
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 71, 2022 2520710

Neural Network Calibration of Star Trackers
Shaghayegh Khodabakhshian , Graduate Student Member, IEEE, and John Enright , Member, IEEE

Abstract— To maintain ideal performance, star trackers
must be able to predict the direction of incident starlight to
within a few arcseconds across the entire instrument field of
view (FOV). Parametric camera models are commonly used
to calculate star vectors from camera images and correct
for aberrations in the instrument optics. This conventional
approach can be quite effective, but systematic errors can be
difficult to eliminate, and proper selection of calibration basis
functions is often difficult to determine. This study explores
using supervised machine learning (ML) approaches such as
radial basis function networks (RBFNs) and support vector
machines (SVMs) for star tracker calibration as an alternative
to conventional aberration formulations. These networks can be
formulated as either a correction to a low-order camera model
or a complete replacement for the whole model. When applied
to the instrument calibration of a dozen Sinclair Interplanetary
ST-16RT2 sensors, the RBFN formulation offers 27% reduction
in the calibration residuals and almost 12% reduction in the
validation residuals over conventional formulations.

Index Terms— Camera calibration, neural network, star
tracker.

I. INTRODUCTION

STAR trackers have become more compact over the years
and current models are commonly found on nanosatellites.

As part of their operation, star trackers must take a 2-D image
of the stars in the field of view (FOV), calculate the centroid
of the star images on the detector, and use this centroid
information to calculate the corresponding instrument-frame
vector direction to the star. Geometric patterns formed by
the brightest stars in the FOV are then compared with the
onboard catalog to find a match and compute the attitude
(orientation) of spacecraft. Good matching and attitude deter-
mination performance depends on accurately calculating these
star vectors to within arcseconds or better, across the entire
instrument FOV.

The camera calibration models are used to relate 3-D
world coordinates to 2-D detector positions. The traditional
low-order parametric models capture the effects of optical
aberrations using parameterized modifications to ideal pinhole
ray-tracing. Some practitioners favor physical models of nom-
inal and aberrant optical phenomena [1]. These models often
derive the imaging effects of concrete defects such as lens
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decentering. Other models forego any physical explanation of
the optical aberrations and rely solely on mathematical models
of their effects. These include the relatively low-order models
of Lopes and Shuster [2] and the medium-order, rational func-
tion models (RFMs) popular in photogrammetry [3]. In either
case, a suite of calibration images is used to numerically
optimize the intrinsic parameters. Although generally effec-
tive, sizable systematic errors often remain in the calibration
residuals indicating the presence of modeling error.

In contrast to the above techniques, implicit calibration
deemphasizes the role of parameterized basis functions and
adopts a different approach to relating world and image
coordinates. Artificial neural networks (ANNs) have been
implemented for implicit camera calibration and shown
promising results [4], [5]. The benefit of a nonparamet-
ric implicit approach such as radial basis function network
(RBFN) over the common low-order parametric calibration
model is the lack of need to have a priori knowledge of the
true camera model and physical parameters.

This study explores implementation of few supervised learn-
ing models including ANNs and support vector machines
(SVMs) for calibration of ST-16RT series star trackers. Two
different approaches are tested for each supervised machine
learning (ML) technique: the purely IMPLICIT approach relies
on a shallow neural network or SVM to find a matching from
2-D star image position to the sensor-frame star vector. The
second approach, HYBRID, still relies on the conventional
pinhole camera model and uses an shallow neural network or
SVM to make corrections for remaining errors associated with
the basis functions in the camera distortion models. We show
that these supervised ML methods are capable of correcting
systematic residual errors leftover from the ST-16RT’s explicit
calibration.

We acknowledge that this application is a somewhat uncon-
ventional target for ML—our typical training datasets consist
of only a few hundred points, and the embedded nature of the
these sensors prioritizes efficient use of storage and processing
resources. However, we have found that the ML approaches
can be quite effective in practice. By avoiding the need to
identify a specific mathematical representation of the sensor
behavior, our calibrations significantly outperform the low-
and medium-order explicit parametric models. Furthermore,
these ML techniques offer similar or better performance to
direct interpolation while requiring less data (model parame-
ters) storage. This can have a significant positive effect on the
effort needed to calibrate these devices during manufacture.

The remainder of this section provides an overview of
prior work and an introduction to the ST-16RT star tracker.
We then detail the current parametric camera model and the
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Fig. 1. Simple representation of the camera model.

accompanying calibrations process. Section III introduces the
artificial neural network (ANN) and SVM frameworks with
notes on our approaches to effective training.

Evaluation of the novel calibration processes is orga-
nized into three main experiments. The first experiment (see
Section IV) explores the training process and overall per-
formance using an engineering model ST16RT star tracker
(ST-1). This unit was available, in-house, so we were able
to vary the data collection process for both calibration and
validation. The second experiment investigates the required
storage for model parameters and the computational cost for
software implementation of the best performing models from
the first experiment. The third experiment applies the most
promising techniques to historical calibration and validation
data collected during the manufacture of 11 additional sensors
(ST-2–ST-12). This larger cohort of sensors is valuable for
establishing wider trends in the improved performance that
can be expected from these new approaches to calibration.
Together, these experiments provide a thorough investigation
of the promise of ANN-based calibration.

