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Abstract— Human body communication (HBC) is a short-
range communication technique in which the human body is
used as a data transmission channel. Although the HBC was
originally proposed for connecting multiple mobile devices, it is
also useful for quickly linking mobile and fixed devices. The
latter feature can be applied to smart identification of persons.
The HBC channel is formed by a capacitive coupling among
the body, mobile and fixed devices, and earth. Consequently,
if an outsider approaches the HBC system, that person inevitably
becomes involved in the system because of the capacitive coupling.
In this situation, a mobile device of the outsider accidentally
transmits data signals and misidentification occurs. This is a
serious problem in terms of communication system security.
An effective approach for resolving this problem is to predict
whether the outsider is involved in the HBC system based on
signal information received by the fixed device. In this article,
we present a method for correctly predicting the existence of
the outsider involved in the HBC system based on channel gain
features detected by the fixed device. As the problem can be
viewed as a binary classification problem, we adopted k-nearest
neighbor method (k-NN), which is a supervised machine learning
algorithm, for solving it. A key to correctly execute and evaluate
k-NN is to obtain the reliable channel gain data for training and
evaluation. We utilized optical devices for correctly measuring
the HBC channel gain and acquired 360 samples of the channel
gain data. It was demonstrated that error-free classification was
possible with the k-NN classifier for the 360 samples. We obtained
three key findings for reducing classification errors. First,
k = 1 is best for the k-NN classifiers. Second, 1-norm is
better than 2-norm for calculating error functions of k-NN
classifiers. Third, the preprocessing that includes partition and
normalization of channel gain data is highly effective.

Index Terms— Communication channels, communication sys-
tem security, identification of persons, machine learning, nearest
neighbor methods.

I. INTRODUCTION

THE concept of human body communication (HBC) was
proposed by Zimmerman [1] in 1996. The basic idea was

to use the human body as data transmission channel for linking
multiple wearable devices attached to the user’s body. This
novel idea has received attention, especially in the community
of human-interface researchers [2], [3], [4]. However, research
on HBC was not widespread because wearable devices were
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not popular at that time. Furthermore, the signal transmission
mechanism of the HBC channels was not well understood.

At the beginning of the 21st century, Nippon Telegraph
and Telephone Corporation (NTT) began full-scale research
on HBC [5], [6], [7], [8], [9]. However, the target application
of NTT was communication between fixed and mobile devices
rather than that among wearable devices. During this period,
one of the main applications of HBC technologies was the
smart identification of persons, and several other Japanese
companies attempted to commercialize the technologies. Sev-
eral studies have been conducted to understand the signal
transmission mechanism in HBC channels. It has become
possible to understand the mechanism of HBC after the
proposal of equivalent circuit models of HBC channels [10],
[11], [12], [13], [14], [15].

However, two major problems exist from a practical per-
spective. One of these problems is the difficulty in obtaining
the required signal-to-noise ratio (SNR) for stable communica-
tion. The main factor in SNR reduction is environmental noise.
Subsequently, a method for reducing noise was proposed
[16], [17]. Owing to these methods, it has become possible
to obtain a reasonable SNR.

The other problem is that accidental data transmission
can occur in personal identification systems that use HBC
technologies. The essential principle of HBC is that data are
carried by the electric fields generated around the human
body. Because of this principle, the electric fields existing
around a person in an HBC system are easily transmitted
to nearby outsiders. Therefore, if an outsider with a mobile
device unintentionally approaches HBC systems, his device
may accidentally transmit data signals to a fixed device via the
person, and undesired identification processes are triggered.
This is a serious problem in terms of the security of commu-
nication systems. However, this serious problem has not been
openly discussed in the academic community.

Subsequently, the upsurge in HBC research has ended in
Japan. However, HBC technologies have been investigated
continuously outside Japan [18], [19], [20], [21], [22], [23],
[24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34],
[35]. Recently, wearable devices and the “Internet of Things”
(IoT) have become popular [36]. This situation also supports
the validity of Zimmerman’s original concept, and widespread
research on HBC technologies has resumed. However, the
second serious problem is yet to be investigated.

Consequently, we have been studying methods to address
the second problem [37], [38]. Because the physical states of
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the HBC channels change when an outsider approaches the
HBC system, the frequency dependence of the channel gain
G( f ) inevitably changes as well. This implies the possibility
of predicting whether the outsider is involved in the HBC sys-
tem based on G( f ), which can be calculated from the signals
received by the fixed device. If we can predict the existence
of an outsider involved in the HBC system, the second serious
problem may be resolved by system-level measures.

