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This article presents a design of “virtual sensors” to collect 

low-dimensional sensor data from 3D digital human motion 

and create real-world applications through the “interactive 

simulation.” It provides an opportunity to decrease dependency 

on real-world data requirements and gives more flexibility 

in the corresponding human activity-related applications. 

Using sensors and machine learning (ML) to 
recognize human motion and build the activ-
ity-related applications has been successfully 
applied to assist people’s daily lives, such as 

gesture interaction, motion tracking, and exergames.1,2 
As in Zhu et al.,2 multimodal sensors have been used in 
various types of activity recognition systems. However, 

such systems have shown bottlenecks; that is, real sen-
sor datasets are always required as prerequisites to train 
classifiers. As a result, the developed applications are 
mainly limited by the dataset’s characteristics, including 
data modalities, sensor characteristics, and data types.

INTRODUCTION
Such issues affect the flexibility of users to employ the sys-
tem. For example, when using a wearable activity recogni-
tion system, the specified sensor-wearing position cannot 
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fit different users’ body conditions and 
preferences. For a fitness-tracking sys-
tem, users normally require various 
types of activity to be recorded based 
on their needs. However, these issues 
are determined by the needs of the data 
during the system design process. Once 
the system’s characteristics need to be 
changed (for example, where the sensor 
is to be placed and the type of activities 
to be recognized), the data need to be 
recollected, and the systems must be 
redesigned.

To solve these problems, there have 
already been some efforts to gener-
ate synthetic sensor data to reduce the 
cost of real sensor data. Traditional 
synthetic sensor data generation typ-
ically relies on generative adversarial 
network (GAN) models.3 Synthetic data 
can be generated by using real data to 
train the discriminator and genera-
tor, effectively augmenting datasets 
to train classifiers with higher robust-
ness. For low-dimensional time series 
sensor data [for example, wearable 
inertial measurement unit (IMU) sen-
sor data], several works have proposed 
to produce data. Sensegen4 introduced 
a long short-term memory network as 
the generator to produce synthetic lin-
ear acceleration data. SensoryGAN5 
designed an unabridged model to gen-
erate the acceleration data by a 1D- 
convolutional neural network (CNN) 
model. ActivityGAN6 employed 1D- and 
2D-CNN structures, which showed bet-
ter discriminator performance. Pham 
et al.3 proposed a conditional GAN 
model to generate a synthetic walking 
step length by a waist-mounted IMU 
sensor. However, this approach still 
requires a large amount of real data to 
train the model and does not funda-
mentally improve the need to obtain 
real data at a high cost. In addition, 
another approach to generate synthetic 

sensing data by videos has emerged in 
recent years, which uses 2D characters 
in videos to infer 3D skeletal point dis-
placement information and thus com-
putes acceleration information for a 
specific body location, as in IMUTube.7 
Vid2Doppler8 extracted the mesh of the 
subject in the video to calculate the syn-
thetic Doppler radar signal and used it 
to augment the existing radar dataset. 
Although this approach can gener-
ate synthetic data without relying on 
existing real datasets, the generation 
process still lacks intuition. The gener-
ated low-dimensional sensor data are 
abstract, and the application scenario is 
limited to the augmentation of existing 
datasets. Therefore, designing, devel-
oping, and generating synthetic sensor 
data more intuitively and conveniently, 
can solve the costly dataset problem 
and create more application scenarios.

Traditionally, as an alternative to 
real people, digital humans have been 
used to evaluate ergonomics in virtual 
environments and to reduce the task 
of product development by simulating 
the posture and motion of real-world 
people.9 Moreover, digital humans, 
combined with motion capture (MoCap) 
systems, can reproduce the motions of 
real people. Taking advantage of this, 
we introduced a new application of 
the 3D digital human that relies on the 
simulation of a physics engine capable 
of measuring changes in the virtual 
physical variables generated by the 
motion of the 3D digital human. Mea-
suring the generated virtual physical 
variables to obtain the synthetic sensor 
data are called virtual sensor detection. 
The data detected by virtual sensors can 
help improve the development of rele-
vant systems in the real world through 
“interactive simulation.”