A. Prior Work

The extant literature on camera calibration is extensive.
These studies examine applications such as stereovision, 3-D
reconstruction, and robotic navigation. Commonly applied
camera calibration approaches look for basis functions of opti-
mized camera parameters that best represent the relationship
between 2-D image position and actual object position in the
world coordinate frame. Formulation of these basis functions
often starts with the simple pinhole perspective projection
model and adds some number of aberration corrections. The
pinhole model assumes that the object is projected by a
straight line through the projection center. However, radial,
decentering, and other distortion effects can shift the position
of the undistorted image as depicted in Fig. 1.

Wang et al. [1], Tsai [6], Zhang [7], and Heikkila and
Silven [8] are few examples of authors who have presented
low-order parametric camera models and calibration proce-
dures. These studies use a variety of basis functions to
model camera aberrations and frequently discuss optimization
methods to avoid local minima when solving for the camera
parameters. Common parameters used by these models include
focal length, optical center, radial distortion coefficients, etc.
Specialized calibration imagery is used to fit optimal numer-
ical values to these model parameters. Although closed-form
solutions are sometimes possible, most methods rely, at least in
part, on a nonlinear, iterative optimization. For instance Tsai’s
[6] and Wei et al.’s [9] approach involves a two-step optimiza-
tion process. The first step assumes there is no distortion and
uses a closed-form solution to find best initial guesses for the

core intrinsic parameters. These initial values are then used
for a full numerical optimization of the camera model.

The alternative camera models such as the RFM presented
by Tao and Hu [3] and the generic camera models [10]
are good alternatives for applications where camera behav-
ior cannot be easily represented as modifications to sim-
ple pinhole camera optics. RFMs are the de facto standard
approach in photogrammetry and relate image and world
coordinates through ratios of polynomials. These are medium-
order model—often containing a few dozen parameters.

Researchers have also explored using ANNs for camera
calibration. Some works [4], [5], [11] have used multilayer
perceptron (MLP) networks to implicitly find the centroid
position of image from the 3-D real-world coordinates of the
corresponding object or the directional angles without the need
to find the camera parameters. These works often compare
the performance of the ANN-based implicit calibration with
Tsai’s [12] or other explicit camera calibration methods and
show improvements. In some literature [13], the intrinsic
and extrinsic parameters of camera are also found using
the ANN approach. Although they report some performance
improvement, this approach seems unnecessarily restrictive as
the system is constrained by the same explicit parameteriza-
tion. Other than simple MLPs, RBFNs [14] and generalized
regression neural networks (GRNNs) [15] are other neural net-
work architectures commonly used for regression and function
approximation problems.

Apart from ANNs, the SVM regression (SVR) approaches
have also been used for camera calibration. These works often
use SVR to find the projection matrix (camera parameters)
explicitly [16] or estimate camera distortion [17]. SVMs are
often faster to train than the ANNs and are less sensitive to the
initialization of parameters. However, ANN is a better choice
for high-dimensional large dataset and can also have multiple
outputs.

Unlike many terrestrial calibration applications, our goal is
to predict star direction vectors with minimal angular error;
reconstructing full 3-D world-vectors is of limited utility.
In addition, compatibility with the on-orbit autonomous recali-
bration methods [18], [19], [20] is also important. Thus, while
the absolute orientation of the sensor is known during ground
calibration, the relative geometry between stars is the only
truth measure available for on-orbit studies.

B. ST-16RT Star Tracker

The Sinclair Interplanetary ST-16RT series star trackers are
the baseline sensors in this study. The pixel detector used
in this star tracker is the onsemi MT9P031.1 Table I shows
the properties of these sensors. The exact focal distance is
optimized during the calibration process.

The lens system used in the star tracker is a custom
four-element, F1.6 lens. It is designed to be achromatic and
match the microlens acceptance angles on the detector. During
production, detector placement and tilt is set using shims and
focus adjustments are made using bulk motions of the lens

1Formerly produced under Micron and Aptina brand names.
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TABLE I

PROPERTIES: SINCLAIR INTERPLANETARY ST-16RT
SERIES STAR TRACKERS

assembly. More details of the star tracker optics are found in
Sinclair et al. [21].

II. STAR TRACKER CALIBRATION

The calibration process collects a series of sample images
and attempts to identify the relationship between a specific
area on the detector and the corresponding direction vector
in 3-D-space. In contrast to terrestrial cameras that must deal
with complex scenes and variable working distances, the star
tracker imaging environment is comparatively simple. Stars are
all very far away, allowing us to treat our imaging targets as
point sources at infinity. We must take care during calibration
to separate the behaviors of the star tracker (i.e., intrinsic
properties) from those of the laboratory environment (i.e.,
extrinsic properties).

The remainder of this section outlines the procedures,
models, and equipment used during the calibration process
of the ST-16RT star trackers. We present details of the cal-
ibration apparatus, introduce the mathematical minimization
framework used for assessing goodness of fit, and review the
parametric calibration model used by these sensors.

