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Abstract— In this article, we propose an effective infrared1

and visible image fusion network based on contrastive learning,2

which is called CLF-Net. A novel noise contrastive estimation3

framework is introduced into the image fusion to maximize4

the mutual information between the fused image and source5

images. First, an unsupervised contrastive learning framework6

is constructed to promote fused images selectively retaining7

the most similar features in local areas of different source8

images. Second, we design a robust contrastive loss based on the9

deep representations of images, combining with the structural10

similarity loss to effectively guide the network in extracting11

and reconstructing features. Specifically, based on the deep12

representation similarities and structural similarities between13

the fused image and source images, the loss functions can14

guide the feature extraction network in adaptively obtaining the15

salient targets of infrared images and background textures of16

visible images. Then, the features are reconstructed in the most17

appropriate manner. In addition, our method is an unsupervised18

end-to-end model. All of our methods have been tested on public19

datasets. Based on extensive qualitative and quantitative analysis20

results, it has been demonstrated that our proposed method21

performs better than the existing state-of-the-art fusion methods.22

Our code is publicly available at https://github.com/zzj-dyj/23

CLF-Net24

Index Terms— Contrastive learning, image fusion, infrared25

image, noise contrastive estimation (NCE), unsupervised learning.26

I. INTRODUCTION27

AS AN important technology in image processing, image28

fusion can be utilized to effectively integrate comple-29

mentary image information from different visual sensors to30

obtain an information-rich fusion image. Visible and infrared31

sensors are the two most commonly used visual sensors [1].32

The effective fusion of these two types of image information33

has been widely applied in object recognition [2], detection34

[3], [4], image enhancement [5], surveillance [6], remote35

sensing [7], and other fields. Based on the theory of optical36

imaging, visible images have abundant texture details and37

high spatial resolution. However, they are also affected by38

dark environments, fog, and other types of environmental39

interference. An infrared image is based on the thermal40

radiation of an object, which can highlight salient targets in41
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the interference environment. However, the infrared image has 42

a low signal-to-noise ratio and lacks texture details. Thus, the 43

fused result has the advantages of the two kinds of source 44

images, which have rich details and salient targets. 45

In recent years, significant research has been performed 46

regarding deep learning fusion methods due to their powerful 47

representation abilities [8]. These methods can be divided into 48

two categories: the non-end-to-end methods and the end-to-end 49

methods. In the non-end-to-end methods, the design of the fea- 50

ture fusion strategy is the main focus. Currently, the strategies 51

of feature fusion, which are hand-calculated, mainly include 52

addition, l1-norm [9], attention weighting [10], and so on. 53

However, it is difficult to obtain appropriate hand-calculated 54

features when dealing with different fusion tasks. To eliminate 55

the difficulty of designing a hand-calculated fusion strategy, 56

some end-to-end methods have been proposed [11], [12], [13], 57

[14], [15], [16], [17], [18], [19]. In these methods, the lack 58

of ground truth in the fusion task is a problem that cannot 59

be ignored. To solve this unsupervised problem, the methods 60

[11], [12], and [13] adopt the generative adversarial network 61

(GAN) framework. In addition, methods [15] and [16] guide 62

the trend of image fusion by designing specific loss functions 63

and weighting them. The loss functions of the above methods 64

usually include intensity, gradient, and structure. However, 65

these loss functions do not treat different regions of the source 66

images differently, which results in considerable information 67

redundancy. In VIF-Net [18], the modified structural similarity 68

(M-SSIM) loss, which adaptively calculates the SSIM score by 69

comparing pixel intensity information in sliding windows of 70

different source images, was proposed. By introducing salient 71

target masks, STDFusionNet [19] has a specific loss function 72

to guide the network in effectively merging salient targets in 73

infrared images with background textures in visible images. 74

Although good fusion performance has been achieved using 75

these methods, their loss functions are only based on the 76

shallow features of images but do not make full use of the 77

deep features. In our opinion, it is also effective to reasonably 78

combine deep features to guide training. 79

To solve the above problems, we propose a new idea 80

inspired by contrastive learning methods [34] in current self- 81

supervised learning tasks. Specifically, Ma et al. [19] defined 82

the desired information in the fusion process as the combi- 83

nation of salient targets in infrared images and background 84

textures in visible images. From our perspective, this approach 85

can be more simply stated as follows: we expect that the salient 86

target in the fusion image looks more like that in the infrared 87
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image and the background area looks more like that in the88