Based on this strategy, we attempted to predict the existence
of an outsider from the measured G( f ) [37], [38]. The
problem of predicting whether an outsider is involved in the
HBC system can be viewed as a binary classification problem.
We adopted a machine learning approach to solve the classifi-
cation problem. Our preliminary studies have shown that this
strategy is feasible and that machine learning is effective for
prediction. However, in previous studies, the prediction error
could not be reduced to less than 10%. Furthermore, only
outlines of our studies are briefly reported in [37] and [38].

In this article, we detail our studies for detecting out-
siders included in HBC systems. The original features of
this study are as follows: First, we calculated G( f ) from the
equivalent circuit models of the HBC systems and compared
them with the measured results. It was shown that although
G( f ) measured without the outsider coincided well with the
circuit model, G( f ) measured with the outsider did not agree
with the model. Second, we adopted the k-nearest neighbor
(k-NN) method as the machine learning algorithm and ana-
lyzed the performance of k-NN in detail. Third, we proposed
an appropriate procedure for preprocessing the training data to
predict the existence of the outsider. Fourth, we found the best
parameters for executing k-NN and accomplished an error-free
prediction of the existence of the outsider by adopting the
parameters and preprocessing.

In Section II, HBC channel models, with and without
the outsider, are introduced and G( f ) is calculated from
the models. The calculated results were compared with the
typical measurement results. In Section III, the details of
G( f ) are explained. In addition, the experimental system,
conditions, and results were described in detail in this
section. In Section IV, the performance of k-NN classifiers
is thoroughly investigated and the preprocessing procedure is
described. It is revealed that the 1-norm is better than the
2-norm for calculating error functions. Furthermore, we can
see that the best classifier is the 1-NN classifier, that is k = 1.

II. CHANNEL MODELS OF HBC SYSTEMS

A. Signal Transmission Models of HBC Channels

The basic concept of HBC is illustrated in Fig. 1. In this
study, we focus on the uplink channel, where data are sent
from a mobile transmitter (M-TX) to a fixed receiver (F-RX).
A pair of mobile electrodes M+ and M− are connected to
M-TX. Similarly, a pair of fixed electrodes F+ and F− are
connected to F-RX. The downlink channel can be understood
in a similar manner [37].

Data signals generated by M-TX are applied between
M+ and M−. The human body can be regarded as a con-
ductor covered by insulators such as skin, clothes, and shoes.

Fig. 1. Conceptual image of an HBC uplink channel in an ordinary state.

Therefore, when Person 1 possessing M-TX rides on F+,
signal currents are delivered from M-TX to F-RX via their
body. The conduction currents flowing inside F-RX induce
voltages between F+ and F−. Consequently, it becomes
possible to receive data sent from M-TX by detecting the
induced voltages. Because the F-RX is driven by an ac power
cord, F− and ground (GND) of F-RX are inevitably earthed.
On the other hand, the M− electrode and GND of M-TX are
electrically isolated from the earth because the M-TX is driven
by a battery. In other words, the M− and GND of M-TX are
always floating. The floating nature of M− is essential for
understanding the characteristics of HBC channels.

As shown in Fig. 1, M− is capacitively coupled to a floor,
which is regarded as earth. In other words, M− and earth form
a capacitor. Therefore, when voltages are applied between
M+ and M−, electric fields (displacement currents) shown
by the dashed curve in Fig. 1 are generated between M− and
the floor. Finally, the HBC channel is formed by a closed
loop composed of conduction currents (solid red curve) and
displacement currents (dashed blue curve). As shown in Fig. 3,
the HBC channel can be modeled by an equivalent circuit,
which is explained in Section II-B. We call the channel state
represented in Fig. 1 the “ordinary state.”

A conceptual image of an undesirable situation, where an
outsider exists in the vicinity of F+, is depicted in Fig. 2.
In this situation, Person 1 without M-TX stands on F+, and an
outsider equipped with M-TX exists in the vicinity of Person 1.
If Person 1 were absent, the electric fields generated between
M− and F+ would be extremely weak. Therefore, the signals
sent from M-TX will not be delivered to F-RX. This situation
is correct because the outsider is not standing on F+. However,
when Person 1 is on F+, the signals transmitted from M-TX
of the outsider are delivered via Person 1 to F-RX because the
capacitance between M− and Person 1 increases considerably.
This situation is undesirable because signals generated from an
outsider who is not standing on F+ are accidentally delivered
to F-RX. It should be emphasized that signals sent from a
person who is not on F+ must not be delivered to F-RX.
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Fig. 2. Conceptual image of an HBC uplink channel in an extraordinary
state.

