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Abstract—In this article, we propose an effective infrared
and visible image fusion network based on contrastive learning,
which is called CLF-Net. A novel noise contrastive estimation
framework is introduced into the image fusion to maximize
the mutual information between the fused image and source
images. First, an unsupervised contrastive learning framework
is constructed to promote fused images selectively retaining
the most similar features in local areas of different source
images. Second, we design a robust contrastive loss based on the
deep representations of images, combining with the structural
similarity loss to effectively guide the network in extracting
and reconstructing features. Specifically, based on the deep
representation similarities and structural similarities between
the fused image and source images, the loss functions can
guide the feature extraction network in adaptively obtaining the
salient targets of infrared images and background textures of
visible images. Then, the features are reconstructed in the most
appropriate manner. In addition, our method is an unsupervised
end-to-end model. All of our methods have been tested on public
datasets. Based on extensive qualitative and quantitative analysis
results, it has been demonstrated that our proposed method
performs better than the existing state-of-the-art fusion methods.
QOur code is publicly available at https://github.com/zzj-dyj/
CLF-Net

Index Terms— Contrastive learning, image fusion, infrared
image, noise contrastive estimation (NCE), unsupervised learning.

I. INTRODUCTION

S AN important technology in image processing, image

fusion can be utilized to effectively integrate comple-
mentary image information from different visual sensors to
obtain an information-rich fusion image. Visible and infrared
sensors are the two most commonly used visual sensors [1].
The effective fusion of these two types of image information
has been widely applied in object recognition [2], detection
[3], [4], image enhancement [5], surveillance [6], remote
sensing [7], and other fields. Based on the theory of optical
imaging, visible images have abundant texture details and
high spatial resolution. However, they are also affected by
dark environments, fog, and other types of environmental
interference. An infrared image is based on the thermal
radiation of an object, which can highlight salient targets in
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the interference environment. However, the infrared image has
a low signal-to-noise ratio and lacks texture details. Thus, the
fused result has the advantages of the two kinds of source
images, which have rich details and salient targets.

In recent years, significant research has been performed
regarding deep learning fusion methods due to their powerful
representation abilities [8]. These methods can be divided into
two categories: the non-end-to-end methods and the end-to-end
methods. In the non-end-to-end methods, the design of the fea-
ture fusion strategy is the main focus. Currently, the strategies
of feature fusion, which are hand-calculated, mainly include
addition, /;-norm [9], attention weighting [10], and so on.
However, it is difficult to obtain appropriate hand-calculated
features when dealing with different fusion tasks. To eliminate
the difficulty of designing a hand-calculated fusion strategy,
some end-to-end methods have been proposed [11], [12], [13],
[14], [15], [16], [17], [18], [19]. In these methods, the lack
of ground truth in the fusion task is a problem that cannot
be ignored. To solve this unsupervised problem, the methods
[11], [12], and [13] adopt the generative adversarial network
(GAN) framework. In addition, methods [15] and [16] guide
the trend of image fusion by designing specific loss functions
and weighting them. The loss functions of the above methods
usually include intensity, gradient, and structure. However,
these loss functions do not treat different regions of the source
images differently, which results in considerable information
redundancy. In VIF-Net [18], the modified structural similarity
(M-SSIM) loss, which adaptively calculates the SSIM score by
comparing pixel intensity information in sliding windows of
different source images, was proposed. By introducing salient
target masks, STDFusionNet [19] has a specific loss function
to guide the network in effectively merging salient targets in
infrared images with background textures in visible images.
Although good fusion performance has been achieved using
these methods, their loss functions are only based on the
shallow features of images but do not make full use of the
deep features. In our opinion, it is also effective to reasonably
combine deep features to guide training.

To solve the above problems, we propose a new idea
inspired by contrastive learning methods [34] in current self-
supervised learning tasks. Specifically, Ma et al. [19] defined
the desired information in the fusion process as the combi-
nation of salient targets in infrared images and background
textures in visible images. From our perspective, this approach
can be more simply stated as follows: we expect that the salient
target in the fusion image looks more like that in the infrared
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image and the background area looks more like that in the
visible image. How do researchers define the term “like”?
The answer is contrast. By comparing the similarities and
differences between the fusion images and the source images,
people can easily choose the fusion image that meets their
expectations. To achieve this goal, we propose an effective
infrared and visible image fusion network based on contrastive
learning (CLF-Net). First, we construct an adaptive contrastive
learning framework. In this framework, we focus on the deep
representation instead of the image itself, and related local
features are maximally reserved by comparing the differences
in the dot products (i.e., the cosine similarity) between the
feature vectors of the fusion image and the source images.
Second, under the above framework, we design a robust
contrastive loss, combining with the structural similarity loss
to guide the network in extracting and reconstructing features.
Specifically, based on the representation similarities and struc-
tural similarities between the fused image and source images in
the same spatial location, the loss function can be used to guide
the feature extraction network adaptively to obtain the salient
targets of the infrared images and background textures of the
visible images. In addition, because contrastive loss and struc-
tural similarity loss are both adaptive, our method is an unsu-
pervised learning process. It is also noted that the contrastive
learning framework only participates in the training process of
the network. Thus, our CLF-Net is an end-to-end model.