By reconstructing the motion of 
a 3D digital human, virtual sensors 

are designed in the virtual environ-
ment to detect the signal changes 
brought about by the motion of the 
digital human. These signals are used 
to replace real sensor signals in the 
traditional development process. Due 
to the virtualization of sensor data 
collection, this method will shorten 
the development process and reduce 
costs. More importantly, the low-cost 
data can bring more system flexibility 
and greatly enhance the convenience 
of end users. This article presents the 
development of an interactive simu-
lation system based on this method, 
which allows developers to effec-
tively check the characteristics of the 
developed system and adjust it to 
the actual situation while obtaining 
the required sensor data at a low cost. 
The following sections will intro-
duce the implementation of several 
key techniques, including 3D human 
motion reconstruction and virtual 
sensor design, the applications with 
interactive simulation, future work, 
and challenges.

REPRODUCE HUMAN 
MOTION BY DIGITAL 
HUMANS IN A VIRTUAL 
ENVIRONMENT
Synthetic sensor data are obtained sim-
ilarly using virtual sensors as sensor 
signals associated with human motion 
are obtained in the real world. After 
reconstructing human motion, the 
variables generated by human motion 
are measured in the same way as in 
the real world (for example, by plac-
ing the sensor in space or wearing it on 
the body). Thus, obtaining a 3D human 
motion sequence is a prerequisite for 
obtaining synthetic sensor data using 
virtual sensors. This section described 
how to get a 3D digital human motion 
sequence in a game engine.
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Environment: Game 
engine platform
To support the reconstruction of digi-
tal human motion and producing the 
related sensor data, the high-perfor-
mance and high-accessibility platform 
is considered. The Unity 3D game engine 
not only fuses the physics engine but is 
also popular in the gaming design field, 
which makes it possible to create various 
applications and can be widely accessed 
by end-users. Thus, the whole design 
was developed based on Unity 3D.10

3D digital human avatar
To simulate the real motions con-
ducted by humans, creating the 3D 
digital human avatar, as the subject 
of movement execution in the virtual 
environment, is the first step. Gener-
ally, the hierarchical skeletal structure 
organizes the humanoid avatar model, 
and the root node is normally selected 
as the center of gravity of a humanoid 
model. The other body parts are con-
nected following the parent-to-child 
structure (Figure 1).

To get a 3D avatar, there are already 
many resources for accessing 3D hu
manoid models, such as Mixamo.11 The 

resources have been embedded by a lim-
ited predefined motion and some vari-
ous models with a different appearance 
and are typically applied to the develop-
ment of 3D games to increase the reality. 
In addition to existing animated charac-
ter models, other types of software can 
help develop a more refined model, such 
as the exclusive skinned multiperson 
linear model from MakeHuman.12 Mon-
ocular video-based 3D character model 
extraction has also received wide atten-
tion and aims to create more realistic 
humanoid avatars.13

3D motion reconstruction
Reconstructing real human motion is 
an important prerequisite to ensure 
reliable results of digital human appli-
cation. The implementation of con-
structing 3D motion is based on the 
following techniques.

Inverse kinematic (IK)
Si nce t he huma noid model ca n be 
abstracted as the rigid body structure, 
the body joint parameters can be cal-
culated via the movement of the kine-
matic chain’s end (that is, the end body 
limb). IK-based design processes pro-
vide a basis for 3D motion generation 
through the manipulation of design-
ers. The process is intuitive and easy to 
operate. However, the design requires 
professional knowledge of human 
movement. The application of IK-based 
motion generation is still limited and 
generally applied to small-scale motion 
simulations, such as the specific move-
ment in a game (for example, holding a 
bottle, riding bicycles, and so on).

MoCap equipment
Popular solutions to obtain a 3D motion 
are typically based on MoCap systems. 
The commonly used tools are the mark-
er-based optical tracking equipment (for 

example, Vicon14), IMU-based MoCap 
(for example, Xsens15), and depth cam-
era (for example, Kinect16). The human 
motion can be accurately built by uti-
lizing professional and mature equip-
ment. However, the costly equipment 
limited the pervasive development 
of this technique, and the majority of 
developed applications were based in 
the laboratory.