visible image. How do researchers define the term “like”?89

The answer is contrast. By comparing the similarities and90

differences between the fusion images and the source images,91

people can easily choose the fusion image that meets their92

expectations. To achieve this goal, we propose an effective93

infrared and visible image fusion network based on contrastive94

learning (CLF-Net). First, we construct an adaptive contrastive95

learning framework. In this framework, we focus on the deep96

representation instead of the image itself, and related local97

features are maximally reserved by comparing the differences98

in the dot products (i.e., the cosine similarity) between the99

feature vectors of the fusion image and the source images.100

Second, under the above framework, we design a robust101

contrastive loss, combining with the structural similarity loss102

to guide the network in extracting and reconstructing features.103

Specifically, based on the representation similarities and struc-104

tural similarities between the fused image and source images in105

the same spatial location, the loss function can be used to guide106

the feature extraction network adaptively to obtain the salient107

targets of the infrared images and background textures of the108

visible images. In addition, because contrastive loss and struc-109

tural similarity loss are both adaptive, our method is an unsu-110

pervised learning process. It is also noted that the contrastive111

learning framework only participates in the training process of112

the network. Thus, our CLF-Net is an end-to-end model.113

The main contributions of our method can be summarized114

as follows.115

1) We introduce a novel noise contrastive estimation (NCE)116

framework into image fusion tasks to maximize mutual117

information (MI) between fused images and source118

images.119

2) We construct an unsupervised contrastive learning120

framework to promote fused images selectively retaining121

the most similar feature from different source images.122

A robust contrastive loss is designed to guide the net-123

work to adaptively extract and reconstruct features based124

on the deep representation.125

3) Extensive experiments demonstrate that better perfor-126

mance in terms of qualitative and quantitative analysis is127

achieved using our method compared with the existing128

state-of-the-art methods.129

The remainder of this article is structured as follows.130

In Section II, we briefly review the related works on deep-131

learning-based fusion methods and contrastive learning for132

computer vision. In Section III, we elaborate on our proposed133

method. Extensive comparative validation experiments are134

described in Section IV, followed by the conclusion of our135

work.136

II. RELATED WORK137

In this section, we review the existing work and the138

approaches that are most relevant to our method, including139

deep-learning-based fusion methods and contrastive learning140

for computer vision.141

A. Deep-Learning-Based Fusion Methods142

In recent years, deep learning methods have been widely143

applied in image fusion tasks and have achieved remarkable144

results. These methods can be divided into two categories: the 145

non-end-to-end methods and the end-to-end methods. 146

Initially, some non-end-to-end methods based on autoen- 147

coders were proposed. In these methods, the design of the 148

feature fusion strategy is the focus. Li and Wu [9] proposed 149

DenseFuse, which introduces a dense block into the feature 150

extraction layer and exploits traditional addition and L1-norm 151

strategies in the fusion layer. Inspired by the architecture in 152

[20], NestFuse [10] was proposed. In this method, a down- 153

sampling network is used to extract multiscale features from 154

source images, and an attention weighting strategy is adopted 155

to fuse the features. Although good performance has been 156

achieved using these methods, the hand-calculated fusion 157

strategy is approximate, which limits further improvement of 158

the fusion performance [8]. 159

To solve the above limitations in the non-end-to-end meth- 160

ods, some end-to-end fusion frameworks have been studied. 161

A GAN-based fusion framework, which was first proposed 162

by Ma et al. [11], was established as an adversarial game 163

to constrain the fusion image and obtain more details from 164

the visible images. Based on the game of multiclassifica- 165

tion discrimination, GANMcC [13] is used to obtain fused 166

images that more closely resemble the distribution of the 167

source images. In addition to GAN-based methods, several 168

CNN-based end-to-end methods have also been proposed. 169

Hou et al. [18] designed a simple end-to-end network that uses 170

M-SSIM and the total variation function to guide the network. 171

Zhang et al. [14] utilized two convolutional layers to extract 172

deep features from the source images. Then, they selected 173

elementwise fusion rules to fuse the source image features 174

and reconstructed the fused images by two convolutional 175

layers. Xu et al. [16] proposed an adaptive network based 176

on proportional gradient and intensity maintenance, which 177

preserves the adaptive similarity between the fusion result and 178

source images. Ma et al. [19] designed a salient target mask to 179

label some salient infrared targets and then designed a specific 180

loss function to guide the extraction and reconstruction of 181

the features. The loss functions in the above methods are all 182

designed based on the shallow features of the image. However, 183

in our opinion, an effective method makes full use of the deep 184

features of images to guide network training. 185

B. Contrastive Learning for Computer Vision 186

Contrastive learning has attracted increasing attention in 187

the field of computer vision due to its excellent performance 188

[23]. The concept of contrastive learning was proposed a long 189

time ago, but in recent years, remarkable achievements in 190

the field of computer vision have been achieved using this 191

approach [24]. The core problem of contrastive learning is how 192

to construct the set of positive and negative samples. Hjelm 193

[25] proposed Deep InfoMax, which constructs comparative 194

learning tasks based on local features in images. He et al. 195

[26] proposed an efficient comparative learning structure 196

momentum contrast (MoCo), which uses a momentum encoder 197

to encode a single positive sample and multiple negative 198

samples and updates the encoder parameters with momentum. 199

Chen et al. [27] proposed a general framework that maximizes 200

the similarity of the two data augmentation projections of the 201
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same image and minimizes the similarity with other images202

by conducting two random data augmentations on the input203

image, to achieve a constant visual representation of the204

same object under different perspectives or interference. Then,205

the two teams of He and Hinton learned from each other206

and successively proposed MoCo v2 [28] and SimCLR v2207

[29], which are mainly improvements of data augmentation208

methods and backbone networks. Subsequently, Caron et al.209

[30] took a different approach; instead of aiming to increase210

the number of negative cases in the optimization direction,211

all kinds of samples are clustered, and then, all kinds of212

class clusters are compared. Grill et al. [31] proposed a213

new self-supervised image representation learning method that214

did not use negative examples and made one encoder stop215

gradient, which only carried out momentum updates on the216

parameters of another encoder. Chen and He [32] took the217

concepts behind BYOL and combined them with the study218

of Siamese networks, found that the stop gradient is the219

key to avoiding network collapse, and proposed the SimSiam220

network.221

Given the continuous progress of the theory of contrastive222

learning, this method has been widely used in many image223

tasks. For the task of conditional image generation, Kang224

and Park [33] proposed ContraGAN, which is based on a225

novel conditional contrastive loss that can learn both data-226

to-class and data-to-data relations. For the task of image-227

to-image translation, Park et al. [34] proposed contrastive228

learning, in which the MI between the corresponding image229

patches in the source domain and target domain is maximized230

through the framework of contrastive learning to complete231

the image-to-image translation for unpaired image-to-image232

translation.233

To the best of our knowledge, there are few studies on234

the application of contrastive learning in the task of infrared235

and visible image fusion. Inspired by contrastive learning,236

Luo et al. [47] adopted a contrastive difference loss to avoid237

the trivial solution and promote the disentanglement abil-238

ity of the autoencoder. The contrastive difference loss can239

maximize the distinction between the common and private240

features of source images. However, IFSepR does not construct241

the positive sample pairs and the NCE framework, which242

is the main difference from our methods. Therefore, inspired243

by the NCE framework, we have proposed a novel image244

fusion algorithm named CLF-Net. The results also show that245

the image fusion performance can be effectively improved246

using this network.247

III. METHOD248

In this section, we describe the proposed contrastive learn-249

ing technique for infrared and visible image fusion networks250

in detail. First, we present the general network architecture251

of the proposed CLF-Net. Next, we introduce the NCE252

framework, which is the basis for contrastive learning. Then,253

we construct a novel adaptive patchwise contrastive learning254

framework, which reveals the design details of the contrastive255

loss function. Finally, we describe the designed loss function in256

detail.257

Fig. 1. Architecture of the proposed CLF-Net.

A. Network Architecture 258

The architecture of CLF-Net is shown in Fig. 1 and consists 259

of two parts: the feature extraction network and the feature 260

reconstruction network. 261

1) Feature Extraction Network: It consists of two specific 262

encoders. Both encoders are constructed based on a ResBlock 263

to alleviate the well-known problems of vanishing or exploding 264

gradients [22]. As shown in Fig. 1, the feature extraction 265

network consists of four ResBlocks that can reinforce the 266

extracted information. The residual mapping of each ResBlock 267

is composed of two convolutional layers, which are used to 268

extract features. These two layers have kernel sizes of 1 × 269

1 and 3 × 3. The identity mapping, which consists of a 270

convolutional layer with a kernel size of 1 × 1 is used to 271

adjust the input and output dimensions and maintain their con- 272

sistency. For infrared images and visible images, the structure 273

of the feature extraction networks (i.e., the infrared encoder 274

and visible encoder) is consistent, but the parameters of these 275

networks are independent of each other. 276

2) Feature Reconstruction Network: It is directly composed 277

of four ResBlocks. The deep features from the two different 278

encoders are directly concatenated and reconstructed into the 279

fused image. At the end of the feature reconstruction network, 280

we have replaced the activation function leaky rectified linear 281

unit (LeakyReLU) with tanh to ensure that the range of 282

change between the fused image and the source images is 283

consistent. 284

In all convolutional layers of the ResBlock for the whole 285

process of feature extraction, fusion, and reconstruction, the 286

stride is set to 1, the padding is set to 0 when the kernel size 287

is 3 × 3, and the padding is set to 1 when the kernel size 288

is 1 × 1. As a result, there is no downsampling process in 289

CLF-Net, which also means that no information is lost. 290

B. NCE Framework 291

NCE is presented as a new estimation principle for parame- 292

terized statistical models [35]. The core idea is to determine 293

some characteristics of the original data by learning the dif- 294

ference between the original data distribution sample and the 295

selected noise distribution. This process effectively simplifies 296

the model estimation problem to a dichotomous problem and 297

greatly reduces the computational complexity [37]. 298
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Fig. 2. Adaptive patchwise contrastive learning: we randomly sample a query patch from the fused image and select the positive patch from the infrared
image and visible image at the same position (i.e., the green, red, and blue boxes). Next, N random negative patches are selected from other positions of the
infrared image and visible image (i.e., the yellow and orange boxes). Then, we reuse the infrared encoder and visible encoder and add the two-layer MLP
network, in which the positive patches in the fusion image and source images will be encoded into feature vectors query, pir, and pvi. Finally, the similarities
between query and pir or query and pvi are calculated, and the most similar one will be retained to calculate the InfoNCE loss.

