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arious sparse tensor formats have been pro-
posed to optimize the performance of tensor 

computations. For the first time, we lever-
age unsupervised machine learning methods 

to automatically select the opti-
mal sparse storage format for ten-
sor computations. Our proposed 
framework can achieve high pre-
diction accuracy and thus sig-
nificant performance speedup in 
practical applications.

SUMMARY
Tensors can represent high-dimen-
sional data with more than two di-
mensions. Tensor decomposition 
is widely used to understand the 
relationship of data across multi-
ple dimensions. Canonical polyadic 
decomposition (CPD) is a general-
ization of singular value decompo-
sition and outputs matrix factors for 

each mode of a tensor. The major performance bottleneck 
of CPD is matricized tensor times Khatri–Rao product 
(MTTKRP), which is the primary focus of optimizations in 
tensor composition.

Existing works optimize the performance of MTTKRP 
based on the computation patterns and operation depen-
dency. Although the parallelization can significantly 
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improve the performance of MTTKRP, 
it is constrained by the sparsity 
patterns and hardware character-
istics. Therefore, different sparse 
tensor formats have been proposed 
to improve the computation per-
formance with codesigned storage 
and algorithms adapted to the spar-
sity and hardware. However, due to 
the complex sparsity patterns and 
diverse hardware characteristics, 
the optimal tensor format varies 
significantly.

The format selection of sparse 
tensors can be analogized to the 
classification problem. For program-
mers, choosing the optimal format 
is a daunting task requiring tedious 
efforts. The convolutional neural 
network (CNN) has gained tremen-
dous popularity in classification 
tasks due to its ability to capture 
the underlying features of input 
data. However, CNNs cannot be di-
rectly applied in tensor format se-
lection, due to higher-dimensional 
data to deal with. The high-dimen-
sional convolution can neither be 
used due to the unacceptable pre-
diction overhead caused by the ten-
sor irregularity.

Un like super vised met hods, 
unsupervised methods only re-
quire unlabeled training data, 
which can signif icant ly reduce 
 engineering efforts. Among them, 
the convolutional autoencoder 
(CAE) has gained attention in clas-
sification tasks due to its ability 
to effectively extract the pixel 
distribution of an image as a fea-
ture vector. However, the same 
challenges faced by CNNs also 
apply to CAEs. In addition, a ho-
listic pipeline including the auto-
encoder and clustering algorithm 
needs to be designed.

In our article,1 we propose an 
automatic tensor format selec-
tion framework, SpTFS, which can 
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predict the optimal tensor format for 
MTTKRP with redesigned CNN and 
CAE networks. As shown in Figure 1, 
the SpTFS sampling consists of two im-
portant components including tensor 
transformation and feature extraction. 
The tensor transformation component 
converts the sparse tensors into fixed-
size matrices through tensor lowering 
and matrix representation. The feature 

extraction component captures lost 
tensor features during tensor transfor-
mation, which are then fed into the 
fully connected layer.

For unsupervised learning, we pro-
pose TnsClustering, which consists 
of feat u re encod i ng, K-mea n s++ 
modeling, and cluster labeling (de-
picted in Figure 2). During prediction, 
TnsClustering obtains the feature 

vector of each input tensor through 
feature encoding. Then, the input 
tensor is assigned to the nearest clus-
ter by the trained K-means++ model, 
with the format predicted the same as 
the cluster.

We evaluate SpTFS on both CPU 
and GPU platforms to prove its ef-
fectiveness in predicting the optimal 
tensor format. As reported in Table 1,  

Flattening + Density Repr.

Mapping + Density Repr.

TnsEncoder

+

TnsEncoder

Concatenate

128 × 128 × 1

128 × 128 × 1

256 × 1
512 × 1

256 × 1
551 × 1

39 × 1

K-Means++ 
Modeling

Cluster Labeling

CSF HiCOO

COO

+

Sparsity
Features

Concatenate

FIGURE 2. The design of TnsClustering for predicting the optimal tensor format. repr.: representation. 

TABLE 1. Clustering accuracy comparison of unsupervised learning-based methods. 

TnsClustering FcClustering PureClustering

Architecture 
and dimension

MTTKRP 
mode

Top 1 
acc.

Top 2 
acc. H score

Top 1 
acc.

Top 2 
acc. H score

Top 1 
acc.

Top 2 
acc. H score

CPU and 3D Mode 1 0.75 0.95 0.58 0.69 0.93 0.5 0.69 0.9 0.46

Mode 2 0.75 0.95 0.6 0.73 0.95 0.57 0.7 0.91 0.49

Mode 3 0.77 0.94 0.5 0.77 0.95 0.5 0.75 0.92 0.41

GPU and 3D Mode 1 0.72 0.94 0.41 0.71 0.95 0.4 0.67 0.92 0.29

Mode 2 0.66 0.91 0.41 0.62 0.89 0.36 0.6 0.86 0.3

Mode 3 0.64 0.89 0.43 0.61 0.87 0.39 0.57 0.84 0.31

CPU and 4D Mode 1 0.64 0.9 0.38 0.62 0.89 0.36 0.61 0.89 0.34

Mode 2 0.65 0.88 0.44 0.62 0.87 0.4 0.61 0.87 0.39

Mode 3 0.63 0.89 0.41 0.6 0.88 0.37 0.61 0.88 0.38

Mode 4 0.62 0.88 0.4 0.6 0.88 0.38 0.62 0.88 0.4

The bold type indicates the best top 1, top 2, and h-score across the three clustering methods. acc.: accuracy. 
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TnsClustering achieves average top 1/2 
accuracies of 76%/95% and 67%/92% 
on CPU and GPU, respectively. In re-
turn, TnsClustering achieves 4.03× 
and 1.45× performance speedup of 
MTTKRP over the coordinate format 
on average. 
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