The main contributions of our method can be summarized

as follows.

1) We introduce a novel noise contrastive estimation (NCE)
framework into image fusion tasks to maximize mutual
information (MI) between fused images and source
images.

2) We construct an unsupervised contrastive learning
framework to promote fused images selectively retaining
the most similar feature from different source images.
A robust contrastive loss is designed to guide the net-
work to adaptively extract and reconstruct features based
on the deep representation.

3) Extensive experiments demonstrate that better perfor-
mance in terms of qualitative and quantitative analysis is
achieved using our method compared with the existing
state-of-the-art methods.

The remainder of this article is structured as follows.
In Section II, we briefly review the related works on deep-
learning-based fusion methods and contrastive learning for
computer vision. In Section III, we elaborate on our proposed
method. Extensive comparative validation experiments are
described in Section IV, followed by the conclusion of our
work.

II. RELATED WORK
In this section, we review the existing work and the
approaches that are most relevant to our method, including
deep-learning-based fusion methods and contrastive learning
for computer vision.

A. Deep-Learning-Based Fusion Methods
In recent years, deep learning methods have been widely
applied in image fusion tasks and have achieved remarkable
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results. These methods can be divided into two categories: the
non-end-to-end methods and the end-to-end methods.

Initially, some non-end-to-end methods based on autoen-
coders were proposed. In these methods, the design of the
feature fusion strategy is the focus. Li and Wu [9] proposed
DenseFuse, which introduces a dense block into the feature
extraction layer and exploits traditional addition and L1-norm
strategies in the fusion layer. Inspired by the architecture in
[20], NestFuse [10] was proposed. In this method, a down-
sampling network is used to extract multiscale features from
source images, and an attention weighting strategy is adopted
to fuse the features. Although good performance has been
achieved using these methods, the hand-calculated fusion
strategy is approximate, which limits further improvement of
the fusion performance [8].

To solve the above limitations in the non-end-to-end meth-
ods, some end-to-end fusion frameworks have been studied.
A GAN-based fusion framework, which was first proposed
by Ma et al. [11], was established as an adversarial game
to constrain the fusion image and obtain more details from
the visible images. Based on the game of multiclassifica-
tion discrimination, GANMcC [13] is used to obtain fused
images that more closely resemble the distribution of the
source images. In addition to GAN-based methods, several
CNN-based end-to-end methods have also been proposed.
Hou et al. [18] designed a simple end-to-end network that uses
M-SSIM and the total variation function to guide the network.
Zhang et al. [14] utilized two convolutional layers to extract
deep features from the source images. Then, they selected
elementwise fusion rules to fuse the source image features
and reconstructed the fused images by two convolutional
layers. Xu et al. [16] proposed an adaptive network based
on proportional gradient and intensity maintenance, which
preserves the adaptive similarity between the fusion result and
source images. Ma et al. [19] designed a salient target mask to
label some salient infrared targets and then designed a specific
loss function to guide the extraction and reconstruction of
the features. The loss functions in the above methods are all
designed based on the shallow features of the image. However,
in our opinion, an effective method makes full use of the deep
features of images to guide network training.

