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Abstract— This article develops a fully automatic tool for the
de-noising of partial discharge (PD) signals occurring in electrical
power networks and recorded in on-site measurements. The
proposed method is based on the spectral decomposition of the
PD measured signal via the joint application of the short-time
Fourier transform (STFT) and the singular value decomposition
(SVD). The estimated noiseless signal is reconstructed via a clever
selection of the dominant contributions, which allows us to filter
out the different spurious components, including the white noise
and the discrete spectrum noise. The method offers a viable
solution which can be easily integrated within the measurement
apparatus, with unavoidable beneficial effects in the detection
of important parameters of the signal for PD localization. The
performance of the proposed tool is first demonstrated on a
synthetic test signal and then it is applied to real measured data.
A cross comparison of the proposed method and other state-of-
the-art alternatives is included in the study.

Index Terms— De-noising, electrical networks, partial dis-
charge (PD), short-time Fourier transform, singular value
decomposition (SVD).

I. INTRODUCTION

CONCEPT of the smart grid is now a robust and well-
defined design format allowing the bidirectional inter-

actions between electric utilities and power components in
grids. This enables the real-time monitoring of the healthy
condition of the different interconnected blocks, thus allowing
the development of tools for optimizing their maintenance and
operation actions [1]. In the above scenario, partial discharge
(PD) can be considered to be one of the most harmful
insulation aging factors playing a crucial role in the healthy
condition assessment of power components [2].
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Nowadays, many commercial digital integrated circuits with
advanced high-speed data acquisition features are available,
and they also integrate with ultrawideband sensors. These sen-
sors allow for achieving advanced PD diagnosis, including PD
localization, recognition, and classification [3], [4], [5]. On-
site PD measurements, however, turn out to be susceptible to
field noise interferences, with unavoidable detrimental effects
of both white noise and discrete spectrum disturbance [6].
Therefore, de-noising is an essential step in on-site PD mea-
surement; however, high-level noise, variable waveforms of
PD signals, and limited computational resources in most com-
mercial devices make on-site PD de-noising more challenging.

In the last two decades, many papers have been published
on alternative pulse signal (e.g., PD) de-noising approaches,
such as wavelet transform (WT), empirical mode decom-
position (EMD), local mean decomposition (LMD), and
variational-mode decomposition (VMD). In [7], [8], [9], [10],
[11], and [12], WT has proven to have an outstanding PD
de-noising performance for extreme noisy signals if the mother
wavelet and decomposition level are selected properly. Prior
knowledge of the characteristics of the PD signal is, however,
required to determine the mother wavelet and decomposition
level, which is always difficult to have in the field due to the
variable waveforms of PD signals. In [13] and [14], iteration-
based algorithms are proposed to automatically determine the
optimal mother wavelet and decomposition level. Despite the
mentioned nice automatic feature of these methods, a common
unfavorable aspect of these methods is their low efficiency,
which means large computational time. In [15] and [16], the
adaptative EMD and LMD algorithms are proposed. Their
main advantage is that no prior knowledge is required, but
they suffer from mode mixing problems, possibly leading to
signal distortion. In [17] and [18], ensemble EMD and LMD
are developed to overcome the problem, but they require many
iterative cycles and calculations. In [19], VMD is proposed to
specifically address this issue, and it has successfully been
applied for de-noising PD or fault signals [20], [21]. The
success of VMD, however, depends highly on the preset
parameters, including the mode number and bandwidth control
parameter.

To remedy these deficiencies in the above de-noising
approaches, the nonparametric and self-adaptive methods
based on singular value decomposition (SVD) have been
explored in recent years. Abdel-Galil et al. [22] carried out a
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pioneer study of de-noising via SVD. In [23], an adaptive prin-
cipal components selection algorithm is developed to automate
the SVD-based PD de-noising process. In [24] and [25], some
fast SVD algorithms are developed by reducing the rank of the
input matrix to be decomposed. In [26] and [27], some hybrid
methods combining SVD with WT or EMD are presented,
where SVD is used to remove severe discrete spectrum noise
components with significant larger singular values. In all the
above papers, the SVD-based de-noising scheme is done as
follows: first, a noisy PD signal is embedded into a Hankel
matrix; then, applying SVD to the Hankel matrix resulting in
a singular value vector and multiple components; finally, the
components with larger singular values are used to reconstruct
the noiseless PD or the unwanted discrete spectrum noise that
needs to be subtracted. The investigation in [28], however,
shows that the de-noising scheme does not perform well for
signals with a very low signal-to-noise ratio (SNR). In this
case, several floors appear in the singular value plot, which
makes it very difficult to select the optimal value of the number
of dominant contributions. In addition, when the singular
values of the PD signal and of the discrete spectrum noise have
the same magnitude, the de-noising scheme can hardly differ-
entiate them. In [29], a PD de-noising based on the so-called
generalized “S-transform” and module time–frequency matrix
is proposed. In this approach, the de-noising performance
strongly depends on the accuracy of the estimated frequency
of the discrete spectrum noise, which requires high-frequency
resolution of the S-transform, and thus, results in a high-
rank matrix, which, in turn, may lead to large computational
time.