A. Data Acquisition

Laboratory calibration of the ST-16RT star tracker uses
a precision three-axis gimbal (see Fig. 2). Star trackers are
mounted to the gimbal and can then be rotated about three
orthogonal axes. This system has a measured repeatability of
0.002◦ and an encoder resolution twice as fine. A pinhole light
source and an off-axis parabolic mirror create a collimated
beam that illuminates the sensor. Viewed from the sensor,
a perfectly collimated beam replicates a point source at infinity.
Thus, any translation of the sensor due to gimbal motion will
not affect the incidence angle of light striking the sensor.
The actual wavefront radius of curvature (as measured by a
shearing interferometer) is ∼1.5 km which contributes less
than 1 μrad of the systematic error).

During calibration, the beam axis is first aligned with Axis-3
of the gimbal. Then, through a series of gimbal motions,
the star image is moved throughout the FOV. The image
and/or position of the star target on the detector is recorded
at each orientation, and collectively these datasets are known
as surveys. Most surveys contain centroid data from N =
300 unique orientations. As part of the production process,
an initial survey is used for calibration and a later survey is
collected for validation purposes after all the environmental
tests (e.g., thermal, vibration) have been performed on the
sensor.

Fig. 2. Laboratory setup for calibration data acquisition.

Four coordinate frames are used during calibration, and we
use the notation FA as a shorthand for Frame-A. Effective
calibration relies on understanding the relationships between
these frames. The base frame for all the calibrations is the
inertial laboratory frame, FL . In this frame, the beam direction
(i.e., star vector) is constant. This quantity is denoted rL and is
measured during the beam alignment process. Motion of the
gimbal determines the orientation of the end-effector frame
FE , a theoretical frame that depends only on the platform joint
angles, �, and the gimbal kinematics. The sensor frame, FM ,
is defined by two precision alignment surfaces on the sensor
chassis, and internally, FD is fixed to the sensor detector.

Given the constant star vector in inertial laboratory frame,
rL , the corresponding detector frame vector, rD , is found by
computing

rD = CDMCMECELrL (1)

where CAB is the direction cosine matrix (DCM) that rotates
FB to FA. The CEL DCM is computed from the platform
kinematics and includes three principal axis rotations in the
joint angles, � = [ θ1 θ2 θ3 ]T as well as additional small
rotations to account for axis misalignment. At the i th position
in the survey, we have

CLE = CLE(�i ) = CLE,i . (2)

The CEM rotation can be estimated with the aid of alignment
features on the chassis. The CMD rotation (an intrinsic para-
meter) depends on the misalignment of image detector with
respect to the camera mount surface and can be found during
the numerical optimization.

As mentioned earlier, separate surveys are conducted for
calibration and validation. To avoid overfitting, the platform
orientations used for validations are offset from those used
for calibration, and thus, ri,calib �= ri,valid. The intrinsic rotation
CMD is constant, barring bulk changes in the star tracker itself,
but the extrinsic CEM can change slightly as the sensor is
detached and reattached to the gimbal platform. An external
autocollimator is used to measure CEM before each survey, but
because star trackers are such precise instruments, the accuracy
of this alignment measurement is often of comparable order to
the residual calibration and validation errors. The implications
of this are discussed in Section IV.

B. Systematic Errors

There are a number of stochastic and systematic errors that
can affect calibration. Liebe [22] discusses star tracker error
budgets in some detail, but we highlight some of the more
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important factors here noting testing circumstances will dictate
the salient error terms.

1) Temporal Noise: This is the expected observation-to-
observation variability. The bulk of this effect should be
driven by detector noise and the brightness of observed
star. The structural and thermal disturbances in the
laboratory could also affect these measurements but
we have not seen any evidence of these effects in
practice. Temporal noise contributes ∼1 arcseconds of
the residual error.

2) Gimbal Accuracy: The stated manufacturers quoted
accuracy of laboratory gimbal encoders is 0.001◦. This
contributes a standard deviation of 1.04 arcseconds.

3) Gimbal Nonorthogonality: The motorized gimbal axes
are close to orthogonal, but not exactly so. We correct
for this nonideality but some residual uncertainty in the
correction may remain.

4) Stellar Aberration: Stellar aberration is present in any
observation of real stars. Correcting for the Earth’s
heliocentric velocity can remove the bulk of this effect,
but correcting for orbital motion as well can reduce the
errors still further.

Table II lists the expected error introduced by each of the
stated factors. When contemplating the net effect, we note that
our cost functions are based on the arc lengths between pairs
of star observations. All the errors add in a residual sum of
square (RSS) sense.

C. ST-16RT Parametric Calibration Model

Star trackers must calculate the outgoing, estimated star
vector, r̂ that corresponds to a measure detector-plane centroid
location, (u, v). This inverts the sense of many camera models,
designed to calculate centroids from the world coordinates.
Transcendental terms in the model frequently prevent algebraic
inversion, so instead we formulate the inverse model directly.

Documented by Enright et al. [20], the ST16-RT camera
model starts with a pinhole perspective projection model and
adds basis functions that can model the distortion effects.
We summarize the model equations here for convenience[

U
V

]
=

[
γ (u − u0)

γ cs(v − v0)

]
[

xd

yd

]
= f

α2U + α1V + f

[
U
V

]
(3)

s =
⎡⎣

(
1 + β1ρ

2 + β2ρ
4
)
xd(

1 + β1ρ
2 + β2ρ

4
)
yd

f

⎤⎦
r̂D = s

‖s‖ . (4)

In these equations, we find most of the explicit calibration
parameters, namely,

1) the principal point, (u0, v0);
2) the focal distance, f ;
3) radial distortion coefficients β1, β2;
4) tip/Tilt rotations α1, α2;
5) the y-axis skew ratio, cs .