B. Contrastive Learning for Computer Vision

Contrastive learning has attracted increasing attention in
the field of computer vision due to its excellent performance
[23]. The concept of contrastive learning was proposed a long
time ago, but in recent years, remarkable achievements in
the field of computer vision have been achieved using this
approach [24]. The core problem of contrastive learning is how
to construct the set of positive and negative samples. Hjelm
[25] proposed Deep InfoMax, which constructs comparative
learning tasks based on local features in images. He ef al.
[26] proposed an efficient comparative learning structure
momentum contrast (MoCo), which uses a momentum encoder
to encode a single positive sample and multiple negative
samples and updates the encoder parameters with momentum.
Chen et al. [27] proposed a general framework that maximizes
the similarity of the two data augmentation projections of the
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same image and minimizes the similarity with other images
by conducting two random data augmentations on the input
image, to achieve a constant visual representation of the
same object under different perspectives or interference. Then,
the two teams of He and Hinton learned from each other
and successively proposed MoCo v2 [28] and SimCLR v2
[29], which are mainly improvements of data augmentation
methods and backbone networks. Subsequently, Caron et al.
[30] took a different approach; instead of aiming to increase
the number of negative cases in the optimization direction,
all kinds of samples are clustered, and then, all kinds of
class clusters are compared. Grill et al. [31] proposed a
new self-supervised image representation learning method that
did not use negative examples and made one encoder stop
gradient, which only carried out momentum updates on the
parameters of another encoder. Chen and He [32] took the
concepts behind BYOL and combined them with the study
of Siamese networks, found that the stop gradient is the
key to avoiding network collapse, and proposed the SimSiam
network.

Given the continuous progress of the theory of contrastive
learning, this method has been widely used in many image
tasks. For the task of conditional image generation, Kang
and Park [33] proposed ContraGAN, which is based on a
novel conditional contrastive loss that can learn both data-
to-class and data-to-data relations. For the task of image-
to-image translation, Park et al. [34] proposed contrastive
learning, in which the MI between the corresponding image
patches in the source domain and target domain is maximized
through the framework of contrastive learning to complete
the image-to-image translation for unpaired image-to-image
translation.

To the best of our knowledge, there are few studies on
the application of contrastive learning in the task of infrared
and visible image fusion. Inspired by contrastive learning,
Luo et al. [47] adopted a contrastive difference loss to avoid
the trivial solution and promote the disentanglement abil-
ity of the autoencoder. The contrastive difference loss can
maximize the distinction between the common and private
features of source images. However, IFSepR does not construct
the positive sample pairs and the NCE framework, which
is the main difference from our methods. Therefore, inspired
by the NCE framework, we have proposed a novel image
fusion algorithm named CLF-Net. The results also show that
the image fusion performance can be effectively improved
using this network.

III. METHOD

In this section, we describe the proposed contrastive learn-
ing technique for infrared and visible image fusion networks
in detail. First, we present the general network architecture
of the proposed CLF-Net. Next, we introduce the NCE
framework, which is the basis for contrastive learning. Then,
we construct a novel adaptive patchwise contrastive learning
framework, which reveals the design details of the contrastive
loss function. Finally, we describe the designed loss function in
detail.
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A. Network Architecture

The architecture of CLF-Net is shown in Fig. 1 and consists
of two parts: the feature extraction network and the feature
reconstruction network.

1) Feature Extraction Network: It consists of two specific
encoders. Both encoders are constructed based on a ResBlock
to alleviate the well-known problems of vanishing or exploding
gradients [22]. As shown in Fig. 1, the feature extraction
network consists of four ResBlocks that can reinforce the
extracted information. The residual mapping of each ResBlock
is composed of two convolutional layers, which are used to
extract features. These two layers have kernel sizes of 1 x
1 and 3 x 3. The identity mapping, which consists of a
convolutional layer with a kernel size of 1 x 1 is used to
adjust the input and output dimensions and maintain their con-
sistency. For infrared images and visible images, the structure
of the feature extraction networks (i.e., the infrared encoder
and visible encoder) is consistent, but the parameters of these
networks are independent of each other.

2) Feature Reconstruction Network: It is directly composed
of four ResBlocks. The deep features from the two different
encoders are directly concatenated and reconstructed into the
fused image. At the end of the feature reconstruction network,
we have replaced the activation function leaky rectified linear
unit (LeakyReLU) with tanh to ensure that the range of
change between the fused image and the source images is
consistent.

In all convolutional layers of the ResBlock for the whole
process of feature extraction, fusion, and reconstruction, the
stride is set to 1, the padding is set to O when the kernel size
is 3 x 3, and the padding is set to 1 when the kernel size
is 1 x 1. As a result, there is no downsampling process in
CLF-Net, which also means that no information is lost.