To overcome the above limitations and offer a de-noising
solution with improved accuracy and efficiency at the same
time, this article proposes an alternative approach that jointly
combines the SVD and the time–frequency complex matrix (or
spectrogram) of a noisy PD signal obtained by the short-time
Fourier transform (STFT). It can be verified that the latter
transform and the time–frequency domain allow a clearer
decomposition of the PD signal into its different constitutive
components. The functional, i.e., noiseless, PD signal can
be, therefore, estimated by filtering out the spurious and
well-separated noisy terms. In addition, the procedure can
be wrapped-up in terms of an automatic tool in which only
two parameters are needed, one related to the frequency
passband behavior of the used PD sensor and the other related
to the field noise level. The performance of the developed
de-noising algorithm is compared with some state-of-the-
art alternatives, including the Hankel matrix-based adaptive
SVD (H-ASVD), WT, and EMD algorithms. In addition, the
proposed approach is first applied to a synthetic PD signal
and then to real measured data to demonstrate its strengths
and features. The obtained results also prove the improved
features of the method in extreme conditions with very small
SNR, as it produces a better noiseless PD reconstructed
signal.

In summary, the main contributions of this article are as
follows.

1) A well-defined and robust step-by-step procedure for
de-noising PD signals is defined.

2) An automatic tool with the smallest number of tuning
parameters (two in the proposed scheme) is generated.
The parameters are chosen with a simple rule, and the
low sensitivity of the de-noising accuracy to their value
has been confirmed.

3) The feasibility and strengths of the proposed de-noising
scheme on a synthetic signal are verified, as we have
proved its generality for different possible shapes of PD
signals and its robustness to large noise levels.

4) An unbiased comparison with alternative state-of-the-art
solutions is carried out.

5) The proposed tool has been applied to real on-site
measurements carried out by a high-frequency current
transformer (HFCT) and an ultrahigh-frequency (UHF)
antenna.

The rest of this article is structured as follows. Section II
discusses the modeling of typical PD signals and noise.
In Section III, the proposed adaptive and automatic PD
de-nosing tool is detailed. In Section IV, three de-noising
performance metrics are introduced and adopted to quantify
the effectiveness of the proposed algorithm on a synthetic
PD test case. In the same section, a cross-comparison involv-
ing the mentioned state-of-the-art approaches is carried out.
In Section V, the feasibility of the developed tool is confirmed
by its application to real measured signals. Conclusions and
final remark are given in Section VI.

II. PD AND NOISE MODELING

A. PD Signal Modeling

PD is a localized electrical discharge that only partially
bridges the insulation between conductors, and it can or cannot
occur adjacent to a conductor [30]. According to many labora-
tory studies, the PD process can be approximately equivalent
to the Townsend discharge process, in which a current pulse is
generated due to the movement of ionized electrons and ions
under the stress of an external electric field [31]. The electrons
move faster due to their lighter weight, leading to a fast-rising
edge of the current pulse, whereas the ions move slowly due
to their heavier weight, leading to a slow-falling edge.

Therefore, at the PD source, a PD signal starting at time
zero can be approximately modeled by a double exponential
pulse (DEP), which can be formulated as [6]

DEP(t) = A1 · (e−t/τ1 − e−t/τ2
)

(1)

where A1 is the amplitude, and τ1 and τ2 (τ1 > τ2) are the
time constants. DEP signal is often detected in the line-type
power equipment, such as cables and overhead lines. Most of
detected PD signals are, however, oscillating pulses due to the
effects of both the propagation path and the transfer function
of the used sensor. Therefore, single exponential and double
exponential attenuation oscillation pulses (SEOP and DEOP)
are used [26]. They are formulated as

SEOP(t) = A2 · e−t/τ3 · sin(2π fc1t) (2)

DEOP(t) = A3 · (e−t/τ4 − e−t/τ5
) · sin(2π fc2t) (3)
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Fig. 1. (a) Synthetic noiseless and (b) noisy PD signal with SNR of −1.55 dB.

TABLE I

PARAMETERS OF THE SYNTHETIC PD SIGNAL OF FIG. 1

where A2 and A3 are the amplitude parameters, τ3, τ4, and
τ5 are time constants, and fc1 and fc2 are the oscillation
frequencies.

In this work, the above three types of pulses (DEP, SEOP,
and DEOP) are concatenated sequentially to generate the
signal shown in Fig. 1(a). The above signal represents an
initial synthetic test case, which simulates the simultaneous
occurrence of multiple PDs, which is a common phenomenon
in field measurements. Also, it offers a fully controllable test
case, which highlights and verifies the features and strengths
of the proposed de-noising scheme for increasing levels of
superimposed noise. The parameters of DEP, SEOP, and DEOP
signals used in this article are listed in Table I. The PD signal
is uniformly sampled at a sampling frequency fs = 125 MHz
and stored in a vector. For the signals in Fig. 1, the number
of sampling points is 9000.

