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Recently, deep learning and neu-
ral networks (NNs) have demon-
strated exceptional performances 
in many areas, including im-

age recognition, robotics, and natural 
language processing. Compared to tradi-
tional machine learning models (for ex-
ample, decision trees (DTs), random for-
ests, support vector machines, and so on), 
NNs have notable advantages including 
the abilities of dealing with complex data, 
reduced reliance on feature extraction, 
comparatively better performances, and 
so on.

However, due to the black-box nature 
of NNs, understanding how models make 
decisions is often difficult, both in a gen-
eral sense (explanation) and in the context 
of a specific input (interpretation). This 
has hindered the applications of NNs in 
some critical missions where understand-
ing rationales of the decision-making is 
imperative. This is especially true in the 
security domain. System administrators 
want to not only determine if the system 
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is under attack but also identify what 
indicators signal the potential attack, 
as the indicators are often the cues for 
knowing the root causes. For exam-
ple, an NN-based network intrusion 
detection system (NIDS) usually de-
tects intrusions including denial of 
service, probing, botnet, and other 
logic flaw exploiting attacks.1 It can 
take network packets or postprocess-
ing network data (for example, net-
work flow data) as input and report 
whether (specific kinds of) attacks 
exist. If a NN-based NIDS detects an 
attack, the security analyst will want 
to know which packets lead to the at-
tack, where the attack packets come 
from, and sometimes even which 
bytes of the packets are malicious. To 
achieve this goal, explainable artifi-
cial intelligence (XAI) is a valuable 
tool that can be used to “crack open 
the black box.”

Genera l ly spea k ing, X AI tech-
niques can be categorized into two 
categories. One is to explain the NN 
as a whole, and the other is to inter-
pret why a specific output is given for 
a specific input. The first category 
provides network-level explanations, 
while the second category provides 
per-data-sample explanations. In the 
literature, the second category has 
been extensively investigated, result-
ing in development of well-known 
tools such as Shapley additive expla-
nations (SHAP)2 and local interpre-
table model-agnostic explanations 
(LIME).3 In contrast, the first category 
is less investigated. Nevertheless, DTs 
recently attracted researchers’ atten-
tions as a promising way to provide 
network-level explanations. With the 
provided training data samples and 
the corresponding NN’s outputs (for 
each sample), the goal is to train a 
DT to emulate the performance of the 
NN, so that the NN’s decision-making 
process can be approximated using the 
learned DT.

In this article, we seek to provide 
a critical review within the NIDS do-
main about the current applications 
of XAI techniques/tools in both the 
network-level explanations category 
and the per-data-sample interpretation 
category. To make the review insight-
ful, we focus on the subtle connections 
between network-level explanations 
and per-data-sample interpretations. 
We have also conducted preliminary 

experiments to compare the two expla-
nations using the NN-based Domain 
Name System (DNS) cache poisoning 
detection as a case study.

PRIOR WORKS
XAI has several aspects. Aside from 
the existence of explanation, there are 
also principles in XAI such as mean-
ingfulness, explanation accuracy, and 
knowledge limits.4 Generally speak-
ing, the goal of XAI is to reveal the 
decision-making process of AI mod-
els. There are also different criteria to 
categorize XAI techniques.5 For exam-
ple, whether the model is self-explain-
able,6,7,8 or post hoc explanation is 
applied on a given model2; whether to 
surrogate a complicated model with a 
simpler or even self-explainable one9; 
and whether to explain individual 
data samples10 or explain the model’s 
overall behavior.11,12,13,14

One of the XAI techniques that 
have been tailored to cybersecurity 
problems with domain-specific knowl-
edge is Trustee.9 It learned high-fi-
delity and low-complexity DTs for 
network security problems. The DT is 
easy to interpret and can be used to 

identify the most important features 
for making predictions, as well as to 
understand the decision-making pro-
cess used by the model. Humans can 
comprehend and retrace how AI mod-
els came to a specific output based on 
the DTs. However, DTs also have some 
limitations when used for explaining 
black-box deep learning models. For 
example, DTs may not be able to cap-
ture complex relationships between 

input features, and they may be sen-
sitive to noise and outliers in the data. 
Therefore, it is important to carefully 
evaluate the use of DTs for explaining 
AI models used in network security.

