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INTERNET OF THINGS

Factories have evolved through four industrial 
revolutions. The first factory in the United States 
was a textile manufacturer in 1790. This factory 
joined the first industrial revolution (I-1.0), which 

included mechanization. This was marked by product 
creation transitioning from handcraft to machines that 
were driven by waterwheels or steam engines. The sec-
ond industrial revolution (I-2.0) began with electrifica-
tion and the introduction of mass production. The third 
industrial revolution (I-3.0) ushered in digital electronics, 
automation, and the Internet. We are now in the fourth 
industrial revolution—referred to as Industry 4.0 (I-4.0). 
I-4.0 began in the early 2000s with autonomous robotics, 

artificial intelligence, and cyberphys-
ical systems. Part of this evolution in-
cluded the connectivity provided by 
the Internet of Things (IoT) to share 
data between equipment. I-4.0 contin-
ues to evolve with factories improving 
their manufacturing processes while 
integrating the latest technologies, of-
ten called smart manufacturing.

The IoT has been around for de-
cades, connecting many measurement 
devices and control systems. The IoT 

has been integrated into many domains, such as educa-
tion, health care, agriculture, cities, and manufacturing. 
The IoT within the manufacturing domain is referred to 
as the Industrial IoT (IIoT). The IIoT leverages networking 
sensors, instruments, and devices to enhance the manu-
facturing process. The IIoT has benefited from IoT inno-
vations to improve operations such as the manufacturing 
system maintenance process. In this article, we will ex-
plore how the IIoT has contributed toward the predictive 
maintenance of manufacturing systems using digital 
twin technology, an application in smart manufacturing.

Although the IoT has had many inconsistent defini-
tions over the years, the foundational elements, called 
primitives, of the IoT remain the same in all IoT applica-
tions.1 As described in a National Institute of Standards 
and Technology (NIST) special publication,2 there are five 
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IoT primitives: a sensor to measure 
physical properties, aggregator soft-
ware to transform collected data, a 
communication channel to transmit 
the data, an external utility to execute 
processes and store data, and a decision 
trigger to command an actuator. These 
primitives are the building blocks 
that perform network actions and the 
framework around sensor data analyt-
ics. IIoT scenarios, typically called use 
cases, perform analytics to transform 
data into information for the purposes 
of authentication, encryption, and reli-
ability in the manufacturing domain.

An IIoT system contains the IoT 
building blocks within a distributed ar-
chitectural system composed of compo-
nents located on networked computers. 
These components contain numerous 
sensory devices, and the data are col-
lected from those sensors and analyzed 
to communicate signals that coordinate 
the manufacturing actions.

An IIoT system generates large 
amounts of data from instrumenta-
tion and sensors during the manu-
facturing process. Cloud technology 
collects, stores, and analyzes these big 
data of measurements to be mined. 
As more manufacturing elements 
get connected to share data, a digital 
equivalent of the machinery is useful 
to optimize a production process—this 
digital equivalent is called a digital 
twin. Digital twins use information to 
simulate the manufacturing process 
in a virtual space for the validation of 
physical machinery.

APPLICATION OF 
THE IIoT FOR SMART 
MANUFACTURING
Elon Musk has stated that “the factory 
is the machine that builds the machine” 
and is “100 times” more challenging 
than building a car. The two main chal-
lenges in effectively running a factory 
are operating at a profit and main-
taining the reliability of the plant’s 

machinery. A large amount of research 
has focused on these challenges through 
three product lifecycle management 
(PLM) stages: 1) the product is designed;  
2) the product is produced; and 3) the 
product is put into service.

The second PLM stage, product 
production, is the process that trans-
forms raw material into useful arti-
facts with the manufacturing steps of 
cutting, forming, and joining. At the 
shop-floor level, individual machines 
are assembled into work cells; spe-
cialized work cells are assembled into 
production lines; and multiple produc-
tion lines compose the manufactur-
ing factory system. Keeping all these 
elements functioning harmoniously 

is where the IIoT adds value because it 
uses data connectivity to run the oper-
ation efficiently. Optimally maintain-
ing production machinery is crucial 
for enterprise profitability.