B. Noise Characteristics

In on-site PD measurements, the sensitivity and accuracy
of PD detection are always reduced by two types of noise: 1)
the white noise and 2) the discrete spectrum noise. Discrete
spectrum noise mainly arises from carrier communication,
radio communication, high-order harmonic, etc., while white
noise is mainly caused by equipment thermal noise, ground

noise, random noise, etc. [32]. In this work, the frequencies
of two harmonics in the discrete spectrum noise are set to
3 and 7 MHz and their corresponding amplitudes are set to
0.15 and 0.1 mV, respectively. White noise is a zero mean
Gaussian sequence with 0.1 mV standard deviation.

The above disturbances are added to the noise-free PD
signal to generate the noisy signal shown in Fig. 1(b). It is
important to point out that the synthetic noise signal in the
figure is characterized by a critically low SNR, and thus, it is
a challenging test case that can be effectively used to verify the
benefits of the proposed de-noising solution and to compare
it with state-of-the-art alternatives.

III. PRINCIPLE OF THE PROPOSED DE-NOISING TOOL

This section presents the proposed automatic tool for PD
de-noising according to the scheme in Fig. 2 and data
processing following all the different involved blocks from
left to right. It consists of six steps, which are detailed in
Section III-A–III-F.

A. Time–Frequency Transform via STFT (Step 1)

According to the procedure of Fig. 2, the sampled noisy
PD signal like the one shown in Fig. 1(b) is stored in a vector
x = [x(t1), x(t2), . . . , x(tK )]T defined as

x(tk) = s(tk) + w(tk), tk = (k − 1)�t, k = 1, 2, . . . , K

(4)

where s(tk) is the discretized noise-free PD signal, w(tk)
represents the superimposed noise (e.g., white and discrete
spectrum noise), �t = 1/ fs = 1/(125 MHz) is the sampling
interval, and K is the number of time samples (e.g., 9000 in
the example signal). Then, x is transformed into a spectrogram
X via the STFT.

This step represents the most important initial data process-
ing since the local features of a nonstationary PD signal
cannot be well expressed in the time domain or in the
frequency domain only. Hence, a time–frequency analysis is
more suitable for representing a PD signal with its inherent
pulsed characteristics.

STFT is a widely used time–frequency tool for studying
nonstationary signals, and it has been proven to be effectively
used in this field [33]. The discrete STFT of the discrete signal
x can be written as

X( fm, tn) =
K∑

k=1

x(tk)g(tk − tn)e
− j2π tk fm �t (5)

where g(·) is a Gaussian window function with a length of M
(e.g., 200 in the following illustrative example in this section),
tn = (n − 1)�t (n = 1, 2, . . . , N , N = K − M + 1) and
fm = (2m − M)/(2M�t)(m = 1, 2, . . . , M) are the discrete
time and frequency, respectively, and X ( fm, tn) (also labeled
as Xm,n) is the element in the mth row and nth column
of the spectrogram X ∈ CM×N . The absolute value of the
spectrogram X obtained by applying STFT to the synthetic
noise signal in Fig. 1(b) is shown in Fig. 3, in which the PD
pulses emerge clearly while they are drowned out by noise in
the time domain.
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Fig. 2. Proposed step-by-step automatic procedure for PD de-noising.

Fig. 3. Magnitude of the spectrogram of the synthetic noise signal shown
in Fig. 1(b) and location of the different signal components.

B. Soft Masking (Step 2)

White noise is preliminarily reduced by applying the fol-
lowing soft masking to spectrogram X, resulting in an updated
spectrogram X′.

Fig. 3 shows the magnitude of X, highlighting that both the
PD signal and the discrete spectrum noise turn out to be local-
ized in the specific zones of the spectrogram characterized by a
remarkably high amplitude (in magnitude). On the other hand,
white noise produces a uniformly distributed background.
This magnitude difference between the dominant signal (e.g.,
PD signal) and the white noise allows us to first preliminarily
filter out the noise by applying the following soft masking on
the spectrogram [34]:

X ′
m,n =

{
Tm,n · Xm,n, if|Xm,n | < 3ε

Xm,n, if|Xm,n| ≥ 3ε
(6)

where ε is the standard deviation of X. The threshold value of
3ε is suitably adjusted on the basis of the SNR and is chosen
according to [35], and Tm,n are the attenuation coefficients
defined as

Tm,n =
∣∣∣∣ Xm,n

3ε

∣∣∣∣
q

(7)

where q is the attenuation control factor. A large value of q
increases the white noise suppression, but at the same time,

it leads to a large distortion of the PD signal. Therefore, the
value of q should be set carefully, and it will be thoroughly
discussed in Section IV. In the following illustrative example
in this section, q is set to 1. After the soft masking, the
spectrogram X is updated to a new spectrogram X′, in which
parts of white noise are removed while discrete spectrum noise
and some residual white noise still exist. Finally, it is important
to point out that soft masking improves the SNR of the PD
signal, thus facilitating the subsequent matrix factorization and
component selection.