Video
In addition, the rapid development of 
computer vision and deep learning 
has recently introduced another type 
of approach for generating 3D motion. 
With regard to extracting the skeleton 
information of a person in a red, green, 
blue (RGB) video, a deep neural network 
can be trained to infer the 3D joint posi-
tion variation and thus generate a 3D 
motion, for example, the work of Vid-
eoPose3D.13 As the RGB video can be 
accessed easily by online sources and 
commercial off-the-shelf devices, the 
deep model-based method introduced 
an excellent solution between the IK and 
MoCap technique. Thus far, some com-
mercial software can be employed to 
realize a 3D motion transformation from 
the video, such as DeepMotion.17 Owing 
to the convenience and ubiquity of input 
video, it is believed that the video-based 
method will dramatically improve the 
motion generation process with more 
advanced deep model development.

VIRTUAL SENSORS WITH 
3D DIGITAL HUMAN 
MOTION FOR INTERACTIVE 
SIMULATION
After obtaining the 3D motion sequence, 
virtual sensors need to be designed to 
generate the corresponding synthetic 
sensor data. In this section, two virtual 
sensor design processes, namely IMU 
and distance sensor, are introduced.

FIGURE 1. The 3D avatar and recon-
structed 3D human motion. (a) 3D digital 
human/avatar. (b) 3D human motion.

(a)

(b)
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Framework of interactive 
simulation using virtual sensors
Conventional simulation falls into 
the concept of designing a model of a 
real system and conducting the exper-
iment with the model.18 The whole 
simulation process focused on the 
h ig h-deg ree reproduc t ion of t he 
real mechanism. With virtual sensors 
used, the sensor-based human-activ-
ity application’s development would 
become more interactive and intui-
tive. Specifically, with the 3D motion, 
the sensor signal generation process is 
prone to control and understanding. 
And the user can place the sensor just 
like in the real world and adjust the 
human motion easily. And check the 
result in the virtual environment to 
iterate the design or directly applied to 
the real world. The whole framework is 
presented in Figure 2.

Generating the sensor data
Physics engine systems support the com-
puter software to simulate real-world 
physics, which normally include rigid 
body simulation, collision phenomenon, 
soft dynamics, and so on. Therefore, with 
the help of the simulated physical envi-
ronment built by the physics engine, it is 
possible to design relevant physical sen-
sors for detecting the relevant variables 
in the virtual environment. The detailed 
process is shown in Figure 3.

Real sensor systems typically main-
tain several important parts, including 
sensor unit, signal processing unit, and 
digital conversion unit. As the main 
task is to detect the change of the phys-
ical variable, the virtual sensor design 
focuses on signal-level simulation, 
which aims to generate related physi-
cal variations. Thus, we only focused 
on the detected variables of the sensor. 
Figure 3(a) shows a generic implemen-
tation pipeline of the virtual sensor 

design based on Unity3D. Several key 
steps are introduced as follows.

Key physics simulation
This is the core step of virtual sensor 
design. The step needs to simulate the 
detection process in a real sensor, such 
as the distance value obtained in a vir-
tual environment for a real infrared 
(IR) distance sensor.

Signal interpolation
Since the reconstructed human motion 
is frame-by-frame, such a sensing pro-
cess is also discrete. Therefore, to better 
utilize the sampled signal from a virtual 
sensor, it is necessary to interpolate the 
signal into a continuous function for 
further analysis and processing.

Resampling
The main application of virtual sensor 
design is to replace the role of the real 
sensor in a detection system. Thus, it is 
also important to map the real sampling 
frequency to assist a seamless applica-
tion. After the sensor signal is interpo-
lated, it can discrete the signal again 
through a flexible sampling as needed.

Filtering
As the main simulation process is 
based on numerical calculation, noise 
signals may appear in some situations 
due to the calculation. Thus, filtering 
is required in some cases.

IMU
One of the most popular solutions 
related to the human-motion-based 
interactive system is the IMU sensor. 
An IMU provides the basic informa-
tion from a kinematic aspect. The IMU 
sensor can obtain the acceleration, 
angular velocity, and magnetic field. 
Among them, acceleration and angu-
lar velocity information are usually 
utilized. Therefore, virtual accelerom-
eters and gyroscopes can be designed 
to generate limb acceleration and 
angular velocity in 3D avatar motion 
to simulate the output of a real IMU.