A state-of-the-art digital manufac-
turing platform relies on an IIoT for con-
figurable data collection, data interop-
erability, configurable data analytics, 
and customizable dashboards.3 These 
elements, described in more detail next, 
constitute digital twin technology:

 › Configurable data: These come 
from various sources: sensors 
embedded in the machines, 
programmable logic controllers, 
communication protocols, and 
business information systems.

 › Data collection and interopera-
bility: Data routing and prepro-
cessing interfaces connect the 
shop-floor equipment to accept 
different data formats and to file 

them in a common repository. 
A data bus infrastructure is the 
means to stream events and 
circulate information to various 
components. A device registry 
directs how to access devices 
and data sources.

 › Data analytics: A processor 
engine executes data processing 
logic based on analytic algo-
rithms. Analytics identify fault 
patterns and develop decision 
insights to enable intelligent 
manufacturing in a complex 
environment.4

 › Dashboards: An end-user display 
of figures visualizes the ana-
lytic results.

Computer-aided design technologies 
enable existing modeling and simula-
tion capabilities to evolve into digital 
twins. Digital twins represent actual 
products, real processes, or both in a 
virtual state that can be functionally 
analyzed for performance.

NIST has defined a digital twin as 
“the electronic representation—the 
digital representation—of a real-world 
entity.”5 A digital twin will exist in 
a computer software application in 
practice. A human user will manip-
ulate the digital twin using a visual 
graphic representation. Representing 
the real-world entity, static views and 
dynamic simulations can be used to 
study the behavior of the digital twin.

To achieve a digital twin’s potential, 
numerous digital twins must operate 
seamlessly across various manufactur-
ing machinery. Interoperability (to ex-
change and use information between 
machines and within systems) can be 
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achieved by adopting communication 
protocols that allow multiple suppliers 
to share data. Industry is developing ar-
chitecture standards to address these 
implementation challenges. Research-
ers have combined testbed hardware sys-
tems and sandbox software systems to 
demonstrate and evaluate technologies 
across suppliers’ applications.6 A digital 
twin framework is emerging to support 
system-wide performance monitoring 
for smart manufacturing processes.

Digital twin implementation is fun-
damental to smart manufacturing. 
However, this is especially challenging 
in small and midsized enterprises. The 
International Organization for Stan-
dardization (ISO) developed ISO 23247, 
Digital Twin Manufacturing  Framework, 

to  provide a standard to support digital 
twin applications. NIST created three 
use case scenarios based on the ISO 
standard:7

 › Machine health digital twin: 
This scenario uses process and 
equipment data to monitor, trou-
bleshoot, diagnose, and predict 
faults and failures in manufac-
turing equipment.

 › Scheduling and routing digital twin: 
This scenario manages manufac-
turing systems for more flexibil-
ity in producing different prod-
ucts using the same resources in 
response to market demand for 
more customized products.

 › Virtual commissioning digital 
twin: This scenario uses simula-
tion technology to design, test, 
and evaluate upgraded control 
systems before connecting them 
to real equipment.

In general, most large manufac-
turing enterprises possess adequate 

resources to engage in all three digital 
twin use scenarios. Likewise, many 
midsized manufacturers have suffi-
cient resources to develop machine 
health and scheduling and routing dig-
ital twin use technology. Small man-
ufacturing companies with limited 
resources for new technology should 
first deploy machine health digital 
twin applications.

DIGITAL TWINS AND 
MACHINE HEALTH: REACTIVE 
TO PREDICTIVE
Monitoring machine health is a priority 
for a manufacturing company. Moni-
toring uses sensors to collect real-time 
data from measurement devices em-
bedded in the machinery that deter-

mine the state of the physical entity’s 
actual performance. Integrating the 
physical data collected by various sen-
sors throughout the product’s lifecycle 
and virtual data using digital twins can 
be processed by analytics to result in 
improved products and processes.