C. Matrix Factorization via SVD (Step 3)

In this step, the spectrogram X′ is decomposed into M
components via the SVD, allowing the splitting of the original
signal into multiple distinguishable components, in which the
functional PD signal, the discrete spectrum noise, and the
remaining white noise can be separated. This can also be
justified by the different localization of signal components
in Fig. 3, which are characterized by different shapes and
strengths, in magnitude.

Applying SVD to the spectrogram X′ (with M < N) can
generate three decomposed matrices, yielding

X′ = USVH

= σ1u1v
H
1 + σ2u2v

H
2 + · · · σM uMvH

M

= X′
1 + X′

2 + · · · + X′
M (8)

where U is an M × M orthonormal matrix (U=
[u1, u2, . . . , uM ], ui ∈ C

M×1), S is a real M × N rectangular
matrix with the singular values σ1 > σ2 > · · · > σM in
the diagonal entries, V is an N × N a square orthonormal
matrix (V= [v1, v2, . . . , vN ], vi ∈ C

N×1), and X′
i is the

i th decomposed component of X′. PD de-noising can be
achieved by selecting the component that best represents the
contribution of the noiseless PD signal.

Roughly speaking, it can be verified that the more con-
centrated and large-amplitude objects (e.g., the PD signal and
the discrete spectrum noise) in the spectrogram X′ correspond
to the components with larger singular values, whereas the



YAN et al.: AUTOMATIC TOOL FOR PD DE-NOISING VIA STFT AND MATRIX FACTORIZATION 3528512

Fig. 4. Singular values of the spectrogram X′.

scattered and low-amplitude objects (e.g., the white noise)
correspond to the components with small singular values as
highlighted in Fig. 4. Therefore, the mix consisting of the
PD signal and of the discrete spectrum noise can be possibly
extracted by selecting the principal components associated
with larger singular values, thus reducing the residual white
noise.

D. Principal Components Selection via MDL Criterion
(Step 4)

This step implements an automatic rule for the selection
of the optimal L (L � M) components arising from the
dominant singular values, as shown in Fig. 4.

Traditionally, the principal components associated with
larger singular values in the SVD are selected via the threshold
criterion σl+1/σ1 ≥ δ (l = 0, 1, . . . , M − 1), where δ is an
artificial threshold value referring to the SNR of the spectro-
gram X′. Since we do not know the SNR, which is different
depending on the PD signal and noise level, we use the
minimum description length (MDL) criterion to automatically
select the number of the principal components. The function of
the MDL with respect to the singular values of the spectrogram
X′ is defined as [36], [37]

MDL(l) = −N log

⎛
⎜⎝

∏M
i=l+1 σi(

1
M−l

∑M
i=l+1 σi

)M−l

⎞
⎟⎠

+ 1

2
l(2M − l) log N (9)

where σi is the i th singular value of X′, M is the number of
singular values (or rows) of X′, and N (N > M) is the number
of the columns of X′. The number of effective singular values
can be determined by minimizing MDL(l) as [36], [37]

L = arg min 0≤l≤M−1MDL(l). (10)

To better explain the effect of the above criterion, the MDL
curve of the singular value vector of Fig. 4 is shown in
Fig. 5. L = 12 corresponds to the minimum of the MDL
curve, defining that only the first 12 components, instead of
200 in total, can successfully be used to represent the dominant
contributions of the spectrogram X′. Therefore, X′ can be
updated to a compressed spectrogram X̃ = X′

1 +X′
2 · · ·+X′

L

(X′
i ∈ CM×N , i = 1, 2, . . . , L) by selecting the first L

components, thereby removing most of the remaining white
noise.

Fig. 5. MDL curve of the singular values.

E. Time-Domain Signal Reconstruction via ISTFT (Step 5)

Each component in the spectrogram X̃ is transformed back
to time domain via inverse STFT (ISTFT), resulting in L
signal modes, in which the PD signal and the discrete spectrum
noise are clearly distinguishable. Conversing back to the time
domain is important not only for retrieving the estimated
noiseless PD signal but also because, as observed before, the
singular values of the PD signal and of the discrete spectrum
noise may have the same magnitude, making their possible
separation hard.

Hence, each component X′
i of the spectrogram X̃ is con-

verted back to the time domain via ISTFT

x̃i(tk) = 1

M

N∑
n=1

M∑
m=1

X ′
i ( fm, tn)g(tk − tn)e

j2π tk fm (11)

where x̃i(tk) is the i th reconstructed signal mode, and
X ′( fm, tn) (also labeled as X ′

m,n) is the element in the mth
row and nth column of the subspectrogram X′

i .
Again, for example signal of Fig. 1(b), the L reconstructed

signal modes x̃1, x̃2, . . . , and x̃L are shown in Fig. 6. From
visual inspection, it can be observed that the PD signal and the
discrete spectrum noise are spread in different contributions,
or modes (e.g., #1, #4, #5, #8, #9, #10, #11, #12). This
observation suggests that it is also possible filtering out the
discrete spectrum noise and estimate the noiseless PD signal
by selecting the most modes with an impulse-like shape. This
is done in the next, i.e., last, step.