Fig. 3. Equivalent circuit model of an HBC uplink channel in an ordinary
state.

We call the problematic channel state shown in Fig. 2 the
“extraordinary state.”

Although the occurrence of an extraordinary state is a
serious concern from the point of view of communication
system security, it appears difficult to completely prevent its
occurrence. A reasonable approach to address this problem
is to predict the occurrence of the extraordinary state. This
is due to the fact that if we can predict the occurrence of
an extraordinary state, security problems may be resolved by
system-level measures. As shown in Figs. 1 and 2, the HBC
channels of the two states are physically different. Because the
frequency dependence of the channel gain G( f ) is inevitably
affected by the physical state of the HBC channels, it is
possible to predict whether the current channel state is ordinary
or extraordinary based on G( f ) measured by F-RX. This
problem can be viewed as a binary classification of measured

Fig. 4. Equivalent circuit model of an HBC uplink channel in an extraordinary
state.

G( f ) into ordinary or extraordinary states. The details of the
channel gain characteristics are discussed in Section II-B.

B. Analysis of Channel Models

There are two major schemes for establishing HBC systems
[13], [15], [22], [26], [31]: capacitive [1], [10], [14], [16], [19]
and galvanic coupling schemes [11], [29], [30]. In this study,
we consider HBC systems that adopt a capacitive coupling
scheme. The conceptual images shown in Figs. 1 and 2 rep-
resent the capacitive coupling scheme, where only one mobile
electrode (M+) faces the human body. An advantage of this
scheme is that a relatively large channel gain can be obtained.
However, as shown in Fig. 2, a problematic extraordinary state
is often induced. Conversely, for the galvanic coupling scheme,
the channel gain becomes considerably small in comparison
with that obtained with the capacitive coupling scheme [31].
Therefore, only short-range applications are available with the
galvanic coupling scheme. Because the signals transmitted
from the outsider are rapidly attenuated by the galvanic
coupling scheme, the extraordinary state is not caused by this
scheme.

In this study, we analyzed the frequency dependence of
the HBC channel gain obtained using the capacitive coupling
scheme. The HBC channels for this scheme can be reasonably
described by circuit models [1], [10], [12], [16], [17]. There-
fore, we also used circuit models to analyze the HBC channel
characteristics.

The HBC channel models adopted for ordinary and extra-
ordinary states are shown in Figs. 3 and 4, respectively.
As mentioned previously, our focus was on uplink channels.
In Figs. 3 and 4, the M-TX is described as a voltage source that
applies the signal voltage Vin between mobile electrodes M+
and M−. F-RX is described as a pair of electrodes F+ and F−.
When Vin is applied between M+ and M−, the received signal
voltage Vout is induced between F+ and F−. The electric
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Fig. 5. Typical channel gain features of an ordinary state.

TABLE I

PARAMETERS USED FOR PLOTTING CHANNEL GAIN

FEATURES IN FIGS. 5 AND 6

fields generated around the HBC system are represented as
capacitors in Figs. 3 and 4.

We define HBC channel gain by the following equation:

G( f ) [dB] � 20log10

∣∣∣∣Vout( f )

Vin( f )

∣∣∣∣. (1)

As shown in Figs. 3 and 4, the HBC channel gains for both
states depend on several parameters. The HBC channel gains
can be formally written as

Go( f ) = Go( f ; L1, R0, R1, RL, Cb1, Cf , Cf1, Cm,

Cm+, Cm−, Cmg
)

(2)

Ge( f ) = Ge( f ; L1, L2, R0, R1, R2, RL, Cb1, Cb2,

Cf , Cf1, Cm, Cm1, Cm+, Cm−, Cmg
)

(3)

Fig. 6. Typical channel gain features of an extraordinary state.

Fig. 7. Setup for evaluating HBC uplink channel gain by using EO/OE
converters in an ordinary state.

where Go and Ge represent the channel gains of ordinary and
extraordinary states, respectively. The explicit forms of Go( f )
and Ge( f ) can be obtained by analyzing the circuit models
shown in Figs. 3 and 4, respectively; however, we omit writing
them down because their explicit forms are very long.