B. NCE Framework

NCE is presented as a new estimation principle for parame-
terized statistical models [35]. The core idea is to determine
some characteristics of the original data by learning the dif-
ference between the original data distribution sample and the
selected noise distribution. This process effectively simplifies
the model estimation problem to a dichotomous problem and
greatly reduces the computational complexity [37].
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Adaptive patchwise contrastive learning: we randomly sample a query patch from the fused image and select the positive patch from the infrared

image and visible image at the same position (i.e., the green, red, and blue boxes). Next, N random negative patches are selected from other positions of the
infrared image and visible image (i.e., the yellow and orange boxes). Then, we reuse the infrared encoder and visible encoder and add the two-layer MLP
network, in which the positive patches in the fusion image and source images will be encoded into feature vectors query, pir, and py;. Finally, the similarities
between query and pj; or query and py; are calculated, and the most similar one will be retained to calculate the InfoNCE loss.

Based on the idea of NCE and introducing the concept of
MI, a new form of contrastive loss function called InfoNCE
[36] is proposed. Specifically, we assume that there is an
encoded query and a set of encoded samples {k; , &k, , ..., ky},
including a positive example and N negative examples. The
query, positive example, and N negative examples are mapped
into the K-dimensional vectors g, kT € RX, and k= €
RV*K | respectively, where k, € RX denotes the nth negative
example. When ¢ is similar to the positive example k* and
dissimilar to all other negative examples k~, the value of the
InfoNCE loss will be small. The similarity is measured by
the dot product between the /; normalized query and other
examples. This result is then scaled by a temperature 7 and
passed as logits. The InfoNCE loss is defined as follows:

exp(q -k*/r)
exp(q - k+/7) + > exp(q - ki /7)
(1)

Based on the above InfoNCE framework, several important
design ideas, including how to design the contrastive learning
structure and how to build the specific loss function, are
presented in Sections III-C and III-D.

1(q. k", k)= —log

C. Adaptive Patchwise Contrastive Learning

In the general contrastive learning methods, data augmen-
tation is often used to establish a positive pair for positive

samples, and n — 1 negative pairs are established by using
all n — 1 other images in the same training batch with the
augmented images of positive samples. Then, the similar-
ity between positive pairs is maximized, and the similarity
between negative pairs is minimized to fully extract the general
features of the unlabeled datasets. However, some studies [37]
have shown that the more negative pairs there are, the better
the contrastive learning effect. This requires the support of
abundant training datasets. Obviously, for image fusion tasks,
the lack of sufficient training datasets has always been an
urgent problem to be solved. Combined with the characteristics
of the image fusion tasks, we construct an unsupervised
patchwise contrastive learning framework based on the work
by Park et al. [34].

Since the image fusion task focuses more on the salient
target of the infrared image and the background texture infor-
mation of the visible image, we start from the local features
of the image to construct a contrastive learning task based on
the image patches.

Specifically, as shown in Fig. 2, we randomly sample a
patch of the fused image and a positive patch of the infrared
image and visible image at the same position (i.e., the green,
red, and blue boxes). Next, N random negative patches are
selected from other positions of the infrared image and visible
image (i.e., the yellow and orange boxes). Then, we reuse the
infrared and visible encoders and add the two-layer multilayer
perceptron (MLP) network, which is used to encode patches at
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any spatial location in the source images and fusion image as
feature vectors. For example, the positive patches in the fused
image and source images are encoded as feature vectors query,
Pir, and py;. Finally, the similarities between the query and pj;
or the query and p,; are calculated and the most similar one
will be retained to calculate the InfoNCE loss.

It is worth noting that both positive and negative samples
used to calculate the InfoNCE loss are sampled from the
source image and fusion image encoded by the same encoder.
For the selection strategy of negative samples, we will elabo-
rate on the extending experiment.

D. Loss Function

In this section, we discuss the calculation of the loss
function combined with SSIM and patchNCE, which is used
to guide the CNN network in finding the most appropriate
parameters through unsupervised learning. The SSIM loss
mainly focuses on the structural characteristics of the image
itself, while the patchNCE loss mainly focuses on the deep
features of the image.

The SSIM combines image brightness, contrast, and struc-
ture to measure image quality [30]. For any two images, the
SSIM is described as follows:

Quapp +Ci)R2oap + C)
(1A + 13+ C) (o3 +02 +Co)
We set C; =1 x 107* and C; = 9 x 10~*, which are

the same values as in [39]. According to the above parameter
settings, as suggested in [18], we set the SSIM loss as follows:

SSIM(A, B) = 2)

mxn

EUW) = m;& 3)

SSIM(1y, I;:|W)
if E(L|W) > E(1i|W)