It is easy to obtain the motion coor-
dinates and rotation information of 
the avatar in virtual space. Therefore, 
based on the relevant definitions, sev-
eral kinematic data can be calculated 
from the displacement and angle [Fig-
ure  3(b)]. Specifically, the quadratic 

FIGURE 2. The framework for interactive simulation using virtual sensors. 
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differentiation of displacement is the 
acceleration, and the primary dif-
ferentiation of angle is the angular 

velocity.19 Note that the displacement 
and angle information obtained in the 
virtual space is frame-by-frame, and 

the discretization of discrete data are 
usually done by the difference method. 
Interpolation of discrete data into 

FIGURE 3. The virtual sensor design based on Unity3D. (a) A generic virtual sensor implementation pipeline for measuring 3D digital 
humans. (b) Virtual IMU sensor for outputting kinematic data via accessing the position and rotation data. An illustration of virtual and 
real acceleration signals from right upper leg is shown. (c) Virtual distance sensor used to detect the distance variations between the 
transmitter and the object. An illustration of virtual and real distance signals is shown.
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continuous functions can help obtain 
more accurate differentiation results.

Distance sensor
Using the Raycast function in Unity, 
a real-world IR distance sensor can 
be simulated to obtain the distance 
between the target location and the 
detection point [Figure 3(c)]. When the 
virtual ray is created, it shoots out in the 
specified direction, and when it meets 
colliders, the ray is blocked, and the dis-
tance value is returned. This method 
greatly simulates the detection method 
of a real IR distance sensor. Although 
there are various distance sensors in 
the real world (for example, ultrason-
ic-based and IR-based), depending on 
the detection theory, the ultimate goal 
is to detect distance. Therefore, using 
a physics engine to simulate an IR dis-
tance sensor in virtual space is a fea-
sible solution to obtain the distance 
between virtual objects.

APPLICATIONS
In this section, two applications of vir-
tual sensors are presented. The first 
is the development of human activity 
recognition system associated with 
ML. The second relates to develop-
ing human motion guidance systems, 
a non-ML application. Both types of 
applications are real-world applica-
tions developed under the concept of 
virtual sensors and interaction simu-
lation introduced in this article.

Low-dimensional sensor data-
based motion recognition system 
with optimal sensor positions
Human activity recognition (HAR) is a 
topic that has attracted intense focus 
as it enables the computer system to 
understand the human and assist the 
users’ behavior with high efficiency. 
Generally, the datasets were collected 

based on the fixed sensors, and the 
sensor positions have a significant 
effect on the data distribution. Com-
bining the virtual sensor data with an 
optimization method can help find 
the best sensor positions, leading to 
the highest recognition performance 
HAR system. Moreover, as the dataset 
collection would no longer request the 
real participants to contribute, the low 
cost is able to allow the more experi-
ence-less designer to be engaged and 

attempted. Thus, the whole develop-
ment process can be more flexible and 
interactive. The user could access any 
interesting sensor position to check the 
recognition performance. The follow-
ing cases show the design of HAR sys-
tems using 3D digital human motions 
and the previously introduced sensor 
data collection process via virtual sen-
sor design.20 In these cases, the data 
for training the HAR classifier are col-
lected from 3D digital human motion in 
the virtual space. After finding the best 
positions, the classifiers are trained to 
recognize real-world activities by data 
augmentation.21

Figure 4(a) shows the wearable IMU 
sensor attached to the 3D digital human. 
The input motions were captured from 
the IMU MoCap suite, namely, Xsens 
MVN. Three people with five types 
of activities, including walking, run-
ning, standing, going upstairs, and going 

downstairs. A total 90 s of virtual accel-
eration data were collected and seg-
mented by a 2-s window. After three 
times of augmentation, the data were 
segmented to extract the time- and 
frequency-domain features and then 
used to train a support vector machine 
(SVM) classifier. For real testing data, 
the same length acceleration data were 
utilized, and 89.85% accuracy could 
be obtained while using the classifier 
trained by virtual data to recognize the 

real activity data (based on three sensor 
positions chest, right shoulder, head after 
optimization).