F. Mode Selection via Kurtosis Criterion (Step 6)

The kurtosis parameter is used to separate the contributions
associated with the PD signal from those arising from the
discrete spectrum noise in the L reconstructed modes. Kurtosis
is a statistical measure of whether the data are heavy-tailed or
light-tailed relative to a normal distribution [38].

Qualitatively, sequences with high kurtosis parameters tend
to have heavy tails or outliers. Sequences with low kurtosis
values tend to have light tails or lack outliers. In the recon-
structed modes, the signal components associated with the
pulses (e.g., PD signal) perform like some outliers, and thus,
produce a large kurtosis value, whereas periodic signals (e.g.,
the discrete spectrum noise) produce a low kurtosis value.

The kurtosis value of a discretized signal is defined as

Kur(x̃i) =
1
K

∑K
k=1 [x̃i(tk) − x̄i ]4(

1
K

∑K
k=1 [x̃i(tk) − x̄i ]2

)2 (12)
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Fig. 6. Signal modes reconstructed from the first 12 components with larger
singular values.

where x̃i is the i th signal mode reconstructed by the i th
component of X′, and x̄i is the average of x̃i . The calculated
kurtosis values of the modes collected in Fig. 6 are shown
in Fig. 7. From this figure, we can see that the modes more
closely related to the PD signal are with larger kurtosis values
(i.e., #1, #4, #5, #8, #9, #10, #11, and #12).

The modes with larger kurtosis value are selected to recon-
struct the final estimated noiseless signal x̃ , which can be
rewritten as

x̃ = a1 x̃1 + a2 x̃2 + · · · aL x̃L (13)

where ai = Logical{kur{x̃i} > β},where Logical{·} is the
logical judgment function and returns 1 or 0. β is a threshold
set to 4, an empirical value suggested in [27] and [38]. The
final estimated noiseless signal x̃ via (13) is shown in Fig. 8,
where most of the white noise and discrete spectrum noises
are successfully removed.

IV. RESULTS: SYNTHETIC PD SIGNALS

This section collects the results of the application of the
proposed tool to the synthetic PD test case. The simulations
are conducted using MATLAB software running on an Intel(R)
Core i7-10750H processor with 2.60-GHz clock frequency and
16-GB RAM. In the simulations, three evaluation metrics are
defined to quantitatively assess the de-noising performance of
the proposed algorithm, which is compared with the alternative
WT [7], EMD [17], and H-ASVD [23] tools. Also, as briefly
mentioned before, in the proposed algorithm, only two para-
meters (the window length in the STFT and the attenuation

control factor of the soft masking) need to be determined in
advance; a rule for their choice is also presented.

A. Evaluation Metrics

Three evaluation metrics are defined below to quantify the
quality of the estimated noiseless PD signal [27] (s(tk) and
x̃(tk) denote the discrete noise-free and de-noised signals,
respectively).

1) SNR is used to measure the background noise reduction

SNR = 10 · log10

∑K
k=1 s2(tk)∑K

k=1 [x̃(tk) − s(tk)]2
. (14)

2) Normalized correlation coefficient (NCC) is used to
evaluate the similarity of the waveform between the
original and de-noised signals. It is defined as

NCC =
∑K

k=1 s(tk) · x̃(tk)√[∑K
k=1 s2(tk)

]
·
[∑K−1

k=0 x̃2(tk)
] . (15)

3) Root-mean-square error (RMSE) is used to evaluate the
waveform distortion of the de-noised signal compared
with the original signal

RMSE =
√

1

K

∑K

k=1
[x̃(tk) − s(tk)]2. (16)

Higher SNR and NCC and lower RMSE represent a better
de-noising performance.

B. Effect of the Window Length in STFT

The window length M in STFT, which is equal to the num-
ber of rows of the time–frequency spectrogram X, is inversely
proportional to the frequency resolution � f of the spectro-
gram, which can be formulated as

� f = fs

M
. (17)

For a fixed value of the sampling frequency fs, a small
window length can lead to a large frequency resolution of the
spectrogram, which may be insufficient to distinguish a PD
signal from the noise, especially the discrete spectrum noise,
whereas a large window length can lead to a small frequency
resolution, resulting in redundant computations.

We de-noise the noisy PD signal synthesized in Section II
via the proposed algorithm with varying window lengths and
noise levels. The window length M is changed from 40 to
800 sampling points, the SNR of the noisy signal is changed
from −1.55 to −15.5-dB by increasing the amplitudes of the
two types of noises in equal proportions, and the attenuation
control factor q of the soft masking in (7) is set as 1.