Score(l, Iy, Ii|lW) = 4
(1 W) SSIM(1y, Ii|W) @
if E(I|W) < E(I|W)
1 N
L =1—-— S Iy, I, il W) (5
SSIM v W§=1 core(1; W) (5

where W represents the sliding window from the top left to
the bottom right with a stride of 1, P; represents the value
of pixel i, m and n represent the size of the sliding window,
and N represents the number of sliding windows in a single
image. The size of the window is 16 x 16 in our work.
Above, we discussed the SSIM loss function. On the one
hand, based on the average intensity of pixels in the local
window, the SSIM loss can not only retain salient targets
in the infrared image but also retain bright areas and some
conspicuous textures in the visible image. On the other hand,
the SSIM loss can use the shallow feature of image structure
to ensure the structural consistency of input and output. For
the feature extraction network, we expect that the infrared
encoder can retain more salient target features and the visible
encoder can retain more detailed texture features, which is the
most obvious complementary features between infrared and
visible images. Thus, we introduce a novel contrastive loss
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function, which directly uses the encoded deep representations
to promote the encoder to retain sufficient complementary
information.

Specifically, based on the adaptive patchwise contrastive
learning framework mentioned above, we can construct the
contrastive loss as follows. First, since the two encoders
Ei; and E,; used in our image fusion task can extract an
effective feature stack, we can make use of them. At the
same time, we pass the feature maps through a small neural
network projection head H, which is a two-layer MLP. The
infrared image and visible image are encoded by corre-
sponding encoders, and the fusion image is encoded by two
encoders; thus, there are four feature sequences that can be
obtained

Zir = H(Eir(lir))
zvi = H(Evi(1vi))

(6)
2y = H(Eu(Ir))
o = H(Ea(1)))
We denote s € {1,...,S}, where S is the number of the

spatial locations sampled from the last image feature layer.
For any specific spatial location in the image feature level,
we refer to the patch feature as z* € R® and the remaining
features in the same feature level as z5/° € R=D*C where C
is the number of channels. As shown in Fig. 2, the patchNCE
loss of any specific spatial location can be obtained as shown
in (7), and then, the contrastive loss can be obtained as shown
in (8)

s s S/s
I(Zf_ir’ Zips> Ly )

] if (2% - 2) > (25 o 2
l;atchNCE(ZA) = / (S S R ”) S ( fovi v1) %)
(fo\’i’ Zyis> Zyi

if (25 2h) < (Z i 20)
s
LpatenNce = Ex~x Zl;alchNCE(ZS) (3)
s=1

where Z* is a general term for the set {z% ;, 2% i, 2§, 23l

Above, we discussed the calculation of the contrastive loss
function. This loss function focuses more on the deep repre-
sentations, which are extracted by encoders. As the training
process progresses, the patchNCE loss can effectively adjust
the encoder and projection head to retain the most similar parts
of the source images to the fused image.

Based on the above two loss functions, the total loss
function can be defined as

L = A1 LpuenNce + A2Lssv 9

where 1, and /1, are the hyperparameters that control the loss
balance between the two loss functions.

In general, the SSIM loss maintains the structural consis-
tency between input and output, while the patchNCE loss
maintains the consistency of the deep features of input and
output. The two loss functions complement each other and
guide the network to achieve satisfactory results.
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IV. EXPERIMENTS

In this section, we first elaborate on the experimental
settings that are used in our work, including the datasets,
evaluation metrics, training details, and discussion of training
hyperparameters. Then, we compare the proposed method with
nine other popular methods, including the DenseFuse [9],
RFEN-Nest [17], FusionGAN [11], GANMcC [13], IFCNN
[14], PMGI [15], U2Fusion [16], STDFusionNet [19], and
IFSepR [47], on the TNO dataset, RoadScene dataset, medical
images, and multifocus images. Next, we provide an additional
ablation experiment and efficiency evaluation experiment to
further verify the performance of the proposed methods.
Finally, we discuss the negative sample selection in the adap-
tive patchwise contrastive learning framework.

A. Experimental Settings

1) Datasets: All training and testing datasets that are
used come from the TNO dataset [40] and the RoadScene
dataset [16].

The TNO dataset mainly describes various military-related
scenes and is the most commonly used dataset in infrared and
visible image fusion tasks. In addition, the RoadScene dataset
was published based on FLIR videos, in which a large number
of road scenes, including roads, vehicles, and pedestrians, are
described. The TNO dataset contains 60 infrared and visible
image pairs and three video sequence screenshots, while the
RoadScene dataset contains 221 infrared and visible image
pairs. These image pairs play an important role in the training
and verification of the model.