Three typical examples of the measured Go( f ) are shown
by solid curves in Fig. 5. The black and green curves
were obtained when the M-TX, a pair of mobile electrodes
(M+ and M−), was put in the user’s pant and shirt pockets,
respectively. The blue curve was obtained when the M-TX
was held in a user’s palm. Details about the positions of
the M-TX are shown in Fig. 8. The dashed curves are the
fitting curves obtained using (2), where the parameters used
for calculating the fitting curves are summarized in Table I.
Because the calculated data are fairly well fit to the measured
data, it is considered that the circuit model shown in Fig. 3 is
quite effective.

We also plotted three examples of the measured Ge( f ) in
Fig. 6. The conditions adopted for measuring Ge( f ) are shown
in Fig. 10. The black curve was obtained when the M-TX
was held in the outsider’s palm and D = 0 m. The green
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Fig. 8. Positions of an M-TX, which is a pair of electrodes M+ and M−,
adopted for obtaining channel gain data under an ordinary state. The M-TX
was attached to a person standing on the fixed electrode F+. The positions
of the M-TX are indicated by stars. (a) Front view. (b) Back view.

Fig. 9. Setup for evaluating HBC uplink channel gain by using EO/OE
converters in an extraordinary state.

curve was obtained when the M-TX was attached to the
outsider’s wrist and D = 0.5 m. The blue curve was obtained
when the M-TX was put in the outsider’s pocket of pants

Fig. 10. Relationship between two persons adopted for obtaining channel
gain data in an extraordinary state. The distance between M-TX and Person
1 is denoted by D. Measurements were done for D = 0, 0.2, 0.5, and 1.0 m.

Fig. 11. All channel gain data measured in an ordinary state (N = 180).

Fig. 12. All channel gain data measured in an extraordinary state
(N = 180).

and D = 0.5 m. As shown by the blue and green curves,
Ge( f ) tends to vary abruptly. On the other hand, as shown
by the black curve, Ge( f ) sometimes becomes smooth and
resembles Go( f ). As indicated in Fig. 6, Ge( f ) exhibits
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Fig. 13. Variation of channel gain features in an ordinary state measured when the M-TX was positioned at (a) condition A: pocket (shirt or jacket),
(b) condition B: pocket (pants), (c) condition C: palm, (d) condition D: wrist, (e) condition E: neck strap, and (f) condition F: backpack. These positions are
illustrated in Fig. 8. The maximum, typical, and minimum cases of Go( f ) are excerpted from measured results and they are shown by red, green, and blue
curves, respectively.

complex behavior. Furthermore, the abrupt variation of Ge( f )
could not be fit well by the calculated curves. This suggests
that HBC systems under an extraordinary state possess some
factors that cannot be expressed by the circuit model shown
in Fig. 4. Although it is currently difficult to account for
the origin of the abrupt variation, the remarkable feature of

Ge( f ) is, however, advantageous for our purpose, that is, for
classifying the measured G( f ) into Go( f ) or Ge( f ).

III. EVALUATION OF CHANNEL GAIN CHARACTERISTICS

In this section, we describe the evaluation of G( f ). As men-
tioned in Section II, an important feature of HBC systems
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is that fixed devices are earthed, whereas mobile devices
are electrically isolated from the earth. To correctly evaluate
the channel gain characteristics, these conditions must be
maintained during evaluation [10], [37], [38].

The experimental setup used for evaluating Go( f ) is shown
in Fig. 7. A key point here is the use of optical devices, such as
electrical-to-optical (EO)/optical-to-electrical (OE) converters.
EO/OE converters make it possible to utilize useful com-
mercial apparatus such as function generators. The electrical
signals generated by the function generator are applied to
the EO converter and converted into optical signals. The
optical signals are then delivered to the OE converter by
an optical fiber cable and reconverted into electrical signals,
which are applied between M+ and M−. If the function
generator is directly connected to the mobile electrodes,
M− will inevitably be earthed. In this situation, it is impossible
to correctly evaluate the HBC channel characteristics. Because
of the isolated nature of the optical fiber cable, it is possible
to imitate a battery-driven M-TX with a function generator
driven by an ac power cord. Furthermore, we used a spectrum
analyzer instead of F-RX. Hence, it is possible to obtain Go( f )
by sweeping the signal frequencies of the function generator.
To obtain Go( f ) under various conditions, we measured it by
changing the positions of the pair of mobile electrodes, M+
and M−, which were attached to a person standing on F+.
The positions of the electrode pair are indicated by the stars
in Fig. 8. The measurement of Go( f ) was done with four
different subjects wearing their own clothes and shoes.