DEEP LEARNING FOR 
DETECTING NETWORK 
ATTACKS
To demonstrate using XAI techniques 
for NN explanation, we will use an 
example NN from our prior work.1 
In the prior work, we proposed to use 
deep learning for detecting two net-
work attacks: address resolution pro-
tocol (ARP) poisoning and DNS cache 
poisoning attacks. In this article, we 
choose the DNS cache poisoning de-
tection rather than the ARP poisoning 
detection as the example to demon-
strate the XAI techniques. This is due 
to the following reasons: 1) traditional 
machine learning techniques such as 
DTs and random forests can already 
achieve good performance for ARP 
poisoning detection; 2) the CNN for 
DNS cache poisoning detection is a 
more complex NN model compared to 
the MLP model for ARP poisoning, so 
it can better show the benefits of XAI 

This has hindered the applications of NNs in some 
critical missions where understanding rationales of 

the decision-making is imperative.
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techniques. Data and codes for train-
ing the detection NN have been pub-
lished on GitHub.a

DNS poisoning works by spoofing 
DNS responses, with which the attacker 
can trick the victim into falsified map-
pings between domain names and IP ad-
dresses and, thus, redirect the network 
communication. It exploits the lack 

of response verification in the corre-
sponding protocol. As a result, the vic-
tims cannot verify whether the packets 
come from a genuine host or attacker. 
DNS poisoning is difficult to be detected 
with traditional detection methods (for 
example, signatures, rules, anomaly de-
tections, and so on) because spoofing is 
applied (that is, attacker packets are in-
tentionally crafted to be indistinguish-
able from normal packets). Therefore, 
our prior work proposed to use a convo-
lutional neural network (CNN) for de-
tecting DNS cache poisoning. The mod-
el’s accuracy, F1 score, and detection 
rate are all above 99%. However, little is 
known about how the CNN judges data 
samples to achieve this performance.

TWO COMMON 
EXPLANATION METHODS

Explanation DT
As a traditional machine learning tech-
nique, DTs are known for extracting 
decision rules that are easy to under-
stand, and they have been repurposed 
to explain the complex NNs. The basic 
idea is to let the trained NN tutor the 
DT. Suppose there is a dataset con-
taining data samples and their corre-
sponding ground truths. Based on this 

dataset, a trained NN will generate a 
prediction for each data sample. To ex-
plain this NN, a DT can be trained with 
data samples and the NN’s predictions. 
Note that the NN’s predictions but not 
ground truths are used because DT 
here is used for explaining the NN but 
not for solving the original problem. 
The basic assumption for tree-based 

explanation is that, if the DT and the NN 
can reach consensuses on the majority of 
data samples, then the DT should have 
learned the inner logic of the NN.

Figure 1 shows a learned explanation 
DT with respect to the DNS cache poison-
ing detection NN. We used TRUSTEE,9 a 
framework to explain machine learning 
models, to generate the DT. From the DT, 
a security analyst can gain the following 
insights of the tutor NN.

Feature importance. Which features 
are used to classify a data sample can 
be easily known from which features 
are shown in those judgment nodes. If 
a feature does not appear in the DT, it 
means that it is not important for DT’s 
classifications at all. The importance 
of those features can also be inferred 
based on where they are located in the 
DT. The better a certain feature can 
separate the benign and malicious 
data samples, the closer this feature 
will appear to the root node in the tree.

Class distribution. Class distribution 
is shown in the “values” in every node of 
the DT, which represent the numbers of 
benign and malicious data samples in 
the specific node. For example, the root 
node in Figure 1 shows “value = [9,419, 
9,215],” meaning that there are 9,419 be-
nign data samples and 9,215 malicious 
data samples. Following the left branch 

from the root node, the next judgment 
node shows “value = [9,419, 1,718],” 
meaning that there are 9,419 benign 
data samples and 1,718 malicious data 
samples. The other 9,215–1,718=7,497 
data samples, which are all malicious, 
are directed to the right branch follow-
ing the root node. Similarly, by looking 
at this value in every node, the class 
distribution between benign and mali-
cious can be clearly inferred.

Shapley values
Shapley values produced by SHAP,2 a 
widely used tool to provide per-data- 
sample explanations, are used for 
measuring the impact of a certain 
feature’s value toward the predicted re-
sult. Different from TRUSTEE, Shapley 
values are used for local interpretation. 
In other words, it is used to interpret 
how a prediction result is reached for a 
specific data sample. Specifically, Shap-
ley values can tell how each feature 
contributes to the predicted results.

For example, Table 1 shows the inter-
pretation for a benign data sample in DNS 
cache poisoning detection. A positive 
Shapley value means that the feature’s 
value pushes the classification result 
toward being malicious, and a negative 
Shapley value does the contrary. Only 
the top-10 most positively and nega-
tively contributing features and their 
Shapley values are shown. Specifically 
for this data sample, the most positively- 
contributing feature is the bit 1 of the 
DNS layer’s authority RR field in the 
fourth packet in the data sample. The 
most negatively-contributing feature is 
the bit 6 of the IP layer’s ttl field in the 
fourth packet in the data sample.