The vision for digital twins is to 
use real-time data to dynamically up-
date a digital representation that can 
be viewed and manipulated.5 The up-
dated digital twin could be used to de-
termine the current state of the health 
of the machine and to predict through 
simulation its future health state.

The machine health digital twin 
uses sensory data from manufactur-
ing equipment to minimize the impact 
of machine downtime.7 By collecting 
key performance indicators in real 
time, such as spindle speed, feed rates, 
energy consumption, temperature, 
and vibration levels, deviations from 
allowable limits can be identified and 
resolved to prevent production inter-
ruptions. Data visualization trends 
alert operators to implement control 

commands to mitigate anomalies. As 
faults are addressed, the evolving dig-
ital twin will enhance its comprehen-
siveness of the operating environment.

Christou et al.3 discussed the chal-
lenges to implement digital twins in 
manufacturing. Current implementa-
tions are tailored to specific product 
lines and not generalizable to other 
manufacturing plants. What industry 
requires are modular and flexible turn-
key solutions. By focusing on I-4.0 smart 
manufacturing technologies, use cases 
will increase, such as adopting digital 
twins for predictive maintenance.

PREDICTIVE MAINTENANCE 
IMPLEMENTATION OF 
PROGNOSTICS AND 
HEALTH MANAGEMENT
Prognostics and health management 
(PHM), a digital twin application in 
smart manufacturing, was first used 
in the aerospace industry to predict 
aircraft structural life.8 High-fidelity 
digital twin-driven PHM overcomes 
the traditional method’s shortcom-
ing of depending on empirical data 
by using multiphysics simulation to 
perform fault diagnosis. These ad-
vantages are evident in models, data, 
interaction, and decision making. A 
practical situation can be more ac-
curately modeled by including the  
dimensions of geometry, physics, be-
havior, and rules. Physical data and 
virtual data are merged with histor-
ical data, real-time data, and simu-
lation data in big data analytics. A 
connection between physical and 
virtual space yields better control of 
the physical machinery while upgrad-
ing its virtual model. A more ratio-
nal maintenance strategy will result 
from digital twin decision-making 
optimization.

Manufacturers practice one of 
three distinct maintenance strategies: 
reactive, preventative, or predictive:3

 › Reactive maintenance: Reac-
tive maintenance repairs 
the asset when it has already 
failed, resulting in equipment 

A digital twin framework is emerging to support 
system-wide performance monitoring for smart 

manufacturing processes.
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breakdowns: for example, 
changing your car’s motor oil 
only when a dashboard warning 
light illuminates.

 › Preventive maintenance: Preven-
tive maintenance is performed 
at regular intervals to prevent 
unexpected equipment failures 
resulting in downtimes: for 
example, changing your car’s 
motor oil every 5,000 miles or six 
months, whichever comes first.

 › Predictive maintenance: Predic-
tive maintenance monitors the 
performance and condition of 
an asset to identify the best time 
to maintain it before it breaks 
down: for example, changing 
your car’s motor oil when viscos-
ity and contamination sensors 
indicate that the lubricant has 
degraded to the minimum 
threshold of useful life.

Predictive maintenance is a smart 
manufacturing use case for I-4.0. 
Predictive maintenance systems use 
the structured architectures of cloud 
computing, the IIoT, data analytics, 
and augmented reality to accomplish 
their function. Preventative mainte-
nance procedures can be replaced with 
predictive maintenance practices, as 
illustrated in Figure 1.

To implement predictive main-
tenance, there needs to be the in-
tegration of multiple data sources, 
application of machine learning for 
optimization, and implementation of 
adaptable digital twins for changing 
manufacturing production processes. 
Benefits for the company are improved 
product quality, reduced production 
costs, faster times to market, and re-
duction in scrap.