TABLE II

CALIBRATION ERROR BUDGET

The remaining terms include the constant pixel pitch, γ ,
an unnormalized star direction, s, and a number of inter-
mediate coordinates used for clarity [i.e., U , V , xd , yd ,
ρ = (x2

d + y2
d)

1/2]. Referring to (1), the rotation CMD must
also be computed for precise calibration. After optimizing the
camera parameters, the best-fit rotation can be found with
Davenport’s q-method or another Wahba problem solution.
Thus, the calibration optimization must solve for the following
state vector:

x = [
f u0 v0 cs α1 α2 β1 β2

]T
. (5)

D. Cost Function and Optimization

In the conventional calibration process, the optimal para-
meters are those that minimize the calibration cost function.
This cost function is defined by comparing the star vectors in a
pairwise manner. Assuming all the star vectors are normalized,
‖ri‖ = 1, the angular separation (arclength) between two
calibration locations can be found from

φ = sin−1 (∥∥ri × r j

∥∥)
. (6)

The model prediction angles are calculated using the FD

vectors from (3), and hence,

φ̂i j = sin−1
(∥∥̂rD,i × r̂D, j

∥∥)
. (7)

The true angles are calculated from the platform kinematics
and the joint angles

φi j = sin−1(∥∥rE,i × rE, j

∥∥)
(8)

where

rE,i = CEL,i rL . (9)

The prediction arclength error is then

δφi j = φi j − φ̂i j . (10)

Using all the possible pairwise combinations includes a
large amount of redundant information. To avoid the numerical
difficulties this can present during optimization, we select
Nk = 2N −3 pairs of calibration points (see Enright et al. [20]
for more details). Thus, we adopt the shorthand notation
φk ≡ φik , jk . The total cost over the calibration survey to be
minimized is then

J = 1

2

Nk∑
k=1

(δφk)
2. (11)
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Fig. 3. Typical calibration residual plot. (a) Incorrect focal length.
(b) Optimized parameters.

This formulation is convenient for conventional calibration
as it decouples the parameters in (5) from CMD rotation.
As such, it can be used for either terrestrial calibration (where
platform kinematics are available) or on-orbit recalibration
(where no external ground-truth orientation is available and
φk must be calculated from cataloged star positions). The
optimal x̂ is found using the Levenberg–Marquardt or any
other convenient numerical algorithm. The remaining intrinsic
parameter CMD is found using the autocollimator derived CEM

and a best-fit orientation calculation operating on r̂D,i and rM,i .
Although the cost function is formulated in terms of the

squared error magnitude, the rms arclength is a better metric
for comparing calibrations from different sensors or surveys

Epair = δφrms =
√∑Nk

k=1 δφ2
k

Nk
=

√
2J

Nk
. (12)

In addition, it is often convenient to directly examine the
spatial error distribution across the FOV. This requires a
slightly different cost function, evaluated for individual star

Evec =
√∑N

i=1

(
sin−1

(∥∥rD,i × r̂D,i

∥∥))2

N
. (13)

This quantity can be used to select best performing prediction
model from terrestrial calibration survey. Both Evec and Epair

cost functions can be used during calibration; however, there
are small but important differences between the two. The Epair

formulation does not depend on measuring the rotation CEM

[evident from (1) and (8)], so it generally gives more consistent
results when the sensor is remounted between calibration and
validation. In contrast, although Evec validations are tied to the
precision of the rotation measurement, they have the advantage
of enabling a more concrete and intuitive visualization of
residual error.

Fig. 3 shows a typical residual plot for a calibration survey.
Fig. 3(a) shows an example of the radial errors that result from
an error in f , while Fig. 3(b) shows a typical postoptimization
residual plot. Although the overall cost function value predicts
acceptable performance from the sensor, some systematic error
is clearly still present in the residual distribution—the model
parameters are simply unable to correct these particular trends.
It is this phenomenon that has motivated the supervised ML
approach described in this study.

III. ALTERNATIVE CALIBRATION MODELS

Apart from the traditional low-dimensional parametric mod-
els, other generic camera models exist which do not rely on
the physical parameters of the camera geometry. Methods such
as RFMs and ANNs express the relationship between image
pixel position and the corresponding 3-D vector in a purely
mathematical way without explicit computation of physical
parameters of the camera.

A. Rational Function Models

The RFM has been used extensively in photogramme-
try research and practice. When formulated for inverse
applications—i.e., reconstructing incident direction vectors
from image coordinates—the model has the following form:

rx = P1(u, v)

P2(u, v)
, ry = P3(u, v)

P4(u, v)
, rz = P5(u, v)

P6(u, v)
(14)

where Pi (u, v) is a polynomial function of the image centroid
position. Each polynomial is an eight-term cubic function as
shown in (15)

Pi (u, v) = a0 + a1v + a2u + a3vu + a4v
2 + a5u2

+ a6v
3 + a7u3. (15)

The numerical optimization techniques are used to find the
model parameter values. Following the method presented by
Tao and Hu [3], we first use direct least squares to find the
initial estimates for the parameter values and refine them with
nonlinear optimization. Both the optimizations use the cost
function from (11). Before optimization, the centroid positions
shifted and scaled to lie within ±1.