Based on the idea of NCE and introducing the concept of299

MI, a new form of contrastive loss function called InfoNCE300

[36] is proposed. Specifically, we assume that there is an301

encoded query and a set of encoded samples {k−
1 , k−

2 , . . . , k−
N },302

including a positive example and N negative examples. The303

query, positive example, and N negative examples are mapped304

into the K -dimensional vectors q , k+ ∈ RK , and k− ∈305

RN×K , respectively, where k−
n ∈ RK denotes the nth negative306

example. When q is similar to the positive example k+ and307

dissimilar to all other negative examples k−, the value of the308

InfoNCE loss will be small. The similarity is measured by309

the dot product between the l2 normalized query and other310

examples. This result is then scaled by a temperature τ and311

passed as logits. The InfoNCE loss is defined as follows:312

l
�
q, k+, k−�= − log

�
exp

�
q · k+/τ

�
exp(q · k+/τ) + �N

n=1 exp
�
q · k−

n /τ
�
�
.313

(1)314

Based on the above InfoNCE framework, several important315

design ideas, including how to design the contrastive learning316

structure and how to build the specific loss function, are317

presented in Sections III-C and III-D.318

C. Adaptive Patchwise Contrastive Learning319

In the general contrastive learning methods, data augmen-320

tation is often used to establish a positive pair for positive321

samples, and n − 1 negative pairs are established by using 322

all n − 1 other images in the same training batch with the 323

augmented images of positive samples. Then, the similar- 324

ity between positive pairs is maximized, and the similarity 325

between negative pairs is minimized to fully extract the general 326

features of the unlabeled datasets. However, some studies [37] 327

have shown that the more negative pairs there are, the better 328

the contrastive learning effect. This requires the support of 329

abundant training datasets. Obviously, for image fusion tasks, 330

the lack of sufficient training datasets has always been an 331

urgent problem to be solved. Combined with the characteristics 332

of the image fusion tasks, we construct an unsupervised 333

patchwise contrastive learning framework based on the work 334

by Park et al. [34]. 335

Since the image fusion task focuses more on the salient 336

target of the infrared image and the background texture infor- 337

mation of the visible image, we start from the local features 338

of the image to construct a contrastive learning task based on 339

the image patches. 340

Specifically, as shown in Fig. 2, we randomly sample a 341

patch of the fused image and a positive patch of the infrared 342

image and visible image at the same position (i.e., the green, 343

red, and blue boxes). Next, N random negative patches are 344

selected from other positions of the infrared image and visible 345

image (i.e., the yellow and orange boxes). Then, we reuse the 346

infrared and visible encoders and add the two-layer multilayer 347

perceptron (MLP) network, which is used to encode patches at 348
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any spatial location in the source images and fusion image as349

feature vectors. For example, the positive patches in the fused350

image and source images are encoded as feature vectors query,351

pir, and pvi. Finally, the similarities between the query and pir352

or the query and pvi are calculated and the most similar one353

will be retained to calculate the InfoNCE loss.354

It is worth noting that both positive and negative samples355

used to calculate the InfoNCE loss are sampled from the356

source image and fusion image encoded by the same encoder.357

For the selection strategy of negative samples, we will elabo-358

rate on the extending experiment.359

D. Loss Function360

In this section, we discuss the calculation of the loss361

function combined with SSIM and patchNCE, which is used362

to guide the CNN network in finding the most appropriate363

parameters through unsupervised learning. The SSIM loss364

mainly focuses on the structural characteristics of the image365

itself, while the patchNCE loss mainly focuses on the deep366

features of the image.367

The SSIM combines image brightness, contrast, and struc-368

ture to measure image quality [30]. For any two images, the369

SSIM is described as follows:370

SSIM(A, B) = (2μAμB + C1)(2σAB + C2)�
μ2

A + μ2
B + C1

��
σ 2

A + σ 2
B + C2

� . (2)371

We set C1 = 1 × 10−4 and C2 = 9 × 10−4, which are372

the same values as in [39]. According to the above parameter373

settings, as suggested in [18], we set the SSIM loss as follows:374

E(I |W ) = 1

m × n

m×n�
i=1

Pi (3)375

Score
�
I f , Iir, Ivi|W

� =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

SSIM
�
I f , Iir|W

�
if E(Iir|W ) > E(Ivi|W )

SSIM
�
I f , Ivi|W

�
if E(Iir|W ) ≤ E(Ivi|W )

(4)376

LSSIM = 1 − 1

N

N�
W=1

Score
�
I f , Iir, Ivi|W

�
(5)377

where W represents the sliding window from the top left to378

the bottom right with a stride of 1, Pi represents the value379

of pixel i , m and n represent the size of the sliding window,380

and N represents the number of sliding windows in a single381

image. The size of the window is 16 × 16 in our work.382

Above, we discussed the SSIM loss function. On the one383

hand, based on the average intensity of pixels in the local384

window, the SSIM loss can not only retain salient targets385

in the infrared image but also retain bright areas and some386

conspicuous textures in the visible image. On the other hand,387

the SSIM loss can use the shallow feature of image structure388

to ensure the structural consistency of input and output. For389

the feature extraction network, we expect that the infrared390

encoder can retain more salient target features and the visible391

encoder can retain more detailed texture features, which is the392

most obvious complementary features between infrared and393

visible images. Thus, we introduce a novel contrastive loss394

function, which directly uses the encoded deep representations 395

to promote the encoder to retain sufficient complementary 396

information. 397

Specifically, based on the adaptive patchwise contrastive 398

learning framework mentioned above, we can construct the 399

contrastive loss as follows. First, since the two encoders 400

Eir and Evi used in our image fusion task can extract an 401

effective feature stack, we can make use of them. At the 402

same time, we pass the feature maps through a small neural 403

network projection head H , which is a two-layer MLP. The 404

infrared image and visible image are encoded by corre- 405

sponding encoders, and the fusion image is encoded by two 406

encoders; thus, there are four feature sequences that can be 407

obtained 408⎧⎪⎪⎪⎨
⎪⎪⎪⎩

zir = H (Eir(Iir))

zvi = H (Evi(Ivi))

z f _ir = H
�
Eir

�
I f

��
z f _vi = H

�
Evi

�
I f

��
.