Figure 4(b) shows a virtual dis-
tance sensor being used as a wear-
able to detect the distance variations, 
which are caused by the user’s motion, 
between the on-body distance sensor 
and the ground. The distance sensor 
can be attached to the lower limbs of 
the body with a different transmis-
sion angle. Three people were invited to 
perform the exercise activities for 60 s,  
including heel up/down, squat, and 
hip stretch. Xsens MVN was used to 
reconstruct the 3D motion in the vir-
tual environment. The data process-
ing, feature extraction, and classifier 
training followed the aforementioned 
method. In the real world, real dis-
tance sensors (GP2Y0A21YK0F, Sharp) 
w it h a 60-Hz sa mpl i ng rate were 
selected, and 91.25% accuracy could 

GENERALLY, THE DATASETS WERE 
COLLECTED BASED ON THE FIXED 

SENSORS, AND THE SENSOR POSITIONS 
HAVE A SIGNIFICANT EFFECT ON THE 

DATA DISTRIBUTION.
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FIGURE 4. Virtual sensor detection from 3D human motion applied to HAR system design. (a) Using virtual wearable IMUs to design a daily 
activity recognition system. (b) Using wearable virtual distance sensors to recognize the exercises. (c) Ambient-based virtual distance sensors 
used to identify the activities in the bathroom. (d) Support software to assist the hand gesture recognition interface with distance sensors.
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be achieved while using the virtual 
data-related classifier to recognize the 
real activity (based on two sensor posi-
tions left lower leg-left and left upper leg-
back after optimization).

Conventional dense sensing nor-
mally adopts large amounts of sensors 
and datasets to improve the robustness 
of the system. The required area is gener-
ally a whole ceiling or a large part of the 
wall. Using the virtual distance sensor 
can more easily provide the guidance of 
the sensor’s position and number to rec-
ognize activity. We assumed the applied 
scene was the bathroom of the home, 
and the system aimed to track the daily 
activities that occur in the bathroom, 
including the washing hands, washing 
face, and brushing teeth. Therefore, in the 
virtual environment, 70 virtual distance 
sensors were placed on the wall above 
the washbasin, as shown in Figure 4(c). 
The 70-sensor area was then divided into 
several subsensor boards (24 subboards, 
cf. the blue and red blocks). Three partic-
ipants were recruited, and a total 90 s of 
the related activities were reconstructed 
by Xsens MoCap. The sampling rate was 
set as 25 Hz and segmentation length was  
2 s. The collected virtual distance sen-
sor data were aligned and converted 
into grayscale figures. The extracted 
texture features via Gabor filter were 
then imported into the SVM classifier 
for training.

In the real world, the IR distance 
sensor (GP2Y0A21YK0F, Sharp) and the 
Arduino chip (ARDUINO PRO MINI) were 
utilized. After the real and virtual coor-
dinates were mapped, the testers were 
requested to stand in front of the real sen-
sor boards and conduct the correspond-
ing activities for 60 s. Following the same 
aforementioned approach, the data were 
converted into grayscale figures. The 
accuracy of using a virtual-data-trained 
classifier to recognize the real activity 

could reach 90.69% (based on ten dis-
tance sensors used after optimization).

In addition to the recognition and 
interaction of full-body motion, hand 
motion is also a topic that has gar-
nered increased focus in the human– 
computer interaction field. With inter-
face systems evolving toward being 
natural and efficient, recognizing ges-
tures has played an important role 
in this development. The traditional 
prototyping process is affected by the 
position of the utilized sensor and fol-
lows the approach of empirical trial 
and error, which requires the exper-
tise of the developer. Using the vir-
tual distance sensor can assist such a 
prototyping process for hand-gesture 
recognition interface development. 
In the virtual sensor-based approach, 
software can be developed to support 
the virtual distance collection caused 
by virtual hand motion input.22 
It also fuses the optimization process 
and helps reduce the discipline bar-
rier for development. The output of  
the designed software is the specific 
sensor placement and classifier. In the 
real world, the real distance sensors 
imitate the corresponding sensor posi-
tion and recognize the human’s hand 
motion through the generated ML model 
[as shown in Figure 4(d)].

The input hand motion was recorded 
by Microsoft Kinect. Subsequently, the 
captured 3D data were reconstructed by 
the mesh in the virtual environment. 
The mesh structure was built in a high 
dimension, and the related coordinate 
system was transferred from the coor-
dinate system of Kinect. After the hand 
motion was imported, the virtual dis-
tance sensors could then be placed by 
considering the practical prototype 
situation. Since various distance sen-
sors can be deployed, the detected dis-
tance value is converted into a grayscale 

image for recognition. After the nor-
malization, the matrix is converted into 
a grayscale image, which is then input 
into a CNN classifier for training.