B. Interpolation

Data interpolation can be an alternative reliable approach if
the calibration dataset is large enough to cover most regions
across the FOV. The calibration dataset is then used as a
lookup table to interpolate the vector values for other areas
(star image centroid locations) not included in the calibration
dataset. Using the centroid locations (u, v) in the calibra-
tion dataset, the scattered data interpolation methods such
as Delaunay triangulation can be applied to find the three
vector components for any given 2-D image position. The
scattered calibration centroid locations [N = 300 distinct
points, pi = (u, v)] are first triangulated using the Delaunay
method. Then an interpolation function, f (u, v), is found for
each triangle such that the output star vector is

ri = f (ui , vi ) (16)

for all the points within the triangle. The linear multival-
ued triangular interpolation, as described by Amidror [23],
is one method to find the interpolation function. This work
also implements the linear interpolation. The interpolation
approach, however, has a few drawbacks including higher
storage requirement for the entire calibration dataset.
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C. Supervised Machine Learning Approach

This section provides an overview of the supervised
ML approaches that can be implemented as an alterna-
tive to the low-order parametric camera model discussed in
Section II-C.

1) Neural Network Framework: Feedforward ANN can be
used to learn the nonlinear relationship between the input
data and the target output. MLP, RBFN, and GRNN are few
examples of feedforward neural networks. The architecture
of these networks is defined by the number of input vari-
ables, number of hidden layers, nonlinear mapping functions
applied at hidden layers, number of outputs, and number of
neurons or nodes at each hidden layer. The neural networks
designed for the star tracker calibration would require two
input nodes for the normalized position of the star image
centroid on the image plane, p = [u, v], and the three outputs.
Shallow networks with one or two hidden layers can be
implemented due to simplicity of the star tracker calibration
data.

Two ANN correction architectures are considered: HYBRID

and IMPLICIT. As shown in Fig. 4, the network outputs for
the fully IMPLICIT star tracker calibration are r̂x , r̂y , and r̂z

components of the unit star vector resolved in the sensor mount
frame. From (1), CEL and CME can be found by controlling the
orientation of the platform and measuring alignment surfaces
with an autocollimator. However, it is challenging to find the
intrinsic rotation CMD for the implicit ANN-based model.
Therefore, the ANN for IMPLICIT method is trained with
vectors resolved in FM . The HYBRID ANN architecture,
on the other hand, outputs residual error of the star vector
components found by the simple distortion free pinhole camera
model (	̂rD = rD − r̂D). The pinhole model is simply (3) but
sets α1 = α2 = β1 = β2 = 0.

For each correction architecture, four different ANNs are
applied with different structures for the hidden layers: NET1
is an RBFN, NET2 is a one layer feedforward network
with the rectified linear activation function (ReLU) trans-
fer function instead of the Gaussian RBF, NET3 is sim-
ilar to NET2 with three hidden layers, and NET4 is a
GRNN.

NET1, NET2, and NET4 each have one hidden layer
with Nn neurons. Each neuron in the hidden layer adds
a nonlinearity by transfer function ϕi(p). NET3 has
three hidden layers. The differences between these net-
works are the transfer functions [ϕi(p)], weights applied
at the input layer (W0

i ), and bias applied at the hidden
layer.

The RBFN (NET1) transfer function for each network input
pk , at neuron, i , is a radial basis function (Gaussian form)
given by

ϕi,net1(pk) = e

(
−‖pk −μi ‖2

2σ2
i

)
(17)

where μi (1 × 2 vector) and σi are the center and spread
of the RBF at the i th neuron, respectively. The output of the
hidden layer in vector form is then

Φ = [ϕi ], 1 < i < Nn . (18)

Fig. 4. ANN architectures for the two correction implementations.
(a) IMPLICIT. (b) HYBRID.

The transfer function for NET2 and NET3 is the ReLU
transfer function

ϕi,net2(pk) =
{

pkW0
i + b, pkW0

i + b ≥ 0

0, pkW0
i + b < 0

(19)

where b is bias, and W0
i = [w0

i1 w0
i2]T are the optimized

weights applied to the connection of inputs to the hidden layer
neuron i as shown in Fig. 4. The trainable input layer weights
are only applicable to NET2 (they are set to unity for RBFN).

At the output layer, the weighted sum of ϕi(p) is calculated
for NET1, NET2, and NET3. Given W = [w1

i j ] as a 3 × Nn

matrix containing the output layer weights and Φ as a Nn × 1
vector containing the hidden layer outputs, the network would
predict the star vector to be

r̂M = ΦT WT + b2 (20)

where b2 is a 1 × 3 vector containing the bias for each output.
Then we normalize the star vector: r̂M = (r̂M/‖r̂M‖).

GRNNs have similar architecture to RBFN but with slight
variation in the output layer. Unlike RBFN(NET1), the final
network output is found by normalized dot product of weights
and hidden layer outputs. The GRNN network can be trained
using the MATLAB newgrnn function.