2) Evaluation Metrics: The evaluation of the fusion per-
formance includes a subjective evaluation and an objective
evaluation. The subjective evaluation is based on peoples’
visual perception; usually, the fusion image containing salient
infrared targets and rich texture information has the best
effect. The objective evaluation is a measure of the fusion
performance using quantitative metrics. In this article, six
popular metrics are selected, including entropy (EN) [41],
MI [42], VIF [43], standard deviation (SD) [44], average gra-
dient (AG) [45], and spatial frequency (SF) [46]. EN measures
the amount of information contained in a fused image based
on the information theory. The MI measures the dependence
of the source images and fused images. VIF measures the
information fidelity of the fused result by calculating the
distortion of the images, which is consistent with the human
visual system. The SD can reflect the distribution and contrast
of the fused image, which is based on the statistical concept.
The AG quantifies the gradient information of the fused
image and the SF measures the gradient distribution of the
fused image. Both AG and SF reveal the detail and texture
information.

3) Training Details: We use the TNO dataset to train our
model. Twenty image pairs are selected and the training data
are expanded through cropping. We use a sliding window of
128 x 128 to crop the image into small image patches, and
the sliding step is set to 32. Finally, a total of 4404 image
patch pairs are obtained. We select 20 image pairs from the
TNO dataset for the comparative experiment. To adequately
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TABLE I

DISCUSSION OF TRAINING HYPERPARAMETERS ON SIX METRICS AND
TRAINING TIME. RED REPRESENTS THE BEST RESULT, BLUE
REPRESENTS THE SECOND BEST RESULT, AND BOLD
REPRESENTS THE THIRD BEST RESULT

s M/A, EN[41] MI[42] VIF[43] SD[44] AG[45] SF[46] Time
100 7.0205 42142 1.0439 97641  3.9440  0.0372 1738
10 70718 44776 11035  9.4760  3.7830  0.0359 17417

200 1 72262 3.6359  1.0484 96135 49897  0.0495 1738’
0.1 7150 38393 1.0305 93776 4.4037  0.0452 1743
0.01  7.0448  3.8064 09989 93136  4.1845 00431 1742

100 1 70681  3.8174  1.0437  9.4785 45395  0.0453 859
300 1 70178 37795 09873 95160 42921  0.0455 2627

explore the generalization power of our method, we select
20 image pairs from the RoadScene dataset for the general-
ization experiment. Each source image is initially normalized
to [—1, 1]. The MLP consists of a linear layer with an output
size of 2048, followed by batch normalization, a LeakyReL.U,
and a final linear layer with an output dimension of 256, as in
BYOL [31]. In the training process, the training parameters
are set as follows: the batch size, max epoch, learning rate,
and temperature ¢ are initialized as 4, 20, 2 x 1073, and
0.07, respectively. In addition, the proposed algorithm is
implemented on the PyTorch platform and all the experiments
are conducted on an NVIDIA GeForce RTX 2070 super GPU
and Intel i7-10875H CPU.

4) Discussion of Training Hyperparameters: There are
some hyperparameters that directly affect the final model
performance, including the number of samples S in (7) and 4,
and 4, in (9). It is worth noting that the number of samples S
is related to the number of negative samples N. Specifically,
the positive sample comes from a patch in a certain source
image, while the negative samples not only come from other
patches in the same source image but also from other source
images in the same training batch. Therefore, the number of
negative samples N = S —1 + (B — 1) x S, where B is the
number of batch size.

We analyze the influences of the selection of different
hyperparameters from the quantitative metrics and training
time of an epoch, which is shown in Table L.

Hou er al. [18] argued that: when the weight of Lggpy in the
loss function is relatively low, this leads to low contrast and
low quality in the fused image. In contrast, when the weight
of Lssmv in the loss function is relatively high, visible details
are lost to a certain degree.

As shown in Table I, the selection of different proportions
of A; and A, has a direct impact on quantitative metrics.
Specifically, when A;/4, is greater than 1, MI, VIF, and
SD are better, which indicates that Lyychnce is more helpful
in improving the fusion image contrast and making it more
consistent with human visual effects. When 1;/4, is less
than 1, EN, AG, and SF are better, which indicates that the
fused image contains more texture details. It seems that this
is contrary to the conclusion in VIF-Net. Our perspective is
that even if the weight of Lyycnnce is low, it can make up
for the deficiency of Lgspv and retain visible details, which
can also be proved in the ablation experiment. Therefore,
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Fig. 3.