CONNECTIONS BETWEEN 
NETWORK-LEVEL AND 
PER-DATA-SAMPLE 
EXPLANATIONS
Since the explanations provided by DTs 
and SHAP are two different kinds of ex-
planations, we believe that no meaning-
ful conclusions on “which explanations 
are better” could be drawn. However, 
we observe that from the perspective 
of whether the explanations are in 

aChapter 5 in https://github.com/PSUCyberSecurity 
Lab/AIforCybersecurity.

For example, DTs may not be able to capture 
complex relationships between input features,  
and they may be sensitive to noise and outliers  

in the data.

https://github.com/PSUCyberSecurityLab/AIforCybersecurity
https://github.com/PSUCyberSecurityLab/AIforCybersecurity
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agreement with the experts’ domain 
knowledge, the explanations provided 
by both DTs and SHAP are actually lo-
cated on the same spectrum. In par-
ticular, the DT explanations provided 
by TRUSTEE are located near the right 
end of the spectrum due to the fact that 
TRUSTEE requires the decision rules in 

DTs “to be largely in agreement with the 
experts’ domain knowledge.”9 In con-
trast, the Shapley value explanations 
provided by SHAP are located near the 
left end of the spectrum since the Shap-
ley value of each feature is determined 
by the feature’s average marginal con-
tribution, which is calculated based on 
the output (that is, probabilities of each 
of the classes/labels involved in the clas-
sification task) of the black-box model it-
self. In other words, the explanations on 
the left end tend to illustrate the inner 
workings of the black-box model.

The aforementioned observation 
indicates that on the “spectrum” of 

whether the explanations are in agree-
ment with the experts’ domain knowl-
edge, researchers could gain new in-
sights through the “distance” between 
the explanations near the left end of 
the spectrum and those near the right 
end. Since the explanations provided 
by DTs and SHAP are not located on the 

same side of the spectrum, the extent 
to which they are “aligned with each 
other” indicates the extent to which ex-
pert-comprehensible explanations are 
aligned with the inner workings of the 
black-box model. To gain new insights 
into the extent to which expert-com-
prehensible explanations are aligned 
with the inner workings of the black-
box model, we want to assess the extent 
to which the explanations provided by 
DTs and SHAP are aligned. However, we 
must avoid directly checking whether 
the high-Shapley-value features play a 
major role in the DTs because the Shap-
ley values provided by SHAP explain 

how a black-box model makes decisions 
near a particular data point. On the 
other hand, based on the observation 
that each root-node-to-leave-node path 
in a DT explains how a black-box model 
makes decisions for a subset of the data 
samples, subset-level alignment assess-
ment could be conducted.

First, since the entire subset corre-
sponds to the same decision-making 
path in the DT, the DT explanations 
“tell” a domain expert that the subset 
of the data samples are classified based 
on the features on the corresponding 
root-node-to-leave-node path in the 
DT. We call this set of features Set 1 fea-
tures. Second, since SHAP can provide 
the Shapley values of each contribut-
ing feature in classifying each member 
of the subset of data samples, we may 
differentiate all the involved features 
based on whether a feature contributes 
to the decision-making of majority of 
the data samples. We call this set of 
features Set 2 features. By neglecting 
the features that only contribute to the 
decision-making of a minority of the 
data samples, we reduce the risk intro-
duced by SHAP sometimes providing 
misleading explanations for some par-
ticular data samples. Third, if Set 1 is a 
subset of Set 2, we say that expert-com-
prehensible explanations are not con-
flicting with the inner workings of the 
black-box model; if Set 2 has quite a few 
members that are not in Set 1, we say 
that expert-comprehensible explana-
tions are not completely reflecting the 
inner workings of the black-box model.

Specifically, we aggregate Shapley 
local interpretations of multiple data 
samples to simulate global interpreta-
tions. Shapley values of multiple data 
samples are added up with respect to 
every feature, and then we find the top 
positively-contributing features and 
top negatively-contributing features, 
similar to what is presented in Table 1. 
Due to time and computing resource 
constraints, it is not feasible to apply 
Shapley to all data samples. Instead, 
we decided to look into a specific group 
of data samples. The selected group of 
data samples includes only benign data 

TABLE 1. Shapley values for an example benign data sample.