After selection of network architecture, we need to select
an optimization method to train the network. The goal of
training the neural network is to search for the learnable
parameters such that the cost function is minimized. The
learnable parameters for NET1-RBFN and NET4-GRNN are
the number of neurons in the hidden layer (Nn), the center
and spread of the RBFs (μi , σi ), and the weights and biases
of the output layer (wi j , b2). The learnable parameters for
NET2 and NET3 are the number of neurons, weights (w0

i j ,
w1

i j ), and biases (b).
Feedforward networks (NET2 and NET3) are often trained

by the gradient descent method which iteratively updated the
network learnables (weights and biases) using the gradient
of cost function—often mse of the network output—with
respect to the learnable parameters (W, b). Unlike NET2 and
NET3, RBFN and GRNN can be trained without backpropa-
gation. Some of the optimization methods commonly used to
train RBFNs include orthogonal least squares, clustering, and
gradient-based algorithm [14]. Two-step learning is a common
approach for training RBFN where the first step involves
optimization of the center and spread values (σi , μi ) and
the second step is finding the weights of the output layer.
In some literature, a third step is added where backpropa-
gation is used for optimization of all the learnable parame-
ters. Schwenker et al. [24] discusses the training process of
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RBFN in detail. The training process used for all the net-
work architectures in this work uses the Levenberg–Marquardt
method to minimize the cost functions (11), (13). The network
weights and biases for NET2 and NET3 are initialized by the
Nguyen–Widrow method. The spread values, σi , for NET1
are initialized to 1, and μi values are initialized by random
selection of the network input values from the calibration
(training) set.

Although the raw centroid data are calculated in pixel
coordinates, some initial testing revealed that normalizing the
centroid location by the array dimensions, (umax, vmax), yielded
superior error performance and required fewer neurons. This
approach is used in all ML calibrations presented here.

2) SVM Framework: SVMs represent another supervised
ML approach. These systems search for a linear predictor in a
high-dimensional feature space. For nonlinear SVR, the input
data in the training set are transformed to a higher dimensional
feature space using a kernel such as Gaussian or polynomial
[G(x)].

The SVM learning process then becomes a convex optimiza-
tion process where we minimize the loss term [(1/2)‖w‖2+
]
such that wxi + b − yi ≤ ε. wxi + b is the equation of
the optimal hyperplane that minimizes the model error, ε is
a margin where deviations from the optimal hyperplane are
tolerable (insensitive band), and 
 is a penalty term imposed
on data points that are beyond the tolerable margin to avoid
overfitting the training data points. More details on SVMs can
be found in Vapnik [25].

Three SVMs are trained for each component of star vector
in sensor mount frame. The inputs for each SVM are the 2-D
location of centroid on the image plane. Similar to the neural
networks described in Section III-C1, IMPLICIT-SVM model
outputs the star vectors directly, while the HYBRID-SVM
finds the corrections for the EXPLICIT model output. The
SVMs are optimized using the SMO method presented by
Platt [26]. Training parameters insensitive band (ε), Lagrange
multipliers’ constraint, and kernel scale are optimized by the
Bayesian method.

IV. CALIBRATION RESULTS

To summarize the development thus far, we wish to compare
the effectiveness of different calibration methods together with
various network structures. The five calibration methods are
as follows.

1) EXPLICIT: A conventional parameterized camera cali-
bration [from (3)].

2) RFM: Rational function model as presented in
Section III-A.

3) INTERPOLATION: Scattered triangular interpolation
using the calibration dataset.

4) ML-HYBRID: An ANN correction to a simplified pin-
hole camera model. This will correct residual errors
only.

5) ML-IMPLICIT: An ANN replacement for the entire
camera model.

The five network structures for the ML-based methods (Meth-
ods 4 and 5) are as follows.

1) NET1: An RBFN-based ANN.

2) NET2: A single-layer feedforward ANN.
3) NET3: A three-layer feedforward ANN.
4) NET4: GRNN.
5) SVM: A support vector machine.

The calibration methods mentioned above are first tested
for a single sensor unit (ST-1) available in-house. The best
performing method is selected based on the value of Epair

from (12). The calibration and validation datasets for sensor
ST-1 are collected without remounting the sensor.

The calibration methods that show improvement compared
with the EXPLICIT method are then compared in terms of data
storage and computational power needed for implementation.
The best performing model and optimization procedure are
then applied to a larger population of sensors to evaluate
whether the results are generally valid for different sensor
units. These datasets are gathered from production archives,
not from the tests performed specifically for this study. Each
sensor is associated with two datasets; one for calibration
and another for validation. In general, the validation datasets
are collected at different times than the initial calibrations.
Therefore, remounting of sensor may have caused variations in
CEM. Even though this change in CEM for validation data can
be measured by an auto-collimator, we can also account for
measurement error by computing the bulk rotation from true
survey vectors, rM , to the predicted r̂M using the q-method.
The bulk rotation would only affect the Evec value, and this
correction is not needed if Epair is to be used as metric of
performance. Without bulk rotation correction, the average
Evec for a population of 12 different sensors was found to
be ∼100arcsec.

A. Experiment-1: Calibration and Network Structure

This section investigates the calibration results for the ST-1
sensor. From Section III-C1, the output of ANN from the
IMPLICIT approach is expressed in FM and should be rotated
to FD using CMD found from the EXPLICIT method to
compare the accuracy of the calibration methods.