We also evaluated Ge( f ) using the setup shown in Fig. 9.
In this setup, M+ and M− are attached to the outsider.
In addition to the evaluation of Go( f ), we evaluated Ge( f ) at
various positions of the electrode pair attached to the outsider.
Furthermore, we measured Ge( f ) for various distances (D =
0, 0.2, 0.5, and 1.0 m), where D is the distance between the
M-TX and Person 1, as shown in Fig. 10. The measurement
of Ge( f ) was done with five different subjects wearing their
own clothes and shoes.

All Go( f ) and Ge( f ) curves obtained in our experiments
are shown in Figs. 11 and 12, respectively. In both cases, the
number of data samples N was 180. The data were obtained
in the frequency range from 0.4 to 40 MHz with a frequency
resolution of 0.2 MHz. Therefore, each curve of G( f ) is
composed of 199 points. It is observed that Go( f ) tends to be
smooth and Ge( f ) tends to vary abruptly. Therefore, at first
glance, it seems easy to correctly classify unknown G( f ) into
Go( f ) or Ge( f ).

Fig. 13 shows variation of Go( f ) measured for different
positions of the M-TX. It is observed that the channel gain
variations depend on positions of the M-TX. As shown in
Fig. 13(d) and (e), the variation becomes smaller when the
M-TX is attached to a wrist and held with a neck strap. This
is because, for these cases, the coupling between M+ and
body is maintained large and that between M− and body is
maintained small. On the other hand, as indicated in Fig. 13(b),
the variation becomes large, especially when the M-TX is put
in a pant pocket. This variation is caused by the fact that
it depends on the size and position of the pockets on the
user’s pants. In this case, the coupling between M+ and body

Fig. 14. Examples of channel gain features in an extraordinary state measured
when the M-TX was positioned at (a) condition A: pocket (shirt or jacket),
(b) condition B: pocket (pants), and (c) condition D: wrist. These positions
are illustrated in Fig. 10. The blue, green, and red curves were obtained when
D = 0.2, 0.5, and 1.0 m, respectively.

depends on the pants. Furthermore, the degree of coupling
between M− and body, which is usually user’s arm, strongly
depends on the situations. Although the average values of
Go( f ) largely depend on positions of the M-TX, it is again
confirmed that Go( f ) always possesses smooth features. It is
considered that the smooth features of Go( f ) are advantageous
for our purpose, e.g., classification of G( f ).

Fig. 14 shows examples of Ge( f ) measured when the M-TX
was attached to three different positions, which are shirt or
jacket pockets, pant pockets, and wrist. These positions are
illustrated in Fig. 10. The blue, green, and red curves corre-
spond to Ge( f ) measured when D equals 0.2, 0.5, and 1.0 m,
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Fig. 15. Examples of channel gain features in an extraordinary state measured
when (a) D = 0 m, (b) D = 0.2 m, (c) D = 0.5 m, and (d) D = 1.0 m.

respectively. When D = 0.2 m, Ge( f ) usually shows smooth
features. Remarkable features of Ge( f ) measured when D =
0.5 m are the dips existing between 20 and 30 MHz. When

Fig. 16. Examples of channel gain features measured in ordinary and
extraordinary states. As shown in this figure, the features of Ge( f ) (red
curves) sometimes become quite similar to that of Go( f ) (black curves).
Therefore, it is not always easy to classify the measured G( f ) correctly into
Go( f ) or Ge( f ).

D is increased to 1.0 m, frequencies of the dips shift lower
and gain below about 10 MHz tends to decrease. It is
observed from Fig. 14 that the tendency of the channel gain
variation depending on D is common to all positions of the
M-TX.

To clearly see the relationship between D and features of
Ge( f ), we plotted examples of measured Ge( f ) for each D
in Fig. 15. When D = 0 m, Ge( f ) are smooth and resembling
Go( f ). As D increases, the variation of Ge( f ) becomes larger
and peaky dips are often observed; however, the peaky dips
do not always appear even for the larger D.

As seen in Figs. 14 and 15, Ge( f ) tends to show abrupt
variation; however, it is also observed that even Ge( f ) some-
times possess smooth features and resembles Go( f ) especially
for smaller D values. To clearly show this fact, we plotted
examples of measured Ge( f ) resembling Go( f ) in Fig. 16.
As shown in this figure, the features of Ge( f ) sometimes
become quite similar to that of Go( f ). In this case, it is not
easy to classify the measured G( f ) correctly into Go( f ) or
Ge( f ). Therefore, the binary classification problem that must
be solved is not trivial.

