
This April 2024 special issue discusses the current
state of the practice and state of the art in depend-
able computing. To me, dependable computing is
a timely and timeless topic. Many thanks to the

guest editors for pulling this issue together. Here, to set
the stage, I offer a message as to why I remain intrigued by
this topic after so many years.

To begin, I came from the software side of the de-
pendable computing research community as a graduate
student. However, I was aware that the software side
borrowed heavily from the hardware side (even though
the sides had distinct differences). Let’s walk through a
few of them.

Hardware can fatigue, decay, and wear out. Software
can’t wear out, although its environment can. Wear
out, decay, and fatigue are functions of time. Software is

deterministic. Software’s static be-
havior is not a function of time; how-
ever, its environment may be. Soft-
ware’s dynamic behavior is almost
certainly a function of time.

For these and other reasons, soft-
ware reliability measurement has
suffered from believability and accep-
tance issues. It is difficult to believe

that measures for physical systems can somehow be auto-
matically mapped (with precision) to nonphysical systems.

Further, hardware testing is different than software
testing. Hardware/physical testing is limited by time and
money. For example, you can only crash-test so many cars.
However, software testing is slightly different. The main
limits on software testing are not the number of tests (be-
cause of the extreme performance of today’s computers) but
instead 1) being able to argue that the test cases were rea-
sonable to select and 2) knowing if a test output is correct.

And then there’s an implausible goal of detecting
and “fixing” all faults. Does that make sense for faults
of very small size, meaning those faults that are likely

Thoughts on
Dependability
Jeffrey Voas , IEEE Fellow

Dependability suffers from various

misunderstandings as to what the term means.

Here, we discuss a few of these difficulties.

Digital Object Identifier 10.1109/MC.2024.3350359
Date of current version: 5 April 2024

DISCLAIMER
The author is completely responsible for the content in this
message. The opinions expressed here are his.

EIC’S MESSAGE EDITOR IN CHIEF JEFFREY VOAS
IEEE Fellow; j.voas@ieee.org

C O M P U T E R U . S . G o v e r n m e n t w o r k n o t p r o t e c t e d b y U . S . c o p y r i g h t . 	 P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y A P R I L 2 0 2 4 � 11

https://orcid.org/0000-0003-1139-3690

12	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

EIC’S MESSAGE

undetectable without using large
numbers of tests? In most cases, it does
not, except for critical systems.1 And
during testing, don’t forget that rarely
selected inputs can lead to rarely ob-
served failures, and that some of these
failures could be catastrophic.

Also, don’t overlook the fact that
software can be maliciously tampered
with, and this tampering may be more
difficult to detect than it is for hard-
ware. Isn’t it strange to think that you

are more likely to produce correct soft-
ware than to be able to determine that
you did? And who knows where it goes
once artificial intelligence-based code
generation becomes normalized as a
regular software development utility.

There is another dependability prob-
lem of applying subjective, everyday
English words, like reliable, depend-
able, trustworthy, safe, and secure, to
measures that are objective. For exam-
ple, can you really say that a system is
100% reliable or safe and believe it? Or
do you need to add a confidence mea-
sure (basically a disclaimer), so, for in-
stance, you are 50% confident that the
probability of failure is 1%? (I’ve always
believed that it is better to use terms
like “safer” or “more secure” than
“safe” and “secure.”)

For example, people often say that
they want safe and secure schools. But
what they really want is a reasonably
secure school that is still usable, and
if they get that, then they should get a
safer environment for learning. True?
And people always want security, but

what if the security is unreliable? You
could have the most elaborate home
security system, but if it is down most
of the time, then you don’t have secu-
rity. Here, a lack of reliability means a
lack of security. As another example,
polygraph tests were claimed to be
60% reliable in the 1950s; today that
number is supposedly near 93% due
to new computer technology, but 93%
is still not reliable enough to be used
in courts. The point here is that these

everyday English words and how they
are used complicates using them in
technical measurements, metrology,
and problem solving.

Another dependability problem
involves “What is good enough?” and
“Who signs off that a system is ‘good
enough’”? That is, who is licensed or
certified to make such assertions? And
who licenses or certifies the person
making the assertions?2,3

To recap, what do we have so far?
Theories for physical systems applied
to nonphysical systems, subjective
everyday English words being used
objectively, and suspicious assertions
about the trustworthiness made by
fallible humans.

So, what could go wrong? Well, just
about everything until you put measured
boundaries on assertions of dependabil-
ity. Once you take this approach, you
can begin to sound reasonable. For ex-
ample, you can say that, given these X
restrictions/assumptions, we can assert
that this system cannot exhibit these Y
behaviors, where X defines the usage

environment and possibly other condi-
tions. By doing so, we can argue that a
system is fit for purpose. But that is still
only an argument and not an iron-clad
guarantee.

Systems have many dimensions
to consider before we label or assert
their dependability.4 Dependabil-
ity is a complicated recipe that is best
served with a cup of salt.5,6

REFERENCES
	 1.	 J. Voas and K. Miller, “Predicting

software minimum-time-to-hazard
and mean-time-to-hazard for rare
input events,” in Proc. IEEE Int. Symp.
Softw. Rel. Eng., Toulouse, France,
Oct. 1995, pp. 229–238, doi: 10.1109/
ISSRE.1995.497662.

	 2.	 K. Miller and J. Voas, “Software certi-
fication services: Encouraging trust
and reasonable expectations,” IT Prof.,
vol. 8, no. 5, pp. 39–44, Sep./Oct. 2006,
doi: 10.1109/MITP.2006.120.

	 3.	 J. Voas and P. Laplante, “The services
paradigm: Who can you trust?” IT
Prof., vol. 9, no. 3, pp. 58–61, May/Jun.
2007, doi: 10.1109/MITP.2007.59.

	 4.	 K. Miller, J. Voas, and P. Laplante, “In
trust we trust,” Computer, vol. 43, no.
10, pp. 85–87, Oct. 2010, doi: 10.1109/
MC.2010.289.

	 5.	 J. Voas, “Trusted software’s holy
grail,” Softw. Qual. J., vol. 11,
no. 1, pp. 9–17, May 2003, doi:
10.1023/A:1023679926998.

	 6.	 J. Voas, “Software’s secret sauce: The
“-ilities” [Software Quality],” IEEE
Softw., vol. 21, no. 6, pp. 14–15, Nov./
Dec. 2004, doi: 10.1109/MS.2004.54.

There is another dependability problem of applying
subjective, everyday English words, like reliable,

dependable, trustworthy, safe, and secure, to
measures that are objective.

JEFFREY VOAS, Gaithersburg, MD
20899 USA, is the editor in chief of
Computer. He is a Fellow of IEEE.
Contact him at j.voas@ieee.org.

http://dx.doi.org/10.1109/MITP.2006.120
http://dx.doi.org/10.1109/MITP.2007.59
http://dx.doi.org/10.1109/MC.2010.289
http://dx.doi.org/10.1109/MC.2010.289
http://dx.doi.org/10.1023/A:1023679926998
http://dx.doi.org/10.1109/MS.2004.54
mailto:j.voas@ieee.org

	011_57mc04-editorial-3350359