Qualitative comparison results of CLF-Net and eight state-of-the-art
methods on bench. We have selected the salient object (i.e., the red box) and
zoomed in on it in the bottom-right corner for ease of comparison. The first
two images in the first row are (a) infrared image and (b) visible image. These
are followed by (c) DenseFuse, (d) RFN-Nest, (e) FusionGAN, (f) GANMcC,
(g) IFCNN, (h) PMGI, (i) U2Fusion, (j) STDFusionNet, (k) IFSepR, and
(1) CLF-Net.

to combine the advantages of the two types of loss functions,
the hyperparameters A; and A, are set as 1 in this article.

In addition, according to Table I, it can be found that
with the increase of sampling number of S, the training
time increases significantly. Thus, a larger number of samples
have a greater burden on training efficiency and equipment.
In addition, from the perspective of quantitative metrics, too
low or too high sample number will make the model poor.
Too little samples will make the model unable to better
distinguish positive samples and negative samples, while too
much samples will make it more likely that the negative
samples contain more samples close to positive samples. For
example, if multiple samples are collected on the thermal
infrared target, these samples can actually be regarded as the
same class and taking most of them as negative samples will
affect the model performance. Therefore, the hyperparameter
S selected in this article is 200.

B. Comparative Experiment

For a comprehensive analytical evaluation of our approach,
we compare our proposed CLF-Net with eight other
approaches on the TNO dataset.

1) Qualitative Results: To intuitively compare the
performance of different algorithms, we select four typical
image pairs from the TNO dataset (bench, Nato_camp_1811,
Kaptein_1123, and 2_men_in_front_of_house). The quali-
tative comparison results are shown in Figs. 3-6.
In Figs. 3 and 4, we select the salient object (i.e., the
red box) and zoom in it in the bottom corner for ease
of comparison. As shown in Fig. 3, the infrared target
information is lost when using DenseFuse, and obvious
thermal radiation targets are not captured, while all relatively
obvious thermal radiation targets can be captured by NestFuse,
IFCNN, PMGI, and U2Fusion. However, noise interference
from the visible images affects the results to varying degrees,
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Fig. 4. Qualitative comparison results of CLF-Net and eight state-of-the-art
methods on Nato_camp_1811. We have selected the salient object (i.e., the red
box) and zoomed in on it in the bottom-right corner for ease of comparison.
The first two images in the first row are (a) infrared image and (b) visible
image. These are followed by (c) DenseFuse, (d) RFN-Nest, (e) FusionGAN,
(f) GANMcC, (g) IFCNN, (h) PMGI, (i) U2Fusion, (j) STDFusionNet,
(k) IFSepR, and (1) CLF-Net.

(@)

Fig. 5. Qualitative comparison results of CLF-Net and eight state-of-the-art
methods on Kaptein_1123. We have selected the salient object (i.e., the red
box) and zoomed in on it in the bottom-right corner for ease of comparison.
In addition, we have selected the two background areas of sky and ground
(i.e., the blue box and green box, respectively). The first two images in the
first row are (a) infrared image and (b) visible image. These are followed
by (c) DenseFuse, (d) RFN-Nest, (e) FusionGAN, (f) GANMcC, (g) IFCNN,
(h) PMGI, (i) U2Fusion, (j) STDFusionNet, (k) IFSepR, and (1) CLF-Net.

among which the most seriously impacts results are obtained
using U2Fusion. In addition, conspicuous targets with high
contrast can be captured using FusionGAN and GANMcC.
However, the edge of the target is fuzzy, which affects
target recognition. In contrast, when using STDFusionNet
and CLF-Net, the most prominent infrared targets of the
highest quality can be captured. However, compared with
STDFusionNet, the edge of the salient target in CLF-Net is
clearer and closer to the infrared image. In Fig. 4, the best
performance for the fusion of salient objects is still achieved
using our method.

In Figs. 5 and 6, we not only select the salient object (i.e.,
the red box) and zoom in on it in the bottom-right corner,
but we also select the background areas. As shown in Fig. 5,
first, for salient targets, enough information is retained using
CLF-Net to obtain infrared targets with clear edges and high
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Fig. 6. Qualitative comparison results of CLF-Net and eight state-of-the-art
methods on 2_men_in_front_of _house. We have selected the salient object
(i.e., the red box) and zoomed in on it in the bottom-right corner for ease of
comparison. In addition, we have selected the background areas of the sky
(i.e., the blue box). The first two images in the first row are (a) infrared image
and (b) visible image. These are followed by (c) DenseFuse, (d) RFN-Nest,
(e) FusionGAN, (f) GANMcC, (g) IFCNN, (h) PMGI, (i) U2Fusion,
(j) STDFusionNet, (k) IFSepR, and (I) CLF-Net.

contrast. In addition, the texture information in the background
areas of the ground in the visible images can be retained
(i.e., the green box) when using DenseFuse, NestFuse, [FCNN,
STDFusionNet, and CLF-Net. However, for other backgrounds
in the image, such as the sky (i.e., the blue box), the five
algorithms perform differently. In CLF-Net, there is minimal
disturbance from the thermal infrared information, and the
brightest sky, which is the same as the sky in the visible image,
is obtained.