To test the performance, a real IR dis-
tance sensor (GP2Y0E02A, Sharp) was 
employed in the real world. Seven peo-
ple were recruited to test the system. 
Each individual’s data were used to gen-
erate the classifiers, and the remain-
ing six people’s data were employed 
to test the performance. To adapt the 
virtual-data-trained classifier into the 
real-world domain, transfer learning 
was utilized with a small amount of real 
data to fine-tune the fully connected 
layer of pretrained CNN models by vir-
tual data. The recognition accuracy 
could reach more than 90% with the 
transfer learning used.

Customized motion-learning 
system combined the digital 
human and auditory feedback
Motion-learning system has contrib-
uted to human daily exercise and 
health to a large extent. Conventional 
motion-learning systems typically employ 
video tutorials to assist the user in study-
ing the required motion for exercise 
training, rehabilitation, and other activ-
ities. However, the limited information 
restricts the learning effect, and various 
users may cause different study results 
for a given motion. In addition, most 
systems are utilized based on a pre-
defined motion, exhibiting low flexibil-
ity and difficulty adjusting to different 
usage conditions. Thus, finding a new 
solution based on an efficient, conve-
nient system and improving the flex-
ibility of a learning system can benefit 
more motion learning applications and 
engage more users.

Drawing from the concept of the vir-
tual sensor, a novel motion-learning 
system, VoLearn, was developed based 
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on a 3D avatar (Figure 5). VoLearn fuses 
several key components to contrib-
ute to a customized motion design and 
provide effective feedback during the 
learning process.23 Specifically, it con-
verts the pervasive 2D motion video 
into 3D motion with a state-of-the-
art deep learning model. For a given 
motion 3D file, an interface is devel-
oped to allow the user to fine-tune and 

build a secondary design. The speed and 
amplitude of the motion can be adjusted 
according to the user, thereby allowing 
the different motion combinations to 
form a new motion. After the motion 
is designed, the system conducts an 
online analysis of the virtual motion 
data to recommend a sensor position 
for real-world study. In the real world, 
the user is required to wear the personal 

smartphone on the designated body 
parts, and the smartphone-based appli-
cation will analyze the user’s behavior 
to produce auditory feedback for the 
user. The interactive feedback includes 
the error information regarding the 
user’s amplitude and speed, which can 
help the user learn the motion more 
accurately. VoLearn can help the user 
learn a motion more accurately and 

FIGURE 5. Virtual IMU-based detection on 3D human, applied to customized motion-learning system.
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proves the effectiveness of the corre-
sponding sports training, rehabilita-
tion, and therapy scenarios.

FUTURE AND CHALLENGES
Collecting sensor data from 3D digital 
human motion by virtual sensors pro-
vides a novel development paradigm 
for traditional real sensor data-based 
systems, especially low-dimensional 
sensor data ML development. Unlike 
the traditional real dataset collection 
as a premise, the presented virtual sen-
sor-based detection greatly decreases 
development costs and alters the char-
acteristics of conventional human 
activity-related applications.

Accurate and accessible 
3D motions
Thus far, to obtain accurate 3D motion 
to create sensor data, high-performance 
MoCap equipment could be employed. 
Nevertheless, the laborious and costly pro-
cess has limited pervasive applications. 
Other methods, such as using the deep 
learning model to convert a 2D video to 
a 3D motion, have become mainstream. 
The low-cost and wide video source 
makes 3D motion files increasingly 
accessible. However, converted 3D motion 
still provides limited performance due to 
the learning-model-based mechanism. 
For example, if the person in the video is 
obscured or the video quality is low, the 
converted 3D person’s movement is poor. 
Moreover, the converted 3D motion is 
better for motion videos with a large 
range of motion. Therefore, the next key 
focus is on obtaining high-performance 
3D character motion sequences cost-ef-
fectively. With the development of deep- 
learning vision models, it is believed 
that a wide range of high-performance 
3D human motion sequences will be 
highly accessible. Using virtual sen-
sor-based detection on these 3D motions 

can lead to novel real-world applications 
related to human motion.