Fig. 9 provides a compact picture of the effect of the win-
dow length M in STFT on the de-noising performance of the
proposed algorithm through the defined two evaluation met-
rics, SNR and RMSE. It can be observed that the de-noising
performance improves as the window length increases in the
initial part of the curves, and then it becomes nearly flat
once the number of sampling points exceeds the critical value
of 200. This critical value is equivalent to the frequency
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Fig. 7. Kurtosis value of the modes in Fig. 6.

Fig. 8. De-noised signal obtained by summing modes #1, #4, #5, #8, #9,
#10, #11, and #12 in Fig. 6. The green, blue, and red lines denote the noisy,
the original, and the de-noised signals, respectively.

Fig. 9. Effect of the window length M on (a) SNR and (b) RMSE in varying
noise levels.

resolution of the spectrogram of 0.625 MHz, which is just
sufficient to distinguish the last two PD pulses with dominant
frequencies of 1 and 5 MHz, respectively, from the discrete
spectrum noise with dominant frequencies of 3 and 7 MHz.
Once the window length is smaller than the critical value,
the frequency resolution of the spectrogram is insufficient to
distinguish the PD pulses from the discrete spectrum noise,
resulting in a significant drop in the de-noising performance,
as shown in the front parts of the curves in Fig. 9. Therefore,
the window length should not be too small.

Fig. 10 shows the effect of the window length M on
the computational time of the proposed algorithm. It can be
observed that the efficiency decreases as the window length
increases, suggesting a selection of the smallest value of M
may lead to sufficiently good performance indexes (such as
those considered in Fig. 9).

Referring to the frequency passband of the used PD sen-
sor, an empirical formula allowing to determine the window

Fig. 10. Effect of the window length M on the overall computational time
required by the proposed algorithm.

length M is

M ≥ fs

� f
= α · fs

fhigh − flow
(18)

where fhigh and flow are the upper and lower cutoff frequencies
of the used PD sensor, and α is the ratio between the
passband frequency of the sensor and the acceptable frequency
resolution. In practical applications, it is recommended to set α
a bit larger than some dozens (e.g., 20–60) to ensure sufficient
frequency resolution of the spectrogram for good de-noising
performance and simultaneously less computation time.

C. Effect of the Attenuation Control Factor in the Soft
Masking

The effect of the attenuation control factor of the soft
masking on the two evaluation metrics SNR and RMSE is
shown in Fig. 11, where the attenuation control factor, q ,
is changed from 0 to 6, the SNR of the noisy signal is
changed from −1.55 to −15.5-dB, and α in (18) is set
as 48. The above value corresponds to the window length
M = 48 · 125 MHz/(30 MHz − 0.5 MHz) ≈ 200 sampling
points if a PD sensor with a passband from 0.5 to 30 MHz is
used, which is sufficient to detect the synthetic PD signal.
It can be observed that with the increase of the attenua-
tion control factor, the de-noising performance is obviously
improved at first, indicating that soft masking works first
effectively and then gradually deteriorates. The initial increase
in the de-noising performance is because more white noise is
removed; the subsequent drop in de-noising performance is
because part of the useful PD signal is also removed, resulting
in some signal distortions. In addition, comparing the optimal
q values for different noise levels, it can be found that a
relatively small q value produces the best noise reduction
effect at low noise levels, while a relatively large q value
produces the best noise reduction effect at high noise levels.
Referring to the simulation results, the attenuation control
factor, q , is recommended to be set between 0.5 to 2.5, and it
should be relatively large for high noise levels and relatively
small for low noise levels.

D. De-Noising

Fig. 12 collects the results of the de-noising of the simulated
PD signal with high-level noise (SNR = −11.10 dB) via the
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Fig. 11. Effect of the attenuation control factor q on (a) SNR and (b) RMSE
in varying noise levels. (q equal to 0 denotes the soft masking is disenabled).

Fig. 12. De-noising results of (a) H-ASVD (the size of Hankel matrix:
450 × 9000), (b) WT (the mother wavelet: dB8), (c) EMD (the ensem-
ble number: 300), (d) proposed STFT-SVD without the soft masking
(M = 200 and q = 0), and (e) proposed STFT-SVD with the soft masking
(M = 200 and q = 2). The green, blue, and red lines denote the noisy
signal (SNR = −11.10 dB), the original signal, and the de-noised signal,
respectively.

proposed STFT-SVD, H-ASVD, WT, and EMD algorithms.
It can be seen from Fig. 12(a) that the H-ASVD algorithm
can hardly remove the discrete spectrum noise. In Fig. 12(b),
the WT algorithm has good behavior for the first and second
pulses, but it basically fails to reconstruct the third pulse. The
difference in the noise reduction effect on the PD pulses is
attributed to the selected mother wavelet (dB8); the failure of

TABLE II

EVALUATION METRICS COMPARISON OF THE ALGORITHMS

the last PD pulse de-noising is due to the insufficient frequency
resolution requiring to separate the PD pulses (with a dominant
frequency of 5 MHz) with the discrete spectral noises with
sinusoidal components at 3 and 7 MHz. In Fig. 12(c), the EMD
technique can only discriminate the PD signal vaguely, and a
large amount of white noise and waveform distortions still
remain. In Fig. 12(d), compared with the results of H-ASVD,
WT, and EMD algorithms, the proposed STFT-SVD algorithm
can be effectively used to reduce both the white noise and
the discrete spectrum noise in all three types of PD pulses,
although a small amount of noise remains. In Fig. 12(e), where
the soft masking is enabled, the de-noising performance is
improved, thus proving the benefit of this additional step in
the de-noising procedure.