The number of survey points in the calibration dataset
can affect the accuracy of the trained prediction model.
Historically, 300-point datasets have provided good accuracy
for the EXPLICIT models, and same historical datasets are
used to train the ML-based models discussed earlier. The
ST-1 calibration and validation datasets in Table III also
use 300-point surveys. Section IV-B provides more details
on effective calibration (training) dataset size. As discussed
in Section II-A, offsetting the gimbal angles ensures that the
calibration and validation survey locations are disjoint on the
camera FOV.

Table III shows a summary of the calibration results for
ST-1, where Evec and Epair values are expressed in arcsec. The
SVM method performed poorly for the IMPLICIT calibration
method. NET1 listed in Table III showed best results with
respect to the EXPLICIT method with ∼20% improvement
in the angular error of star vectors. GRNN leads to best
calibration data fitting results at the expanse of larger network
size. Furthermore, high level of overfitting is observed as
evident by a poor validation result. Even though GRNN
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TABLE III

SUMMARY OF VALIDATION RMSE FOR ST-1

validation Epair is good, overfitting often results in output
vectors to be a rotated or translated version of the true values,
which is evident by poor Evec results. Although NET3 shows
more improvement compared with the one-layered NET2, it is
less efficient for implementation due to larger number of para-
meters and higher computational cost resulting from higher
number of hidden layers. Comparing NET1–NET3, the RBFN
performs the best. Furthermore, the two-step learning process
commonly used for RBFNs can result in better performance
and does not rely on backpropagation which leads to faster
training process. For instance, RBFN training implemented by
MATLAB function newrb results in fast consistent training
results. The INTERPOLATION method also gives us accuracy
levels similar to NET1, but requires storing a lookup table with
fairly higher number of values (i.e., 1200 values for 300 survey
points’ calibration dataset).

Section IV-C provides the optimization results for a larger
population of sensors to better judge which prediction model
is the best choice in terms of performance.

Fig. 5 shows comparison of the residual errors plot for
the EXPLICIT, IMPLICIT-NET1, and HYBRID-NET1 methods.
We can see that the residuals are improved in areas where the
EXPLICIT fails to accurately model the distortions effects for
this particular sensor. However, there some structured error
still remains. The validation performance improvements are
smaller than those seen in calibration, suggesting that some
overfitting may be present.

Lower errors (Epair) in star vector computation can lead to
improvements in the attitude accuracy. Although the EXPLICIT

model listed in Table III provides sufficient level of attitude
accuracy for most applications, significant improvements in
Epair justify the implementation of the alternative. In this case,
NET1 (RBFN) shows lower Epair with acceptable added com-
putational complexity which in turn leads to higher attitude
accuracy.

B. Experiment-2: Effect of Network Size and Computational
Costs

From Experiment-1, the NET-1 and INTERPOLATION tech-
niques show promise. However, we expect the size of the

Fig. 5. Plot of residual errors for the validation dataset (ST-1). (a) EXPLICIT
calibration (Evec = 8.87 arcsec). (b) RBFN calibration (IMPLICIT: Evec =
5.09 arcsec and HYBRID: Evec = 6.49 arcsec).

Fig. 6. Effect of calibration survey size on validation results (Evec[arcsec]
for validation set).

network and the amount of training data—i.e., the size of the
calibration survey—to influence the final performance as well.
Three different calibration datasets are gathered for ST-1: one
with 300 survey points which was used for Experiment-1, one
with 600 data points, and finally a 1200-point dataset. These
three different datasets are used for training the RBFN, and the
same 300-point validation dataset is used to show the impact
of the calibration survey size. Furthermore, the number of the
hidden layer neurons, Nn , for NET-1 is also varied. Fig. 6
depicts the change in validation Evec as the network size and
calibration dataset size are changed.

The ideal number of hidden layer neurons, Nn , was found to
be 25. When varying the number of neurons for the IMPLICIT-
NET1 system trained by MATLAB function newrb, the
validation Evec values decrease from 20 arcsec with 15 neurons
to 5.15 arcsec with 25 neurons. Very small networks performed
poorly, but each of the curves in Fig. 6 hits a point of diminish-
ing returns after which accuracy improvements are minimal.
That said, larger networks benefit from additional training
data (i.e., number of survey points) pushing the plateau points
toward larger network size which is not desirable as it adds to
computational complexity.

Where interpolation is implemented, smaller calibration size
is desired to reduce the data storage requirement. Interpolation
would be a better option over RBFN if higher accuracy with
smaller training dataset is achieved. However, RBFN (NET-1)
shows better results for the 300- and 600-point calibration
datasets. Furthermore, focal length corrections for sensor tem-
perature and star (color) spectrum can be effective in lowering
errors and these corrections would be difficult to integrate with
the interpolation without repeat of the calibration process.