Positively-contributing features
Shapley 
values

Negatively-  
contributing  
features

Shapley 
values

pkt-4_DNS_authority-RR_bit_1 0.008 292 pkt-4_IP_ttl_bit_6 −0.025 208

pkt-5_DNS_authority-RR_bit_1 0.006 453 pkt-4_IP_ttl_bit_7 −0.023 393

pkt-3_UDP_src-port_bit_15 0.005 856 pkt-5_IP_ttl_bit_5 −0.022 140

pkt-5_IP_total-len_bit_1 0.005 790 pkt-5_IP_ttl_bit_1 −0.020 732

pkt-3_DNS_flags_reserved_bit_** 0.004 204 pkt-5_IP_ttl_bit_3 −0.018 543

pkt-5_UDP_len_bit_7 0.003 944 pkt-1_UDP_len_bit_3 −0.016 521

pkt-4_UDP_len_bit_7 0.003 764 pkt-5_IP_ttl_bit_0 −0.016 137

pkt-4_IP_total-len_bit_1 0.003 690 pkt-4_IP_ttl_bit_3 −0.015 278

pkt-4_UDP_len_bit_5 0.003 503 pkt-5_IP_ttl_bit_2 −0.015 069

pkt-4_IP_total-len_bit_5 0.003 455 pkt-1_DNS_flags 
_non-auth

−0.014 437

Note that the NN’s predictions but not ground truths 
are used because DT here is used for explaining 
the NN but not for solving the original problem.
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samples, corresponding to the leaf node 
with the most benign data samples as 
shown in Figure 1 (referred to as ma-
jor benign path). We randomly chose 
100 data samples from the group, upon 
which Shapley local interpretation is 
applied to save computation resources. 
We have done this multiple times and 
found that they all show similar results. 

For example, they all choose the same 
most important features, and SHAP’s 
ranking of them is also the same. In 
the following paragraphs, we will only 
show two result charts for simplicity.

Figure 2(a) shows the Shapley values 
for features shown in the major benign 
path. If the Shapley value is negative, it 
means that the value for this feature is 

pushing the classification result to be 
benign; if the Shapley value is positive, 
it means that the classification result is 
being pushed to be malicious. For every 
data sample, one point will be added to 
every feature because there will be one 
Shapley value for every feature. To the 
left of the figure, we also show the ratio 
of negative data points to positive data 

FIGURE 2. Beeswarm charts for 100 randomly selected data samples in the major benign path of TRUSTEE. (a) Shapley results for 
features selected by TRUSTEE. (b) Shapley results for other important features.
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points: the number of data points with 
negative Shapley values to the number 
with positive Shapley values. It can 
be inferred from this figure that most 
Shapley values are negative, meaning 
that Shapley local interpretation agrees 
with TRUSTEE that, for the selected 
data samples, these six features’ values 
are pushing them toward being benign.

Figure 2(b) shows the Shapley values 
for features that are most negatively 
affecting. By most negatively affect-
ing, we mean that these features have  
the smallest summation of Shapley  

values of all randomly selected data 
samples from the major benign path. 
Feature pkt-3_IP_ttl_bit_3 is iden-
tified by Shapley as one of the top-10 
most negatively-contributing fea-
tures, but all other important fea-
tures chosen by TRUSTEE are not in 
the top-10 list. Clearly, Shapley thinks 
that there are features that have larger 
negative impact on data samples’ clas-
sification results, more impactful than 
the six features chosen by TRUSTEE. 
This is probably due to the fact that 
TRUSTEE and Shapley local interpreta-
tion inspect different amount of data 
samples. The TRUSTEE DT is built by 
inspecting all data samples, but Shap-
ley local interpretation only inspects 
a subset of data samples. Specifically, 
the DT shown in Figure 1 inspects 
18,644 data samples, of which 9,419 are 
benign data samples, and 9,215 are ma-
licious data samples. However, Shap-
ley local interpretation results shown 
in Figure 2(a), and (b) are from 100 data 
samples randomly sampled from the 
leftmost leaf node in Figure 1, where 
there are only 8,876 benign data sam-
ples. Clearly, the two results are based 
on different distributions of data sam-
ples. Another reason might be that 

TRUSTEE and Shapley’s “important 
features” do not have the same mean-
ing. TRUSTEE’s important features are 
“important” because these features 
can effectively discriminate benign 
data samples from malicious ones, 
while Shapley’s important features are 
“important” because these features’ 
values contribute the most to the data 
samples’ classification results. These 
two sets of “important features” are 
important in different aspects, so it 
might be reasonable that the two sets 
include different features.

Main finding
On the one hand, expert-comprehen-
sible DT explanations do not conflict 
with the inner workings of the black-
box model; on the other hand, ex-
pert-comprehensible DT explanations 
are not completely reflecting the inner 
workings of the black-box model.

T his article compares two XAI 
techniques, TRUSTEE and SHAP, 
in explaining the neutral net-

works. The results show that different 
explanation methods may not fully 
agree with each other at some points. 
Differences may stem from different 
explanation mechanisms, the choice 
of data sample subsets, or different 
perspectives of the explanations. In 
the future work, we will investigate 
the potential causes for such misalign-
ment between explanations provided 
by the DTs and SHAP. 
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