The evaluation metrics of all the algorithms are listed
in Table II, where it can be observed that the proposed
STFT-SVD algorithm with the soft masking has the largest
SNR (the highest SNR) and the least waveform distortion (the
lowest RMSE and the highest NCC).

V. RESULTS: MEASURED DATA

This section collects the results of the application of the
proposed de-noising tool to the measurements carried out by
two different ultrawideband PD sensors widely used for on-site
PD measurement in cables, transformers, motors, switchgears,
overhead lines, etc. Two test cases are considered: the first
one involves an HFCT, and the second one involves a UHF
antenna. The achieved de-noising performance is compared
with the ones obtained through the alternative WT [7],
EMD [17], and H-ASVD algorithms [23].

A. Case I: De-Noising of a PD Signal Measured by HFCT

In this first real application test case, the proposed
STFT-SVD algorithm is applied to a PD signal measured by
means of an HFCT to demonstrate its de-noising performance.
To have a controlled environment and test, two measurements
are carried out: one is related to a PD signal with the
smallest possible noise corruption, and the other involves the
contribution of the noise only, being this latter associated with
another conductor and time window where only the spurious
disturbance is recorded. The PD signal originates from a soiled
insulator in a 10-kV covered conductor (CC) line, as shown in
Fig. 13. The passband frequency of the HFCT is in the range
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Fig. 13. (a) Case I: layout of the HFCT on a 10-kV CC line and (b) picture
of the PD defect on an insulator caused by fouling.

Fig. 14. (a) Case I: time-domain waveforms and frequency-domain spectrums
of the HFCT-measured PD signal, (b) HFCT-measured noise, and (c) their
combination.

of 0.5–30 MHz and the sampling frequency for data collection
is 125 MHz.

Fig. 14 collects both the time waveforms and the corre-
sponding frequency spectra of the PD measured signal and
noise. Specifically, panel (a) corresponds to the PD signal
measured as closely as possible to the insulator to reduce
the detrimental effects of noise and to produce a reference
response, which is eventually compared with the reconstructed
PD. Panels (b) and (c) corresponds to the noisy contribution
and to the PD noisy response, respectively. The PD noisy
response is generated by summing the noiseless and noisy
waveforms. It is important to point out that the noisy waveform
of Fig. 14(b) includes both the effects of the white noise and
of the discrete spectrum noise, as discussed in the synthetic
test example considered in Section II. Also, for this case, the
PD pulse, for both the time-domain and the frequency-domain
waveforms, is massively cluttered by the effect of the large
superimposed noise, thus making the de-noising a challenge.

Fig. 15. (a) Case I: de-noising results of real noisy PD signal by H-ASVD
(the size of Hankel matrix: 390 × 7810), (b) WT (the mother wavelet: dB8),
(c) EMD (the ensemble number: 300), and (d) proposed STFT-SVD (M =
200 and q = 2). The green, blue, and red lines denote the noisy, original, and
de-noised signal, respectively. The insets zoomed-in view the PD pulses.

De-noising is carried out starting from the time-domain
measured response of Fig. 14(c) by using all the considered
algorithms. In the proposed STFT-SVD algorithm, the tuning
parameters are defined as follows. According to (18) and the
suggested range of α between 20–60, M should be chosen
in the range between 83 and 254. It is important to point
out that the discussion of the role of M in Section IV-B and
the additional simulation analyses have proven that the overall
accuracy of the method has a very low sensitivity to this
parameter. For this test case, the window width value is set
to 200 sampling points (corresponding to the ratio α ≈ 48),
which enables the frequency resolution to be 0.625 MHz.
Similar reasoning and behavior hold for the other parameter
(i.e., the attenuation control factor in the soft masking), which
is set to 2 due to the high-level noise.

Fig. 15 offers the results of the cross comparison. We can
find that it illustrates the superior performance of the proposed
tool, which yields a very good reconstructed PD signal [see
Fig. 15(d)]. From the responses in the figure, we can observe
that the H-ASVD algorithm fails to remove the discrete
spectrum noise [see Fig. 15(a)], the WT algorithm effectively
reduces most of the noise but leads to a visible distortion [see
Fig. 15(b)], and the EMD algorithm can only discriminate the
PD signal vaguely and leads to a significant distortion [see
Fig. 15(c)]. To sum up, this test has proven the nice features
of the proposed de-noising tool for in-field measurements via
HFCT.
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Fig. 16. (a) Case II: layout of a UHF sensor on a 110-kV gas-insulated
switchgear and (b) picture of X-ray imaging inspection of the detected internal
air gap PD defect of a basin insulator.

