the software engineering

curriculum, and in professional
settings to all who work in soft-
ware. Continuing education in
technical writing and documen-
tation for all should be conducted
throughout their careers.

 › Create public libraries and
documentation repositories
of “great papers” and exem-
plars for study and review (not
copying).

 › Create independent documen-
tation quality review panels
through professional societies,
such as the IEEE.

 › Develop standards for software
documentation (not just writing
style guides) that focus on
appropriate implementation of
the 5 Cs.

 › Carefully monitor the use of
tools, particularly autodocumen-
tation and generative AI, and re-
view and question their outputs.
Perhaps even create standards of
quality for these tools.

So m e t i m e s I w o n d e r i f w e
should start all of our writ-
ing, including software, by

hand instead of using computers.
The handwriting process encour-
ages thoughtfulness and discourages
cut-and-paste (plagiarism). It’s tempt-
ing to think we can push a button and
generate all software documenta-
tion, but consider the costs of error
and of suborning the responsibility
to generative AI. If syntax is destiny,
do we want to yield our destinies to
some program? Maybe we should go

back to just using pencils instead of
word processors.

REFERENCES
 1. P. A. Laplante, Technical Writing: A

Practical Guide for Scientists, Engi-
neers and Nontechnical Professionals,
2nd ed. Boca Raton, FL, USA: CRC
Press, 2019.

 2. W. K. Zinsser, On Writing Well: The
Classic Guide to Writing Nonfiction.
New York, NY, USA: HarperCollins,
2001.

 3. D. Spinellis, Code Reading: The Open
Source Perspective. Reading, MA, USA:
Addison-Wesley, 2003.

 4. J. W. Backus et al., “The FOR-
TRAN automatic coding system,”
presented at the Western Joint
Comput. Conf., Techn. Rel., Feb.
26–28, 1957, pp. 188–198, doi:
10.1145/1455567.1455599.

 5. R. Powers, Mark Twain: A Life. New
York, NY, USA: Free Press, 2006.

 6. E. Aghajani et al., “Software
documentation: The practi-
tioners’ perspective,” in Proc.
ACM/IEEE 42nd Int. Conf. Softw.
Eng., Jun. 2020, pp. 590–601, doi:
10.1145/3377811.3380405.

 7. W. Behutiye, P. Seppänen, P. Rodrí-
guez, and M. Oivo, “Documentation
of quality requirements in agile
software development,” in Proc.
24th Int. Conf. Eval. Assessment Softw.
Eng., Apr. 2020, pp. 250–259, doi:
10.1145/3383219.3383245.

 8. D. Söderberg, “Automation of non-
code documentation in a DevOps
 environment,” Master’s Thesis,
 Luleå Univ. of Technol., Luleå,
 Sweden, 2022.

PHIL LAPLANTE, State College, PA
16801 USA, is a computer scientist and
software engineer, a Fellow of IEEE, and
an associate editor in chief of Computer.
Contact him at plaplante@psu.edu.

The real problem is that we need to instill
good technical writing practices in the humans

who build these tools.

mailto:plaplante@psu.edu

	102_57mc05-softwareengineering-3374008