(6) 409

We denote s ∈ {1, . . . , S}, where S is the number of the 410

spatial locations sampled from the last image feature layer. 411

For any specific spatial location in the image feature level, 412

we refer to the patch feature as zs ∈ RC and the remaining 413

features in the same feature level as zS/s ∈ R(S−1)×C , where C 414

is the number of channels. As shown in Fig. 2, the patchNCE 415

loss of any specific spatial location can be obtained as shown 416

in (7), and then, the contrastive loss can be obtained as shown 417

in (8) 418

ls
patchNCE

�
Z s

� =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

l
�

zs
f _ir, zs

ir, zS/s
ir



i f

�
zs

f _ir · zs
ir

�
>

�
zs

f _vi · zs
vi

�
l
�

zs
f _vi, zs

vi, zS/s
vi



i f

�
zs

f _ir · zs
ir

� ≤ �
zs

f _vi · zs
vi

�
(7) 419

LpatchNCE = Ex∼X

S�
s=1

ls
patchNCE

�
Z s

�
(8) 420

where Z s is a general term for the set {zs
f _ir, zs

f _vi, zs
ir, zs

vi}. 421

Above, we discussed the calculation of the contrastive loss 422

function. This loss function focuses more on the deep repre- 423

sentations, which are extracted by encoders. As the training 424

process progresses, the patchNCE loss can effectively adjust 425

the encoder and projection head to retain the most similar parts 426

of the source images to the fused image. 427

Based on the above two loss functions, the total loss 428

function can be defined as 429

L = λ1 LpatchNCE + λ2 LSSIM (9) 430

where λ1 and λ2 are the hyperparameters that control the loss 431

balance between the two loss functions. 432

In general, the SSIM loss maintains the structural consis- 433

tency between input and output, while the patchNCE loss 434

maintains the consistency of the deep features of input and 435

output. The two loss functions complement each other and 436

guide the network to achieve satisfactory results. 437
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IV. EXPERIMENTS438

In this section, we first elaborate on the experimental439

settings that are used in our work, including the datasets,440

evaluation metrics, training details, and discussion of training441

hyperparameters. Then, we compare the proposed method with442

nine other popular methods, including the DenseFuse [9],443

RFN-Nest [17], FusionGAN [11], GANMcC [13], IFCNN444

[14], PMGI [15], U2Fusion [16], STDFusionNet [19], and445

IFSepR [47], on the TNO dataset, RoadScene dataset, medical446

images, and multifocus images. Next, we provide an additional447

ablation experiment and efficiency evaluation experiment to448

further verify the performance of the proposed methods.449

Finally, we discuss the negative sample selection in the adap-450

tive patchwise contrastive learning framework.451

A. Experimental Settings452

1) Datasets: All training and testing datasets that are453

used come from the TNO dataset [40] and the RoadScene454

dataset [16].455

The TNO dataset mainly describes various military-related456

scenes and is the most commonly used dataset in infrared and457

visible image fusion tasks. In addition, the RoadScene dataset458

was published based on FLIR videos, in which a large number459

of road scenes, including roads, vehicles, and pedestrians, are460

described. The TNO dataset contains 60 infrared and visible461

image pairs and three video sequence screenshots, while the462

RoadScene dataset contains 221 infrared and visible image463

pairs. These image pairs play an important role in the training464

and verification of the model.465

2) Evaluation Metrics: The evaluation of the fusion per-466

formance includes a subjective evaluation and an objective467

evaluation. The subjective evaluation is based on peoples’468

visual perception; usually, the fusion image containing salient469

infrared targets and rich texture information has the best470

effect. The objective evaluation is a measure of the fusion471

performance using quantitative metrics. In this article, six472

popular metrics are selected, including entropy (EN) [41],473

MI [42], VIF [43], standard deviation (SD) [44], average gra-474

dient (AG) [45], and spatial frequency (SF) [46]. EN measures475

the amount of information contained in a fused image based476

on the information theory. The MI measures the dependence477

of the source images and fused images. VIF measures the478

information fidelity of the fused result by calculating the479

distortion of the images, which is consistent with the human480

visual system. The SD can reflect the distribution and contrast481

of the fused image, which is based on the statistical concept.482

The AG quantifies the gradient information of the fused483

image and the SF measures the gradient distribution of the484

fused image. Both AG and SF reveal the detail and texture485

information.486

3) Training Details: We use the TNO dataset to train our487

model. Twenty image pairs are selected and the training data488

are expanded through cropping. We use a sliding window of489

128 × 128 to crop the image into small image patches, and490

the sliding step is set to 32. Finally, a total of 4404 image491

patch pairs are obtained. We select 20 image pairs from the492

TNO dataset for the comparative experiment. To adequately493

TABLE I

DISCUSSION OF TRAINING HYPERPARAMETERS ON SIX METRICS AND
TRAINING TIME. RED REPRESENTS THE BEST RESULT, BLUE

REPRESENTS THE SECOND BEST RESULT, AND BOLD

REPRESENTS THE THIRD BEST RESULT

explore the generalization power of our method, we select 494

20 image pairs from the RoadScene dataset for the general- 495

ization experiment. Each source image is initially normalized 496

to [−1, 1]. The MLP consists of a linear layer with an output 497

size of 2048, followed by batch normalization, a LeakyReLU, 498

and a final linear layer with an output dimension of 256, as in 499

BYOL [31]. In the training process, the training parameters 500

are set as follows: the batch size, max epoch, learning rate, 501

and temperature τ are initialized as 4, 20, 2 × 10−3, and 502

0.07, respectively. In addition, the proposed algorithm is 503

implemented on the PyTorch platform and all the experiments 504

are conducted on an NVIDIA GeForce RTX 2070 super GPU 505

and Intel i7-10875H CPU. 506

4) Discussion of Training Hyperparameters: There are 507

some hyperparameters that directly affect the final model 508

performance, including the number of samples S in (7) and λ1 509

and λ2 in (9). It is worth noting that the number of samples S 510

is related to the number of negative samples N . Specifically, 511

the positive sample comes from a patch in a certain source 512

image, while the negative samples not only come from other 513

patches in the same source image but also from other source 514

images in the same training batch. Therefore, the number of 515

negative samples N = S − 1 + (B − 1) × S, where B is the 516

number of batch size. 517

We analyze the influences of the selection of different 518

hyperparameters from the quantitative metrics and training 519

time of an epoch, which is shown in Table I. 520

Hou et al. [18] argued that: when the weight of LSSIM in the 521

loss function is relatively low, this leads to low contrast and 522

low quality in the fused image. In contrast, when the weight 523

of LSSIM in the loss function is relatively high, visible details 524

are lost to a certain degree. 525

As shown in Table I, the selection of different proportions 526

of λ1 and λ2 has a direct impact on quantitative metrics. 527

Specifically, when λ1/λ2 is greater than 1, MI, VIF, and 528

SD are better, which indicates that LpatchNCE is more helpful 529

in improving the fusion image contrast and making it more 530

consistent with human visual effects. When λ1/λ2 is less 531

than 1, EN, AG, and SF are better, which indicates that the 532

fused image contains more texture details. It seems that this 533

is contrary to the conclusion in VIF-Net. Our perspective is 534

that even if the weight of LpatchNCE is low, it can make up 535

for the deficiency of LSSIM and retain visible details, which 536

can also be proved in the ablation experiment. Therefore, 537
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Fig. 3. Qualitative comparison results of CLF-Net and eight state-of-the-art
methods on bench. We have selected the salient object (i.e., the red box) and
zoomed in on it in the bottom-right corner for ease of comparison. The first
two images in the first row are (a) infrared image and (b) visible image. These
are followed by (c) DenseFuse, (d) RFN-Nest, (e) FusionGAN, (f) GANMcC,
(g) IFCNN, (h) PMGI, (i) U2Fusion, (j) STDFusionNet, (k) IFSepR, and
(l) CLF-Net.