Fig. 17. (a) Case II: time-domain waveform and (b) frequency-domain
spectrum of a real noisy PD signal in a 110-kV gas-insulated switchgear,
measured by a UHF sensor. The starting of the PD pulse is zoomed in (c).

B. Case II: De-Noising of a PD Signal Measured by UHF

In this second comparison, a real noisy PD signal is mea-
sured by means of a UHF in 110 kV gas-insulated switchgear,
as shown in Fig. 16(a). The PD was caused by an internal
air gap in a basin insulator, as shown in Fig. 16(b). The
passband frequency of the UHF antenna is in the range of
300–1500 MHz. The sampling frequency of the data collection
device is 10 GHz.

As done in case I, the time-domain waveform and the
corresponding frequency spectrum of the noisy signal are
shown in Fig. 17. It can also be observed also in this case
that the PD pulse is almost drowned out by the noise. The
edge of the PD pulse is zoomed in Fig. 17(c), where a
visible oscillation with a specific frequency appears from about
time t0, which is credibly regarded as the starting point of the
PD pulse.

Based on the observations of the tuning parameters used in
test case I, the same values of M and q are selected for this
second example (hence M = 200 and q = 2). In this case, the
window width value in the proposed STFT-SVD algorithm
corresponds to the ratio α ≈ 24 in (18), which enables a
frequency resolution of 50 MHz.

The results of this cross comparison are collected in Fig. 18.

Fig. 18. Case II: de-noising results of a real noisy UHF-measured PD signal
by (a) H-ASVD (the size of Hankel matrix: 1000 × 20 000), (b) WT (the
mother wavelet: dB8), (c) EMD (the ensemble number: 300), and (d) proposed
STFT-SVD (M = 200 and q = 2). The green line denotes the noisy signal,
and red line denotes the de-noised signal. The insets zoomed-in view the
starting of the PD pulse.

It demonstrates the superior performance of the proposed
tool, which gives a good performance in detecting the starting
of the PD pulse [see Fig. 18(d)]. This is essential for PD
source localization, which is nowadays one of the com-
mon functions required for PD diagnosis on gas-insulated
switchgears in order to improve their maintenance efficiency.
From the responses shown in the figure we can observe
that the H-ASVD algorithm is effective in reducing most of
the white noise, but some discrete spectrum noise remains,
making it quite difficult to identify the start of the PD pulse
[see Fig. 18(a)]. The WT and EMD algorithms effectively
reduce most of the noise but lead to remarkable distor-
tions, causing the loss of the pulse starting information [see
Fig. 18(b) and (c)]. In summary, this test has verified the nice
features and benefits of the proposed de-noising algorithm
in detecting the pulse starting for field PD localizations via
UHF.

VI. CONCLUSION

In this article, an automatic PD de-noising algorithm is
proposed. It is based on a well-defined automatic procedure,
which involves the joint application of the STFT and the
SVD tools. The former time–frequency transform enables the
separation of the functional behavior of the PD signal and
of the possibly superimposed discrete spectrum noise and
the white noise background disturbance. The latter matrix
decomposition allows the separation of all the different signal
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contributions in terms of the dominant terms (or modes) and
filters out all the noisy terms. The algorithm also embeds
some additional features, including a soft-masking mechanism
and the optimal selection of the terms leading to the accurate
estimation of the noiseless PD signal. The proposed method
is demonstrated on a first test case involving a synthetic
PD signal, which is fully controllable and can be used
to validate and stress the tool in extreme conditions (e.g.,
with a very large impact of noise). A second test case is
then considered, where the real measured data are processed
and de-noised. A cross comparison with some state-of-the-
art alternatives is carried out for all the test cases. To sum
up:

1) the proposed algorithm is fully automatic. MDL and
kurtosis criteria are used to automatically select the dom-
inated components to reconstruct the estimated noiseless
PD signal;

2) the synthetic test case and the simulation results prove
that the proposed de-noising scheme can adaptively
reduce, selectively, both white noise and the discrete
spectrum noise in all the considered (three representative
types) PD pulses;

3) the white noise reduction is further improved by apply-
ing soft masking to the time–frequency spectrogram
and by filtering out the remaining white noise (together
with the discrete spectrum noise) by the selection of
PD-dominant contributions;

4) the application of the tool to real measured data demon-
strates its effectiveness, as it causes a significantly less
waveform distortion than other state-of-the-art alterna-
tives. So this tool has a qualified capacity to detect
the important parameters of the signal for advanced PD
waveform-based applications, such as PD localization.

Future works will investigate a possible application of the
proposed algorithm to an embedded system, which may
offer a cheap and effective alternative solution for online
PD monitoring.
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