IV. BINARY CLASSIFICATION OF CHANNEL GAIN DATA

Our purpose was to predict the existence of an outsider
based on the measured G( f ). This is equivalent to classifying
the measured G( f ) into Go( f ) or Ge( f ), which is a binary
classification problem. In this section, we explain the methods
and classification results in detail.

As it is well known that machine learning is effective for
solving classification problems, we adopted a machine learning
approach to our purpose [37], [38], [39], [40], [41], [42].
Although there are various machine learning methods, k-NN
is widely known as a simple method [39]. In this study,
we adopted k-NN as the machine learning method. Although
k-NN is a simple method, excellent performance can be
obtained by appropriately preprocessing the channel gain
data.
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Fig. 17. Three examples of channel gain data (xref , xtest , ytest) preprocessed by our proposed method. (a) Not normalized. (b) Normalized (Ndiv = 1).
(c) Normalized (Ndiv = 2). (d) Normalized (Ndiv = 4). (e) Normalized (Ndiv = 8). (f) Normalized (Ndiv = 16). Without preprocessing, an undesirable situation,
dp(xtest, xref ) > dp(ytest, xref ), often occurred similar to (a). After preprocessing, the undesirable situation is improved, i.e., dp(xtest, xref ) ≈ dp(ytest, xref ).
Finally, for larger Ndiv, a desirable situation, dp(xtest, xref) < dp(ytest, xref ), appears to be realized.

A. k-NN Classification

In this subsection, we explain the application of k-NN to
our classification problem.

Because all measured data of Go( f ) and Ge( f ) consist of
199 components, we denote nth data of the measured Go( f )
and Ge( f ) by 199-D vectors xn and yn, respectively. In the
component representation, the data vectors xn and yn are

expressed as

X � xn = (xn1, xn2, xn3, . . . , xn199) (4)

Y � yn = (yn1, yn2, yn3, . . . , yn199) (5)

where X and Y are data sets composed of Go( f ) and Ge( f )
measured beforehand, respectively. Both X and Y can be
considered training datasets. As explained in Section III,
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we experimentally obtained 180 data samples for both xn and
yn. Therefore, the training datasets can be written as

X = {x1, x2, . . . ,x180} (6)

Y = {y1, y2, . . . ,y180}. (7)

Furthermore, we define the appropriate distance between two
arbitrary vectors u and v. In this study, we adopt the p-norm
to define the distance as

dp(u, v) � �u − v�p =
(

199∑
i=1

|ui − vi |p

)1/p

(8)

where ui and vi are components of u and v, respectively.
The k-NN classifier used in our study is considered to be a

function that outputs 0 or 1 when a new unknown data vector
z is input. Mathematically, the k-NN classifier can be written
as follows:

Ck
p(z; X ∪ Y) =

{
0, if Nx > Ny

1, else
(9)

where Nx and Ny are calculated by the procedure listed below.
Procedure 1:
1) Let D be a set composed of dp(z, v) calculated for all

v ∈ X ∪ Y. dp(z, v) is regarded as an error function.
2) Find the k-smallest values of dp(z, v) ∈ D and create a

set {d(1)
p , d(2)

p , . . . , d(k)
p } composed of the values.

3) Create a set {v(1), v(2), . . . , v(k)} composed of the k
vectors, where v(i) satisfies d(i)

p = dp(z, v(i)) for
i = 1, 2, . . . , k.

4) Count Nx and Ny, which are the numbers of elements
v(i) contained in X and Y, respectively.

B. Preprocessing of Channel Gain Data

As explained above, the k-NN classifier searches vectors
that resemble the input vector from the training data sets X and
Y. The degree of resemblance is quantitatively evaluated using
dp. To obtain correct results with k-NN, it is desirable that
the input vectors obtained under an ordinary state resemble
vectors contained in X. Similarly, the input vectors obtained
under an extraordinary state should resemble vectors in Y.
These desirable situations are, however, not always realized.

Fig. 17(a) shows three examples of G( f ) obtained in
our experiment. The black curve shows a typical feature of
Go( f ) and we name it xref . Let us suppose two different test
data xtest and ytest, which were obtained under ordinary and
extraordinary states and are plotted by blue and red curves,
respectively. In this case, it is obvious that an undesirable
situation dp(xtest, xref) > dp(ytest, xref) occurs. The k-NN
classifier outputs incorrect results in these situations.