Smart devices can automatically 
identify machine anomalies to predict 
future events. Vibration characteris-
tics’ classification can predict anom-
alies in electric induction motors.10 
Event identification assists mainte-
nance technicians and engineers to 
predict future problems and act in 
advance. Accelerometers installed on 

a motor shaft can measure misalign-
ments and eccentricities. The sever-
ity of vibration measurements can 
be classified according to ISO 2372 
(“Mechanical Vibration of Machines 
With Operating Speeds From 10 to 200 
rev/s – Basis for Specifying Evaluation 
Standards”) as good, satisfactory, un-
satisfactory, or unacceptable. A super-
vised learning model that applies past 
machine learning to new data can au-
tomatically classify these vibrations. 
Rubio et al.10 successfully detected vi-

bration severity faults demonstrating 
a cyberphysical system’s effectiveness 
at predictive maintenance.

In another example presented by 
Nunez and Borsato,11 a centrifugal pump 
was monitored using ISO 13379-1 
(Failure Modes Symptoms Analysis) 
techniques and symptoms. This stan-
dard ranks the severity of the effect 
of a failure mode in relation to the re-
quired function as catastrophic, criti-
cal, marginal, or insignificant. Addi-
tional criteria are provided for failure 
detection, symptom detection, and 
prognosis sensitivity. A Monitoring 
Priority Number is generated by the 

mathematical product of multiply-
ing the four rankings together with a 
resultant high value indicating a pre-
dicted failure mode. The roller bearing 
that allows the shaft to rotate to trans-
port fluid was the component mod-
eled. Representation of rotating ma-
chinery could diagnose failure using 
vibration analysis for PHM. The classi-
fications for the component were good, 
satisfactory, alert, or alarm, depending 
on the accelerometer  measurement. 
Previously, specialists analyzed the 

operational fitness of the centrifugal 
pump. This structured ontology im-
plemented PHM for smart manufac-
turing machinery used digital twin 
technology. Thus, physical asset man-
agers received warnings about the 
estimated time to failure and decided 
when to plan maintenance.

Maintenance work orders describing 
routine and unplanned activity are an 
untapped source of human knowledge.4 
These unstructured records contain in-
formation about when a maintenance 
activity was performed, fault patterns, 
component lifecycle information, and 
diagnostic steps performed to resolve 
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FIGURE 1. The evolution of shop-floor maintenance strategies. (Source: Adapted from 
Zhuang et al.9)  

The vision for digital twins is to use real-time data to 
dynamically update a digital representation that can 

be viewed and manipulated.
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faults. Useful insights can be obtained 
by mining this source of human knowl-
edge from experienced technicians. 
Digital twins can be used as a prognos-
tic tool to train inexperienced person-
nel based on an experienced trained 
operator’s approach to solve a legacy 
maintenance problem.

DIGITAL TWIN BENEFIT 
FOR SMALL AND MIDSIZED 
ENTERPRISES
Digital twin technology has the poten-
tial to reduce risk, downtime, and en-
ergy consumption. Digital twins can 

improve safety, training, and quality in 
small and midsized enterprises. Adopt-
ing this technology is challenged by 
plug-and-play interoperability, access 
to monitoring and control data, the in-
terconnectivity of machinery, and the 
integration of various equipment.

Profitability in manufacturing is 
 primarily driven by avoiding unplanned 
downtime. Increased levels of automa-
tion within an IIoT architecture improve 
industrial maintenance management. 
Smart manufacturing factories use re-
al-time sensory data to gain valuable in-
sights to avoid machinery failures. In ad-
dition, digital twin technology along with 
past maintenance records can improve 
product design and usage as well as man-
ufacturing processes and maintenance. 
Operation managers can use these tech-
nologies to enhance diagnostic, prognos-
tic, and decision-making practices.

Small manufacturing companies 
are challenged with implement-
ing digital twins to simulate 

their operations. Standard procedures 
for creating digital twin applications 
are needed to provide precise defini-
tions, common terminology, and im-
plementation guidelines.

Digital twins provide more op-
portunities to improve manufactur-
ing processes to become smart or 
intelligent. Future studies should 
explore how small manufacturing 
companies can implement digital 
twins for predictive maintenance of 
their production processes. An ef-
fective digital twin of a factory can 
economically deploy I-4.0 technolo-
gies by integrating instrumentation, 
network, databases, modeling, an-
alytics, and dashboard elements for 
enterprises to remain competitive in 
the marketplace. 
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