to combine the advantages of the two types of loss functions,538

the hyperparameters λ1 and λ2 are set as 1 in this article.539

In addition, according to Table I, it can be found that540

with the increase of sampling number of S, the training541

time increases significantly. Thus, a larger number of samples542

have a greater burden on training efficiency and equipment.543

In addition, from the perspective of quantitative metrics, too544

low or too high sample number will make the model poor.545

Too little samples will make the model unable to better546

distinguish positive samples and negative samples, while too547

much samples will make it more likely that the negative548

samples contain more samples close to positive samples. For549

example, if multiple samples are collected on the thermal550

infrared target, these samples can actually be regarded as the551

same class and taking most of them as negative samples will552

affect the model performance. Therefore, the hyperparameter553

S selected in this article is 200.554

B. Comparative Experiment555

For a comprehensive analytical evaluation of our approach,556

we compare our proposed CLF-Net with eight other557

approaches on the TNO dataset.558

1) Qualitative Results: To intuitively compare the559

performance of different algorithms, we select four typical560

image pairs from the TNO dataset (bench, Nato_camp_1811,561

Kaptein_1123, and 2_men_in_front_of_house). The quali-562

tative comparison results are shown in Figs. 3–6.563

In Figs. 3 and 4, we select the salient object (i.e., the564

red box) and zoom in it in the bottom corner for ease565

of comparison. As shown in Fig. 3, the infrared target566

information is lost when using DenseFuse, and obvious567

thermal radiation targets are not captured, while all relatively568

obvious thermal radiation targets can be captured by NestFuse,569

IFCNN, PMGI, and U2Fusion. However, noise interference570

from the visible images affects the results to varying degrees,571

Fig. 4. Qualitative comparison results of CLF-Net and eight state-of-the-art
methods on Nato_camp_1811. We have selected the salient object (i.e., the red
box) and zoomed in on it in the bottom-right corner for ease of comparison.
The first two images in the first row are (a) infrared image and (b) visible
image. These are followed by (c) DenseFuse, (d) RFN-Nest, (e) FusionGAN,
(f) GANMcC, (g) IFCNN, (h) PMGI, (i) U2Fusion, (j) STDFusionNet,
(k) IFSepR, and (l) CLF-Net.

Fig. 5. Qualitative comparison results of CLF-Net and eight state-of-the-art
methods on Kaptein_1123. We have selected the salient object (i.e., the red
box) and zoomed in on it in the bottom-right corner for ease of comparison.
In addition, we have selected the two background areas of sky and ground
(i.e., the blue box and green box, respectively). The first two images in the
first row are (a) infrared image and (b) visible image. These are followed
by (c) DenseFuse, (d) RFN-Nest, (e) FusionGAN, (f) GANMcC, (g) IFCNN,
(h) PMGI, (i) U2Fusion, (j) STDFusionNet, (k) IFSepR, and (l) CLF-Net.

among which the most seriously impacts results are obtained 572

using U2Fusion. In addition, conspicuous targets with high 573

contrast can be captured using FusionGAN and GANMcC. 574

However, the edge of the target is fuzzy, which affects 575

target recognition. In contrast, when using STDFusionNet 576

and CLF-Net, the most prominent infrared targets of the 577

highest quality can be captured. However, compared with 578

STDFusionNet, the edge of the salient target in CLF-Net is 579

clearer and closer to the infrared image. In Fig. 4, the best 580

performance for the fusion of salient objects is still achieved 581

using our method. 582

In Figs. 5 and 6, we not only select the salient object (i.e., 583

the red box) and zoom in on it in the bottom-right corner, 584

but we also select the background areas. As shown in Fig. 5, 585

first, for salient targets, enough information is retained using 586

CLF-Net to obtain infrared targets with clear edges and high 587
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Fig. 6. Qualitative comparison results of CLF-Net and eight state-of-the-art
methods on 2_men_in_front_of_house. We have selected the salient object
(i.e., the red box) and zoomed in on it in the bottom-right corner for ease of
comparison. In addition, we have selected the background areas of the sky
(i.e., the blue box). The first two images in the first row are (a) infrared image
and (b) visible image. These are followed by (c) DenseFuse, (d) RFN-Nest,
(e) FusionGAN, (f) GANMcC, (g) IFCNN, (h) PMGI, (i) U2Fusion,
(j) STDFusionNet, (k) IFSepR, and (l) CLF-Net.

contrast. In addition, the texture information in the background588

areas of the ground in the visible images can be retained589

(i.e., the green box) when using DenseFuse, NestFuse, IFCNN,590

STDFusionNet, and CLF-Net. However, for other backgrounds591

in the image, such as the sky (i.e., the blue box), the five592

algorithms perform differently. In CLF-Net, there is minimal593

disturbance from the thermal infrared information, and the594

brightest sky, which is the same as the sky in the visible image,595

is obtained.596

Through the above comparison experiments, it is found that597

a sufficient amount of texture information of the visible images598

can be adaptively retained in CLF-Net, while the clearest599

infrared salient target is extracted. This indicates that the fused600

images generated by our method have excellent subjective601

visual effects.602

2) Quantitative Results: To quantitatively analyze our603

method and eight other algorithms, 20 image pairs are selected604

from the TNO dataset for testing. The results of six general605

quantitative metrics are shown in Fig. 7 and Table II. Among606

the six metrics, the best performance in terms of EN, VIF,607

and SD is achieved using our method, and significant advan-608

tages in terms of VIF are observed. In addition, comparable609

performance on the MI, AG, and SF metrics is achieved using610

our method. For the MI metric, except for STDFusionNet,611

the best performance is achieved using our method compared612

with other algorithms. For the AG metric, our method follows613

behind U2Fusion and IFCNN, and for the SF metric, our614

method follows behind IFCNN by only a narrow margin.615

As shown in Fig. 7, the highest value on almost all image616

pairs on the VIF metric is obtained using our method. The VIF617

metric is consistent with the human visual system. By obtain-618

ing the highest value on the VIF metric, it is demonstrated619

that our algorithm has a better human visual effect, which is620

consistent with the results obtained in the qualitative analysis.621

The larger EN is, the more information that is contained in the622

fused image. The largest amount of information is contained in623

Fig. 7. Quantitative comparison results of CLF-Net and nine state-of-the-
art methods on 20 images from the TNO dataset. Six metrics are used for
comparison: EN, MI, VIF, SD, AG, and SF. The compared methods are
DenseFuse, RFN-Nest, FusionGAN, GANMcC, IFCNN, PMGI, U2Fusion,
STDFusionNet, IFSepR, and CLF-Net.