The preprocessing of channel gain data is required to
prevent the occurrence of the undesirable situations. A simple
preprocessing method is normalization, that is, offsetting a
data vector with the average value of its components. In equa-
tion form, the normalization of a data vector v is expressed
by the transformation

v = (v1, v2, . . . ,v199)

�−→ v(1) = (v1 − vav, v2 − vav, . . . ,v199 − vav) (10)

Fig. 18. (a) 1-norm distance d1 and (b) 2-norm distance d2 calculated for
the channel gain data shown in Fig. 17. It is confirmed that the desirable
situation, i.e., dp(xtest, xref) < dp(ytest, xref ), is realized by the normalization
and partition (Ndiv ≥ 8) of channel gain data.

vav � 1

199

199∑
i=1

vi (11)

where v(1) is the normalized data vector. The normalized data
vectors x(1)

ref , x(1)
test, and y(1)

test, which, respectively, correspond to
xref , xtest, and xtest, are plotted in Fig. 17(b). It is observed that
the situation become more preferable than that in Fig. 17(a)
because dp(x

(1)
test, x(1)

ref ) ≈ dp(y
(1)
test, x(1)

ref ) in Fig. 17(b).
However, as seen later, even the situation shown in

Fig. 17(b) is insufficient for obtaining high-performance clas-
sifiers. The following data preprocessing procedure is used to
realize the desirable situation dp(xtest, xref) < dp(ytest, xref).

Procedure 2:

1) Choose a natural number Ndiv.
2) Partition the components of a data vector v into Ndiv

clusters.
3) Normalize each cluster.
4) Remove the partition.

Let v(Ndiv) denote the data vectors transformed from v using
the procedure mentioned above. Note that data vectors such
as x(1)

ref , x(1)
test, and y(1)

test are special cases of Ndiv = 1, which
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Fig. 19. Error rates obtained with 1-NN classifiers. (a) Error rates Eo
evaluated in an ordinary state. (b) Error rates Ee evaluated in an extraordinary
state. (c) Total error rates Etotal.

indicates no partition. Furthermore, we define v(0) � v, which
implies that the data vector is not normalized.

The data vectors preprocessed using Procedure 2 are plotted
in Fig. 17 for several values of Ndiv. It appears that the
desirable situation dp(x

(Ndiv)
test , x(Ndiv)

ref ) < dp(y
(Ndiv)
test , x(Ndiv)

ref ) is
obtained for Ndiv = 16 at a glance. To confirm the validity
of preprocessing, we plotted d1 and d2 for various Ndiv values
in Fig. 18(a) and (b), respectively. It was confirmed that the

Fig. 20. Error rates Ee obtained with 1-NN classifiers in an extraordinary
state when (a) D = 0 m, (b) D = 0.2 m, (c) D = 0.5 m, and (d) D = 1.0 m.

desirable situation dp(x
(Ndiv)
test , x(Ndiv)

ref ) < dp(y
(Ndiv)
test , x(Ndiv)

ref ) is
realized for p = 1, 2 when Ndiv ≥ 8 in the sample data shown
in Fig. 17.
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Fig. 21. Relationship between the error rate Ee obtained in an extraordinary state and the values of k (in k-NN classifiers). These figures were obtained
when (a) Ndiv = 0, (b) Ndiv = 1, (c) Ndiv = 2, (d) Ndiv = 4, (a) Ndiv = 8, and (f) Ndiv = 16. It is observed that Ee becomes minimum when k = 1 regardless
of the parameters p and Ndiv. This means that 1-NN is the best of all k-NN classifiers.

C. Performance Evaluation of k-NN Classifiers

This subsection describes the methods and results of eval-
uating the performance of k-NN classifiers.

To evaluate the performance of k-NN classifiers, we utilized
leave-one-out cross-validation (LOOCV) [39]. As explained
previously, we experimentally obtained channel gain datasets
X and Y both comprising 180 samples. For simplicity, we use
the symbols X and Y not only for sets composed of xi and yi

but also for those composed of x(Ndiv)
i and y(Ndiv)

i . To execute

LOOCV, we should pick up one data vector x(Ndiv)
i (or y(Ndiv)

i ) as
a test sample from the datasets. Then, the datasets from which
the picked-up data vector is excluded are used as the training
datasets. In equation form, the outputs of the k-NN classifier
for the input test vectors x(Ndiv)

i and y(Ndiv)
i are, respectively,

written as

Ck
p

(
x(Ndiv)

i ;(X ∪ Y) −
{

x(Ndiv)
i

})
(12)

