
G ood enough” is two words. We understand
good versus bad. Good versus evil. We teach
this to our kids.

Growing up, “good enough” usually meant that “the
fix” that we were trying to implement was completed
and we hoped the fix was sufficient. In those days, I was
working on physical systems, for example, lawnmowers
and bicycles. But how about today’s nonphysical sys-
tems? What is “good enough” for them? And do we un-
derstand “enough”?

“Enough” implies “amount” and “time”: for example,
“time has expired” at a parking meter. So how do we deter-
mine “good enough” for something that we cannot touch?
This is the conundrum.

Physical and nonphysical systems are hard to com-
pare from a trustworthiness standpoint—it is essentially

an apples-and-oranges problem.
The software reliability community
has experienced this for decades
because of numerous attempts to
apply hardware reliability models
(that account for physical fatigue
and wear-out over time) to nonphys-
ical software.

Hardware is usually mass produced. “Good enough” for
mass-produced hardware is different from that for a sin-
gular nonphysical software product. For mass-produced
products, sampling and testing a handful of items coming
off an assembly line are traditional. But for software, your
sample size is one, and it’s your current version.

So how do you determine “good enough” for a singu-
lar virtual product? Beauty is supposedly in the eye of the
beholder. That’s subjective. Is “good enough software” in
the eye of the beholder, or can we start to create plausible
algorithms and processes (or maybe a single equation) to
quantify “good enough”?

After more than 30 years of thinking about this prob-
lem, I still believe that we must assess virtual function

“

Good Enough
Jeffrey Voas , IEEE Fellow

The computer science community has always

faced the challenge of what is “good enough”

software. The challenge remains unsolved

and will remain that way under the prevailing

mindset of a quantitative formula. This

message offers a more pragmatic approach.

Digital Object Identifier 10.1109/MC.2022.3219719
Date of current version: 5 April 2023

DISCLAIMER
The authors are completely responsible for the content in
this message. The opinions expressed here are their own.

EIC’S MESSAGE EDITOR IN CHIEF JEFFREY VOAS
IEEE Fellow; j.voas@ieee.org

C O M P U T E R U.S. Government work not protected by U.S. copyright. 	 P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y A P R I L 2 0 2 3 � 11

https://orcid.org/0000-0003-1139-3690

12	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

EIC’S MESSAGE

quality from a behavioral standpoint.
To me, a software product’s behavior
should be viewed as a cross-product be-
tween the required “ilities” and its en-
vironment. (It seems straightforward
to include environments here since it is
the environment that causes hardware
fatigue and failure.) But what about
the “ilities”? How do they fit in? (It is
unclear how many “ilities” there are,
though examples include availability,

composability, compatibility, depend-
ability, discoverability, durability, fault
tolerance, flexibility, interoperability,
insurability, liability, maintainability,
observability, privacy, performance,
portability, predictability, probability
of failure, readability, reliability, resil-
ience, reachability, safety, scalability,
cybersecurity, sustainability, testabil-
ity, traceability, usability, visibility,
and vulnerability.1) So here, I propose
an idea of color-coding “trustworthi-
ness.” The idea is that we want some
evidence of trustworthiness knowing
that we’ll never get it all.

So, for example, in my view of a
potential approach, let’s assume we
have 10 “ilities” of importance: {I1, I2,
I3, …. I10}. Now, visualize a pie chart
with 10 equal slices. Each slice rep-
resents an “ility,” and each has a dif-
ferent color.

Let’s assume I1 represents reliabil-
ity, and the software is unreliable.
That slice will then be small or totally
missing. If we were to do this for all 10,
the chart offers a quick visual indica-
tor of the current “evidence of trust-
worthiness.” This is only a statement
about the evidence of trustworthi-
ness—it is not a statement about the
confidence in actual trustworthiness.
And recognize that you cannot size

a slice without consideration of the
environment.

I know that this is not easy. The
unsolved research problem is how to
quantitatively or nonmathematically
estimate the size of the slices. This is
essentially a trustworthiness dash-
board. And while this is not precise, so
long as the methods to estimate the pie
slices are consistent, the methods need
not be perfect. Anyone should be able
to look and see what slices are miss-
ing (or minimal) to get a “warm fuzzy”
feeling. So, for example, if 99% of the
pie is white space, I’d probably run
away from the product. Warm fuzzy
feelings are not optimal, but given the
difficulty in defining “ilities,” they may
be a last resort.

The bottom line is that we’ve spent
decades running away from certifi-
cation or any notion of warranties of

“good enough software.”2,3,4,5 The top-
line question is: Will we ever quit run-
ning, or is software failure an expecta-
tion and not an exception?

REFERENCES
1.	 J. Voas, “Software’s secret sauce: The

‘-ilities’ [Software Quality],” IEEE
Softw., vol. 21, no. 6, pp. 14–15, Nov./
Dec. 2004, doi: 10.1109/MS.2004.54.

2.	 J. Voas, “Software quality’s eight
greatest myths,” IEEE Softw., vol. 16,
no. 5, pp. 118–120, Sep./Oct. 1999, doi:
10.1109/52.795111.

3.	 D. R. Kuhn, I. Dominguez, R. N.
Kacker, and Y. Lei, “Combinatorial
coverage measurement concepts and
applications,” in Proc. IEEE 6th Int.
Conf. Softw. Testing, Verification Valida-
tion Workshops (IWCT), Luxembourg
City, Luxembourg, Mar. 2013, pp.
352–361, doi: 10.1109/ICSTW.2013.77.

4.	 J. Voas, F. Charron, G. McGraw, K.
Miller, and M. Friedman, “Predict-
ing how badly ‘Good’ software can
behave,” IEEE Softw., vol. 14, no.
4, pp. 73–83, Jul./Aug. 1997, doi:
10.1109/52.595959.

5.	 J. Voas and P. A. Laplante, “IoT’s cer-
tification quagmire,” Computer, vol.
51, no. 4, pp. 86–89, Apr. 2018, doi:
10.1109/MC.2018.2141036.

JEFFREY VOAS, Gaithersburg, MD
20899 USA, is the editor in chief of
Computer. He is a Fellow of IEEE, IET,
AAAS, and the Washington Academy
of Sciences. Contact him at
j.voas@ieee.org.

The unsolved research problem is how to
quantitatively or nonmathematically estimate the

size of the slices.

http://dx.doi.org/10.1109/MS.2004.54
http://dx.doi.org/10.1109/52.795111
http://dx.doi.org/10.1109/52.595959
http://dx.doi.org/10.1109/MC.2018.2141036

	011_56mc04-editorial-3219719