TABLE II

QUANTITATIVE COMPARISON RESULTS OF CLF-NET AND NINE

STATE-OF-THE-ART METHODS ON 20 IMAGES FROM THE TNO
DATASETS. SIX METRICS ARE USED FOR COMPARISON: EN, MI,

VIF, SD, AG, AND SF. RED REPRESENTS THE BEST RESULT,
BLUE REPRESENTS THE SECOND BEST RESULT, AND BOLD

REPRESENTS THE THIRD BEST RESULT

the fused image of our CLF-Net. The best performance on SD, 624

which reflects a result with high contrast and is also consistent 625

with the results of qualitative analysis, is achieved using our 626

proposed method. The larger MI is, the more the information 627

transfers from the source images to the fused image, which 628

indicates that our method retains a large amount of information 629
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Fig. 8. Qualitative comparison results of CLF-Net and eight state-of-the-art
methods on FLIR_00993. We select a background area of the tree (i.e., the
green box) and zoom in it in the bottom right corner for ease of comparison
and mark the salient road scene object (i.e., the red box). The first two images
in the first row are (a) infrared image and (b) visible image. These are followed
by (c) DenseFuse, (d) RFN-Nest, (e) FusionGAN, (f) GANMcC, (g) IFCNN,
(h) PMGI, (i) U2Fusion, (j) STDFusionNet, (k) IFSepR, and (l) CLF-Net.

Fig. 9. Qualitative comparison results of CLF-Net and eight state-of-the-art
methods on FLIR_03952. We select a background area of the banner (i.e., the
green box) and zoom in it in the bottom-left corner for ease of comparison and
select the salient road scene object (i.e., the red box). The first two images in
the first row are (a) infrared image and (b) visible image. These are followed
by (c) DenseFuse, (d) RFN-Nest, (e) FusionGAN, (f) GANMcC, (g) IFCNN,
(h) PMGI, (i) U2Fusion, (j) STDFusionNet, (k) IFSepR, and (l) CLF-Net.

from the infrared and visible images. In addition, both SF and630

AG can reveal the details and textures, respectively, of the631

fused image. Although the SF and AG metrics using our632

methods are not the best, the comparable results still mean that633

the fused images obtained using our method contain adequate634

gradient information.635

C. Generalization Experiment on RoadScene Dataset636

To explore the generalization capability of our method,637

we compare our proposed CLF-Net with eight other methods638

on the RoadScene dataset.639

1) Qualitative Results: We select four typical image pairs640

from the RoadScene dataset for analysis. As shown in641

Figs. 8–11, we select the salient targets of typical road scenes642

with red boxes (i.e., the cars and people). In the comparison643

with other methods, the salient object of the fused image644

generated by CLF-Net has a clear edge contour and the645

highest contrast, which maximizes the retention of thermal646

targets in the infrared images. Due to the unique imaging647

mode of the infrared image, it is difficult to distinguish the648

time or weather in the infrared image because the sky of the649

infrared image is always dark regardless of the time of day.650

In Figs. 8, 10, and 11, the scenes were all taken during the651

day. However, it is difficult to estimate whether the scene652

Fig. 10. Qualitative comparison results of CLF-Net and eight state-of-the-art
methods on FLIR_04302. We select a background area of the bole (i.e., the
green box) and the salient road scene object (i.e., the red box). The first two
images in the first row are (a) infrared image and (b) visible image. These are
followed by (c) DenseFuse, (d) RFN-Nest, (e) FusionGAN, (f) GANMcC,
(g) IFCNN, (h) PMGI, (i) U2Fusion, (j) STDFusionNet, (k) IFSepR, and
(l) CLF-Net.

Fig. 11. Qualitative comparison results of CLF-Net and eight state-of-the-art
methods on FLIR_04598. We select a background area of the writing on wall
(i.e., the green box) and mark the salient road scene object (i.e., the red box)
and zoom in them in the bottom corner for ease of comparison. The first two
images in the first row are (a) infrared image and (b) visible image. These are
followed by (c) DenseFuse, (d) RFN-Nest, (e) FusionGAN, (f) GANMcC,
(g) IFCNN, (h) PMGI, (i) U2Fusion, (j) STDFusionNet, (k) IFSepR, and
(l) CLF-Net.

represents day or night from the resulting fusion image, 653

except when using IFCNN, STDFusionNet, and CLF-Net. 654

Among these methods, the best performance is achieved using 655

STDFusionNet and CLF-Net. Meanwhile, compared with 656

STDFusionNet, CLF-Net has the brightest sky background 657

and is closest to the visible images. In addition, we select 658

some background areas, such as the tree, banner, and writing 659

on the wall, with green boxes. Through comparison, the most 660

detailed texture information of visible images is retained when 661

using our method. In Fig. 10, it is worth noting that the 662

sunlight makes the visible images taken by the camera appear 663

slightly overexposed, resulting in blurred details. However, the 664

influence of overexposure is effectively reduced in the fusion 665

image generated by our method. 666

2) Quantitative Results: Twenty image pairs from the Road- 667

Scene dataset are selected for quantitative evaluation, and 668

the quantitative comparison results are shown in Fig. 12 and 669

Table III. Specifically, the largest average values in terms of 670

EN, MI, VIF, AG, and SF are obtained using our method. 671

For the SD metric, our proposed algorithm has a comparable 672

performance with the NestFuse and STDFusionNet method by 673

a narrow margin. In general, good results in both qualitative 674
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Fig. 12. Quantitative comparison results of CLF-Net and nine state-of-the-
art methods on 20 images from the RoadScene dataset. Six metrics are used
for comparison: EN, MI, VIF, SD, AG, and SF. The compared methods are
DenseFuse, RFN-Nest, FusionGAN, GANMcC, IFCNN, PMGI, U2Fusion,
STDFusionNet, IFSepR, and CLF-Net.

TABLE III

QUANTITATIVE COMPARISON RESULTS OF CLF-NET AND NINE
STATE-OF-THE-ART METHODS ON 20 IMAGES FROM THE ROADSCENE

DATASETS. SIX METRICS ARE USED FOR COMPARISON: EN, MI,
VIF, SD, AG, AND SF. RED REPRESENTS THE BEST RESULT,

BLUE REPRESENTS THE SECOND BEST RESULT, AND BOLD
REPRESENTS THE THIRD BEST RESULT

analysis and quantitative analysis are achieved using our675

method, indicating that our model has good generalization676

ability.677

D. Generalization Experiment on Medical Image678

In this section, we have compared the image fusion methods679

on medical images. The medical images for the experiment are680

collected from [48] and include 24 pairs of images.681

Fig. 13. Qualitative comparison results of CLF-Net and nine state-of-the-
art methods on medical image. We have selected the significant region of
MR-T1 (i.e., the red boxes) and zoomed in on it in the bottom-right corner
for ease of comparison. The first two images in the first row are (a) MR-T1
and (b) MR-T2. These are followed by (c) DenseFuse, (d) RFN-Nest,
(e) FusionGAN, (f) GANMcC, (g) IFCNN, (h) PMGI, (i) U2Fusion,
(j) STDFusionNet, (k) IFSepR, and (l) CLF-Net.

Fig. 14. Qualitative comparison results of CLF-Net and nine state-of-the-art
methods on medical image. We have selected the texture details of MR-T2
(i.e., the red box) and zoomed in it in the bottom-right corner for ease
of comparison. The first two images in the first row are (a) MR-T1 and
(b) MR-T2. These are followed by (c) DenseFuse, (d) RFN-Nest, (e) Fusion-
GAN, (f) GANMcC, (g) IFCNN, (h) PMGI, (i) U2Fusion, (j) STDFusionNet,
(k) IFSepR, and (l) CLF-Net.