Knowing the accuracy of the discussed prediction models
(refer to Table III) may not be sufficient, as computational
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Fig. 7. Star vector accuracy for the historical validation dataset of multiple sensor units.

cost is also an important factor to consider during development
of the star tracker sensor. The interpolation method requires
a storage of a lookup table containing 300 centroid location
and their corresponding 2 × 300 vector components (total of
1200 values). On the other hand, implantation of an RBFN
with a single hidden layer of size 25 would be more desirable
as it requires storage of 150 values (network weights and
biases). Network size affects both training time and execu-
tion. As ML problems go, this application is not particularly
demanding and the time required to train the networks is
minimal. Thus, our primary consideration is the execution
time. Reducing the network size for NET1 will a lead to a
corresponding reduction in the online computations. In our
trials, networks with 25 neurons seemed to offer the best
balance between error and computational cost. To perform
forward computations for NET1 i.e., 25 hidden layer neurons,
two inputs and three outputs, 50 exponential and 75 multi-
plication operations are required. Of these, the exponentiation
is by far the more expensive operation on most architectures.
Simple benchmark tests on the Star Tracker processor (an Arm
Cortex-A8) suggests that each exponential takes about 1 μs to
evaluate, an equivalent of about 128 FLOPS. By comparison,
the sensor takes about 226 FLOPS to calculate a centroid and
13 FLOPS to evaluate the EXPLICIT camera model.

For a full image of ten stars, the time spent evaluating
the ANN is approximately 530 μs. Although this time is
not negligible, it remains quite small compared with raw star
detection, which typically takes 80–100 ms. Thus, for the
moderate sized networks presented here, computational costs
are not expected to a significant challenge.

C. Experiment-3: Unit-to-Unit Results

The ML approaches listed in Table III are applied to the
historical calibration data from 11 other ST-16RT star tracker
units to study the repeatability and variations in the prediction
accuracy. These calibration datasets have same size (300 sur-
vey points) as the one for ST-1, so we expect similar trend to
Experiment-1 to hold true. Table IV lists the average improve-
ments in Evec and Epair values compared with the EXPLICIT

model. NET-2 and NET-3 networks show poor improvement
results for Epair values. Compared with other methods, both
HYBRID-NET1 and IMPLICIT-NET1 show highest level of
average improvement in validation Epair and Evec. Therefore,
we posit that NET1 is the preferred network architecture for
star tracker calibration.

In general, Epair improvements are lower than Evec, because
the residual errors are not uniform along the FOV, and the
paired vectors selected to compute the value of Epair are nonre-
dundant (see Enright et al. [20] for more details). Furthermore,
the ANN networks are optimized by minimizing Evec. In case

TABLE IV

EXPERIMENT-3: MEAN CALIBRATION IMPROVEMENT

(ANN-BASED VERSUS EXPLICIT)

of RFM where Epair was optimized, Epair improvements are
better than Evec.

Along with Table IV which shows the averaged results,
Fig. 7 illustrates the improvement for each individual sensor
unit for few of the best performing ML approaches. The
RMSE values shown in Fig. 7 correspond to a validation
set with 300 data points which is used to test the trained
models. It is notable that the HYBRID methods result in
slightly higher level of improvements in the RMSE values than
fully IMPLICIT. Some sensors like ST-1 show a large change
between EXPLICIT and ANNs. Others like ST-10–ST-12 show
smaller performance gains. This difference between sensors is
not directly tied to the initial EXPLICIT performance as ST-5
with good EXPLICIT results shows better results for ANN,
while ST-9-EXPLICIT has similar residuals to ST-1, but sees
less benefit from ANNs.

The reasons for these disparities are not clear. It is possible
that the variations in sensor noise from sensor to sensor result
in different levels of centroid error. The variations in the lens
assemblies may also explain some of the disparities. However,
in the end, all the sensors see some improvement with NET1,
and this varies from 5% to 35%.

V. CONCLUSION

In this study, we have presented an ANN-based optical
calibration method for star tracker. This approach resulted
in improvements of the star vector angular errors relative
to the explicit calibration procedure based on the pinhole
camera model with radial and decentering distortions. The
RBFN approach implicitly finds a mapping from the star image
centroid position on the image frame to the 3-D unit star
vector. avoiding the need to find accurate camera parameters.
These RBFNs are of modest size and require very little change
to extant calibration survey–collection processes. Although
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larger training sets are beneficial, the existing calibration
procedures still deliver good results.

The explicit camera calibration methods are easier to inspect
and validate by the mathematical models. However, finding
accurate basis functions to model distortions can be challeng-
ing and can lead to structured residual errors. The RBFN
proved to be capable of removing some of these structures
observed in residual plots. The average validation improve-
ments of 12% is observed.

Instrument calibrations can shift due to temperature
changes, vibration, and component aging, affecting the overall
instrument accuracy on-orbit. It is possible to use a batch
estimator (refer to Enright et al. [20]) to recalibrate and update
the RBFN parameters using on-orbit data to account for any
changes caused by environmental factors.

Both HYBRID and IMPLICIT represent viable architectures
for accurate star vector reconstruction. The former generally
provides a slight performance improvement over the latter,
at the expense of some additional computation. In addition,
because the HYBRID system acts a correction to the well-
understood EXPLICIT models currently in use, they arguably
present less technical risk to a project.

Although some variations were observed from unit-to-unit
in our experiments, almost all the sensors evaluated in this
study demonstrated sizable performance gains, not just in their
calibration residuals, but in processing of the separate valida-
tion datasets. This is an encouraging finding and suggests that
ML calibration techniques could be productively applied not
just to all ST-16-series star trackers, but to other instruments
as well.
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