Virtual sensor design hints
Two virtual sensor designs, namely, 
the IMU and the distance sensor, are 
presented in this article. As introduced 
before, the realization of the virtual 
sensor signal mainly depends on the 
physics engine. With further devel-
opment of the physics engine, more 
types of sensors can be simulated and 
developed, such as light, radar, and 
flex sensors. The use of multiple types 
of virtual sensors related to virtual- 
reality sensor fusion algorithms and 
information intelligence applications 
will be expected. Figure 6 shows poten-
tial virtual sensor design hints. Since 
the design of a virtual sensor based on 
a physical engine does not simulate the 
sensor at the principle level, the design 
is application-oriented in its think-
ing. Defining the variables detected 
by the sensor is the focus of designing 
such virtual sensors. For example, the 

IMU sensor can detect angular veloc-
ity, but it can also be used to measure 
the degree of joint flexion of a limb 
during motion. Therefore, for the for-
mer virtual sensor design, angular 
velocity calculation is required, while 
for the latter design, Euler angles can 
be directly accessed for simulation. 
Table  1 gives several potential virtual 
sensor developments.

More realistic virtual 
sensor signal
A major issue limiting the application 
of virtual sensors is the realism of the 
signals. Since the detection is based 
on reconstructed 3D human motion 
sequences, ensuring that the signals 
generated from virtual sensors are as 
close as possible to those generated 
under real human motion remains a 
major difficulty. There are many fac-
tors that cause this difficulty, including 
the 3D avatar size, the motion char-
acteristics of different real charac-
ters, the interference of other physical 

FIGURE 6. The virtual sensor design hints. 
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characteristics in the real world (mag-
netic field, multipath effect, and so 
on), and the soft tissue of the wearing 
situation. So far, to minimize the dif-
ference between virtual data and real 
data, the number of activity recogni-
tion categories is usually limited, for 
example, three to four, to ensure that 
the classifier trained on virtual data 
can recognize real activity data with 
better performance. To solve such prob-
lems, it is necessary to continuously 
improve the fidelity of the overall envi-
ronmental factors in the virtual world. 
On the other hand, it is also possible to 
use a small amount of the real world to 
retrain the classifier from a data per-
spective, such as transfer learning, 
so that it can be better applied in real 
environments.

However, t he lat ter approach 
still requires a certain amount of real 
data and brings little improvement 
compared to the traditional develop-
ment paradigm. Therefore, the main 
research results at this stage are still 
focused on low-dimensional sensor 

virtualization and minimizing the 
difference between virtual and real 
data distribution. To advance prom-
ising developments, exploring the 
virtual sensor data-specified ML devel-
opment method, such as virtual-to-real 
domain-invariant features, can also be 
focused on. With the development of 
related research, virtual environment 
applications will become increasingly 
complete. While traditional techniques 
have mainly concentrated on reproduc-
ing real spaces in virtual spaces, the 
methods presented in this article will 
complement another idea of using data 
collected from virtual spaces to improve 
real-world sensor system applications. 
In addition to the immersion brought by 
virtual reality devices at this stage, sys-
tems developed using virtual sensors 
will obtain another sense of seamless-
ness in the virtual–real world and create 
an entire cyberphysical world. More-
over, without the heavy requirement of 
real datasets in traditional ML systems, 
ML systems developed using virtual 
sensors will be lightweight, flexible, 

and will create more personalized ser-
vices for users.

Traditional sensor-based human 
activity-related applications are  
limited by the costly real data  

required, making development time- 
consuming and laborious. This article 
presented a novel sensor data collec-
tion method for human activity. With 
the help of a physics engine, a virtual 
sensor can be designed to measure 
3D human motion and thus generate 
corresponding sensor data. With this 
approach, the traditional real-world 
measurement of human-related activ-
ity using sensors can be transferred 
to the virtual environment, signifi-
cantly reducing development costs and 
enabling interactive simulation. This 
approach can bring more flexibility 
and customization to HAR systems. 
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TABLE 1. Potential virtual sensors design.

Function in the game engine 
Variables in the virtual 
environment Variables in the real world Sensors in the real world

Light Brightness value Brightness value Light sensor 

Soft-body simulation Shape changed Shape changed Flex sensor 

Collider If there was a collision If two objects touch Capacitive sensor 

Object’s rotation Bending degree Bending degree Flex sensor IMU sensor

... ... ... ... 

Raycast The distance between the 
transmitter and the obstacle 

The distance value Distance sensor

Object’s position and rotation The acceleration, angular velocity, 
Euler angle, quaternion

Acceleration, angle, quaternion, 
and so on

IMU sensor 
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