1) Qualitative Results: We select MR-T1 and MR-T2 as 682

source images. MR-T1 contains bright skull features and 683

MR-T2 contains rich texture information. Two typical image 684

pairs from [48] are shown in Figs. 13 and 14. We select the 685

significant region of MR-T1 in Fig. 13 and the texture detail of 686

MR-T2 in Fig. 14 with red boxes. In Fig. 13, different fusion 687

algorithms have inconsistent effects on bright skull features 688

in MR-T1. Among them, STDFusionNet and our CLF-Net 689

have the best retention effect for bright skull area. The images 690

generated by IFSepR have some distortion but contain rich 691

texture details. For the marked significant region, RFN-Nest 692
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Fig. 15. Qualitative comparison results of CLF-Net and nine state-of-
the-art methods on multifocus images. We have selected the blurred area
(i.e., the red box) and zoomed in it in the bottom-right corner for ease
of comparison. The first two images (a) and (b) in the first row are two
different multifocus images in the same scene. These are followed by
(c) DenseFuse, (d) RFN-Nest, (e) FusionGAN, (f) GANMcC, (g) IFCNN,
(h) PMGI, (i) U2Fusion, (j) STDFusionNet, (k) IFSepR, and (l) CLF-Net.

TABLE IV

QUANTITATIVE COMPARISON RESULTS OF CLF-NET AND NINE
STATE-OF-THE-ART METHODS ON 24 MEDICAL IMAGES. SIX METRICS

ARE USED FOR COMPARISON: EN, MI, VIF, SD, AG, AND SF.
RED REPRESENTS THE BEST RESULT, BLUE REPRESENTS THE

SECOND BEST RESULT, AND BOLD REPRESENTS

THE THIRD BEST RESULT

and FusionGAN have almost lost the features of this region.693

In contrast, IFCNN, PMGI, and CLF-Net retain the features694

of the significant region well, which are closer to the source695

image.696

In Fig. 14, the analysis of the effect of the bright skull697

area is consistent with that in Fig. 13. In addition, for698

the orbital region, MR-T2 is brighter than MR-T1, only699

GANMcC, IFCNN, STDFusionNet, and CLF-Net retain the700

brightness of MR-T2 better. Finally, compared with Fig. 13,701

the MR-T2 image of Fig. 14 contains richer and more useful702

texture information. DenseFuse, FusionGAN, GANMcC, and703

PMGI retain less texture information, and IFCNN, U2Fusion,704

STDFusionNet, IFSepR, and CLF-Net retain more texture705

information.706

2) Quantitative Results: The quantitative comparison707

results are shown in Table IV and Fig. 17. AG and SF reflect708

Fig. 16. Qualitative comparison results of CLF-Net and nine state-of-
the-art methods on multifocus images. We have selected the blurred area
(i.e., the red box) and zoomed in it in the bottom-right corner for ease
of comparison. The first two images (a) and (b) in the first row are two
different multifocus images in the same scene. These are followed by
(c) DenseFuse, (d) RFN-Nest, (e) FusionGAN, (f) GANMcC, (g) IFCNN,
(h) PMGI, (i) U2Fusion, (j) STDFusionNet, (k) IFSepR and (l) CLF-Net.

Fig. 17. Quantitative comparison results of CLF-Net and nine state-of-
the-art methods on 24 pairs of medical images. Six metrics are used for
comparison: EN, MI, VIF, SD, AG, and SF. The compared methods are
DenseFuse, RFN-Nest, FusionGAN, GANMcC, IFCNN, PMGI, U2Fusion,
STDFusionNet, IFSepR, and CLF-Net.

the texture information of images, and IFSepR, CLF-Net, and 709

IFCNN are the top three in these two metrics, followed by 710

U2Fusion and STDFusionNet, indicating that these algorithms 711

better retain rich texture information in the image, which 712
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TABLE V

QUANTITATIVE COMPARISON RESULTS OF CLF-NET AND NINE
STATE-OF-THE-ART METHODS ON 36 MULTIFOCUS IMAGES. SIX

METRICS ARE USED FOR COMPARISON: EN, MI, VIF, SD,
AG, AND SF. RED REPRESENTS THE BEST RESULT, BLUE

REPRESENTS THE SECOND BEST RESULT, AND BOLD
REPRESENTS THE THIRD BEST RESULT

is consistent with qualitative analysis. In the VIF metric,713

CLF-Net, IFCNN, and PMGI are the top three algorithms,714

indicating that the images obtained by these algorithms have715

a better human visual effect. In addition, IFSepR has the716

lowest VIF, which is related to image distortion. Finally, our717

algorithm also has good performance in EN and MI, which718

demonstrates its great ability in transferring information.719

Medical image fusion task is similar to infrared and visible720

image fusion task to some extent. Based on the above qualita-721

tive and quantitative analysis, our proposed method has good722

application potential in the medical image fusion task.723

E. Generalization Experiment on Multifocus Image724

In this section, we evaluate our method in the field of725

multifocus image fusion. The multifocus images for the test726

are collected from [49] and include 36 pairs of images in727

different scenarios.728

1) Qualitative Results: The source images are derived from729

the same image, which are blurred in different nonoverlapping730

regions. Two typical image pairs from [49] are shown in731

Figs. 15 and 16. As for the overall image fusion effect, the732

distortion of PMGI fusion results is serious, which contains733

a large amount of noise. IFSepR can fuse the blurred region,734

but the distortion occurs in the sky. The fusion performance735

of RFN-Nest, FusionGAN, GANMcC, and STDFusionNet for736

the blurred region is poor, mainly reflected in the difficulty737

in clearly identifying the blurred text. In contrast, IFCNN,738

U2Fusion, and DenseFuse retain the details of the blurred area,739

and the text is clearly visible. CLF-Net preserves the details740

of the blurred area to a certain extent and the text is legible.741

In Fig. 16, IFCNN, U2Fusion, and IFSepR have the best742

reservation for the detail features of the fuzzy region, which743

is closest to the source image. DenseFuse and CLF-Net can744

also better retain enough texture details, while RFN-Nest,745

FusionGAN, and STDFusionNet are barely able to discern the746

blurred details.747

2) Quantitative Results: The quantitative comparison748

results of multifocus image fusion are shown in Table V749

and Fig. 18. U2Fusion ranks first in AG and SF, which750

Fig. 18. Quantitative comparison results of CLF-Net and nine state-of-
the-art methods on 36 pairs of multifocus images. Six metrics are used for
comparison: EN, MI, VIF, SD, AG, and SF. The compared methods are
DenseFuse, RFN-Nest, FusionGAN, GANMcC, IFCNN, PMGI, U2Fusion,
STDFusionNet, IFSepR, and CLF-Net.