Ck
p

(
y(Ndiv)

i ;(X ∪ Y) −
{

y(Ndiv)
i

})
. (13)
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Then, the error rates obtained with LOOCV for the input data
of the ordinary and extraordinary states can be, respectively,
written as

Eo(k, p, Ndiv)

= 1

180

180∑
i=1

Ck
p

(
x(Ndiv)

i ;(X ∪ Y) −
{

x(Ndiv)
i

})
(14)

Ee(k, p, Ndiv)

= 1

180

180∑
i=1

[
1 − Ck

p

(
y(Ndiv)

i ;(X ∪ Y) −
{

y(Ndiv)
i

})]
. (15)

Furthermore, the total error rate regarding all the 360 data
samples is written as

Etotal(k, p, Ndiv) = 1

2
{Eo(k, p, Ndiv) + Ee(k, p, Ndiv)}. (16)

As shown later, 1-NN is found to be the best of all
k-NN classifiers. Hence, we plotted the error rates for 1-NN
classifiers, as shown in Fig. 19. As shown in Fig. 19(a),
Eo(1, p, Ndiv) reaches zero for most combinations of {p, Ndiv}
by simply applying normalization. As a result, it can be said
that the classification in an ordinary state is easy. However,
Fig. 19(b) shows that the detection of an extraordinary state is
not easy because Ee(1, p, Ndiv) reaches zero only for limited
combinations of {p, Ndiv}. In equation form, the condition
under which Ee reaches zero can be written as{

0.7 ≤ p ≤ 1.8

Ndiv = 16.
(17)

Although the classification of Ge( f ) is more difficult than
that of Go( f ), error-free classification was achieved with the
above conditions. An important result obtained here is that the
1-norm (Manhattan distance) is more suitable than the 2-norm
(Euclidean distance) for calculating the error function dp in the
proposed method. Fig. 19(c) shows the total error rate Etotal.
It is observed that Etotal(1, p, Ndiv) = Ee(1, p, Ndiv)/2 for the
most combinations of {p, Ndiv} because Eo(1, p, Ndiv) = 0 for
the combinations.

Although it was demonstrated that the classification of
Ge( f ) is more difficult than that of Go( f ), Fig. 15 implies
that the difficulty of the classification depends on D. It is
expected that the classification of Ge( f ) will be easy for
D ≥ 0.5 m because most Ge( f ) in Fig. 15(c) and (d) do not
resemble Go( f ) in shape. On the other hand, the classification
will be much more difficult for D ≤ 0.2 m because Ge( f )
in Figs. 15(a) and (b) tend to resemble Go( f ) in shape.
To clarify the concern, we plotted Ee for each D value in
Fig. 20. As we expected, error-free classification was achieved
for most combinations of {p, Ndiv} when D ≥ 0.5 m and it
was achieved for the limited combinations of {p, Ndiv} when
D ≤ 0.2 m.

Finally, we investigated the influence of k on Ee. For this,
we plotted Ee as a function of k in Fig. 21. It is observed
that Ee is an almost monotonously increasing function of k
and becomes minimum when k = 1 for all combinations of
{p, Ndiv}. Therefore, it can be concluded that 1-NN is the best
k-NN classifier.

V. CONCLUSION

We proposed and investigated methods for predicting the
existence of an outsider in HBC systems based on channel
gain features detected by a F-RX. This approach is effective
in resolving the problem of HBC system security, which
leads to accidental data transmission and misidentification.
We experimentally obtained 360 samples of HBC-channel
gain data with EO/OE converters, which are effective for
correctly evaluating HBC channel characteristics. It is a binary
classification problem that predicts the existence of an outsider
based on channel gain information. The experimental data
implies that the classification problem becomes more difficult
as D, which is the distance between the outsider and rightful
user, decreases. We adopted k-NN to solve the classification
problem and proposed an effective method to preprocess the
training data. It was revealed that 1-norm performs better than
2-norm in calculating error functions, and 1-NN is the best of
all k-NN classifiers. It was demonstrated that the error rate of
the binary classification reached zero even for D = 0 m with
the method and parameters that we found.

In this study, we utilized a broad bandwidth of 0.4–40 MHz.
However, it is preferable for the bandwidth required for clas-
sification to become narrower. Therefore, the next meaningful
step is to determine the optimal frequency bands and mini-
mum bandwidth required for high-performance classification.
Machine learning technologies have become astonishingly
powerful and are increasingly evolving. It might be valuable
to examine the effectiveness of various machine learning
methods, such as artificial neural networks, in HBC systems.
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