demonstrates that it retains a wealth of detailed texture infor- 751

mation. IFCNN has the best effect in the VIF metric, and the 752

images generated are closer to human vision. Our algorithm 753

ranks second in EN, AG, and SF, and third in VIF, indicating 754

that our method is competitive in multifocus image fusion. 755

Compared with infrared and visible image fusion, the strat- 756

egy of multifocus image fusion is a little different. Specifically, 757

for the blurred region in the source image, the multifocus 758

fusion image is more inclined to retain the corresponding 759

unblurred part in the single source image. Therefore, some 760

algorithms with good performance in infrared and visible 761

image fusion have poor performance in multifocus image 762

fusion. However, our proposed algorithm based on contrastive 763

learning is also biased to retain information in local areas 764

reserving the region with the highest similarity in the source 765

image. Therefore, our method still has strong application 766

potential in multifocus image fusion. 767

Compared with infrared and visible image fusion, the 768

results of our method on medical image and multifocus image 769

fusion are slightly inferior. In the future work, we can carry 770

out in-depth research from two aspects: on the one hand, 771

we can use specific training sets to make the model targeted.;n 772

the other hand, based on the characteristics of medical and 773

multifocus images, some new modules can be introduced to 774

optimize the model. 775
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Fig. 19. Visualization of the results of ablation experiment on four
typical TNO image pairs. From left to right: Kaptein_1123, lake, bench, and
2_men_in_front_of_house. From top to bottom: (a) infrared images, (b) visible
images, (c) fused images of CLF-Net, (d) fused images of CLF-Net without
patchNCE loss, and (e) difference between (c) and (d).

TABLE VI

QUANTITATIVE COMPARISON RESULTS OF ABLATION EXPERIMENT ON 20
IMAGES FROM THE TNO DATASETS. SIX METRICS ARE USED FOR

COMPARISON: EN, MI, VIF, SD, AG, AND SF. RED REPRESENTS
THE BEST RESULT

F. Ablation Experiment776

In our model, in addition to introducing the SSIM loss777

function, we mainly design the loss function based on a778

comparative learning framework: the patchNCE loss. The two779

loss functions work together to guide the CNN network to780

explore the most appropriate parameters. The PatchNCE loss781

contrasts the source images with the fused image at the deep782

feature level to guide the network to fully retain the significant783

target of the infrared image and the detailed texture of the784

visible image. To verify the effectiveness of the patchNCE785

loss, we conduct relevant ablation experiments, in which we786

have removed the patchNCE loss by setting the parameter λ1787

to 0 and only use the SSIM loss to train our network.788

The results of ablation experiments are shown in Fig. 19 and789

Table VI. As shown in Fig. 19(d), the model can only realize790

the fusion of infrared and visible images with the use of the791

SSIM loss. However, there are still some flaws in the fusion of792

the background texture information. Meanwhile, to intuitively793

compare the difference between the two fusion images with794

or without patchNCE loss, we directly perform the subtraction795

operation for the two images and invert the results, which are796

shown in Fig. 19(e). The darker the image is, the greater the797

difference between the two fusion images. Fig. 19(e) shows798

that there are many dark parts in the overall background799

TABLE VII

MEAN AND STANDARD DEVIATION OF THE RUNNING TIME OF DIFFERENT
METHODS ON THE TNO AND ROADSCENE (UNIT: SECOND). RED

REPRESENTS THE BEST RESULT, BLUE REPRESENTS THE

SECOND BEST RESULT, AND BOLD REPRESENTS

THE THIRD BEST RESULT

area and the edge part of the salient target, which indicates 800

that the patchNCE loss has made up for a large amount 801

of background texture information and edge information of 802

the salient target. In addition, the results of the quantitative 803

comparison are demonstrated in Table III. Compared with the 804

fused images of CLF-Net without patchNCE loss, our method 805

has significantly improved in all metrics, especially in the AG 806

and SF metrics, which shows that the fused images generated 807

by our method have richer gradient and texture information, 808

which is consistent with the previous analyses. 809

G. Efficiency and Complexity Evaluation Experiment 810

For image fusion tasks, model generation efficiency is also 811

an important indicator to evaluate the model performance, 812

which can be intuitively evaluated by running time. By testing 813

on the TNO and RoadScene datasets, we list the mean and 814

standard deviation of the running time of nine different algo- 815

rithms, including our algorithm in Table VII. The mean of the 816

running time can reflect the comprehensive running efficiency 817

of the model, and the standard deviation of the running time 818

can reflect the robustness of the model for the fusion of 819

source images with different resolutions. According to the 820

results, our methods are superior to most algorithms except 821

for IFCNN, which indicates that our CLF-Net is competitive 822

in the evaluation of running efficiency. 823

In addition, we also test the number of parameters of the 824

model. The result shows that the number of parameters of 825

CLF-Net is relatively low compared with other comparison 826

algorithms, only higher than PMGI slightly, which indicates 827

that our network is lightweight. 828

H. Expending Experiment 829

In this section, we discuss negative sample selection in the 830

adaptive patchwise contrastive learning framework. There are 831

three possible implementations, as described in the following 832

example. If we select a query from the fused image obtained 833

by the infrared encoder and a positive sample from the infrared 834

image, then we can acquire the negative examples from the 835

following three strategies: 1) the visible image encoded by the 836

visible encoder; 2) the visible image encoded by the infrared 837

encoder; and 3) the rest of the infrared image, which is the 838
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TABLE VIII

QUANTITATIVE COMPARISON RESULTS OF EXPENDING EXPERIMENT
ON 20 IMAGES FROM THE TNO DATASETS. SIX METRICS ARE USED

FOR COMPARISON: EN, MI, VIF, SD, AG, AND SF. RED

REPRESENTS THE BEST RESULT

implementation adopted in this study. The comparative test839

results are shown in Table VIII.840

From Table VIII, it can be seen that the best performance in841

all metrics is achieved using strategy 3), the method proposed842

in this article. The reasons are analyzed as follows. First, for843

strategy 1), the features extracted from different encoders are844

inconsistent, which results in a significant difference between845

the negative examples obtained from the visible encoder and846

the query obtained by the infrared encoder. Based on this847

issue, the contrastive loss is maintained at a low value from848

the beginning of training. As a result, this strategy cannot849

be implemented as a good guiding role in the optimization850

of network parameters. Second, for strategy 2), positive and851

negative patches are encoded by the same encoder, which852

can ensure that positive and negative patches are in the same853

space. However, since the function of the infrared encoder is854

specific, it has no practical significance in obtaining visible855

image features from the infrared encoder. Thus, there is still856

a significant difference between the positive sample and the857

negative sample, which also exists at the beginning of the858

training. In addition, strategy 2) has considerable computa-859

tional redundancy, which can also be seen from the training860

time per epoch.861

V. CONCLUSION862

In this article, we propose a novel end-to-end infrared and863

visible image fusion network, named CLF-Net. A novel unsu-864

pervised NCE framework is introduced into the image fusion.865

Based on the framework, we design an adaptive patchwise866

contrastive loss, which focuses on the deep representation867

similarity. The structural similarity loss is also adopted, which868

focuses on the structural similarity. Both loss functions guide869

the network in adaptively extracting and fusing features. As a870

result, not only is the significant thermal target in the infrared871

image retained, but the rich texture features in the visible872

image are also retained. Based on extensive qualitative and873

quantitative experiments, our CLF-Net is superior to most874

advanced methods in both visual perception and quantitative875

metrics. In the future, on the one hand, we will optimize the876

model to further improve the performance, and on the other877

hand, we will apply infrared and visible image fusion to a878

wider range of tasks, such as target detection and RGB-thermal879

(RGBT) tracking.880
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