Through the above comparison experiments, it is found that
a sufficient amount of texture information of the visible images
can be adaptively retained in CLF-Net, while the clearest
infrared salient target is extracted. This indicates that the fused
images generated by our method have excellent subjective
visual effects.

2) Quantitative Results: To quantitatively analyze our
method and eight other algorithms, 20 image pairs are selected
from the TNO dataset for testing. The results of six general
quantitative metrics are shown in Fig. 7 and Table II. Among
the six metrics, the best performance in terms of EN, VIF,
and SD is achieved using our method, and significant advan-
tages in terms of VIF are observed. In addition, comparable
performance on the MI, AG, and SF metrics is achieved using
our method. For the MI metric, except for STDFusionNet,
the best performance is achieved using our method compared
with other algorithms. For the AG metric, our method follows
behind U2Fusion and IFCNN, and for the SF metric, our
method follows behind IFCNN by only a narrow margin.

As shown in Fig. 7, the highest value on almost all image
pairs on the VIF metric is obtained using our method. The VIF
metric is consistent with the human visual system. By obtain-
ing the highest value on the VIF metric, it is demonstrated
that our algorithm has a better human visual effect, which is
consistent with the results obtained in the qualitative analysis.
The larger EN is, the more information that is contained in the
fused image. The largest amount of information is contained in
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Fig. 7. Quantitative comparison results of CLF-Net and nine state-of-the-
art methods on 20 images from the TNO dataset. Six metrics are used for
comparison: EN, MI, VIF, SD, AG, and SF. The compared methods are
DenseFuse, RFN-Nest, FusionGAN, GANMcC, IFCNN, PMGI, U2Fusion,
STDFusionNet, IFSepR, and CLF-Net.

TABLE II

QUANTITATIVE COMPARISON RESULTS OF CLF-NET AND NINE
STATE-OF-THE-ART METHODS ON 20 IMAGES FROM THE TNO
DATASETS. SIX METRICS ARE USED FOR COMPARISON: EN, MI,
VIF, SD, AG, AND SF. RED REPRESENTS THE BEST RESULT,
BLUE REPRESENTS THE SECOND BEST RESULT, AND BOLD
REPRESENTS THE THIRD BEST RESULT

TNO
EN[41] MI[42] VIF[43] SD[44] AG[45] SF[46]

DenseFuse [9] 63989 21046  0.6342  8.5050 2.7006  0.0266
RFN-Nest[17] 69657 20058 0.7614 9.1554 28707  0.0246
FusionGAN [11]  6.5718 22516  0.6119  8.6336  2.5011  0.0259
GANMCC [13] 67397  2.1975 0.6482  8.8980  2.6367  0.0247
IFCNN [14] 6.8325 23595 07720 89772  5.0494  0.0501
PMGI [15] 70370 22342 07993 05324 37842 0.0359
U2Fusion [16]  6.9903 17694  0.7401  9.4385 53138  0.0479
STDFusionNet[19] 7.0225  4.1589 09510 92720  4.6846  0.0492
IFSepR [47] 6.5597  2.0902  0.6836 8.7226 35794  0.0370
CLF-Net 72262 3.63590  1.0484  9.6135 4.9897  0.0495

the fused image of our CLF-Net. The best performance on SD,
which reflects a result with high contrast and is also consistent
with the results of qualitative analysis, is achieved using our
proposed method. The larger MI is, the more the information
transfers from the source images to the fused image, which
indicates that our method retains a large amount of information
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Fig. 8. Qualitative comparison results of CLF-Net and eight state-of-the-art
methods on FLIR_00993. We select a background area of the tree (i.e., the
green box) and zoom in it in the bottom right corner for ease of comparison
and mark the salient road scene object (i.e., the red box). The first two images
in the first row are (a) infrared image and (b) visible image. These are followed
by (c) DenseFuse, (d) RFN-Nest, (e) FusionGAN, (f) GANMcC, (g) IFCNN,
(h) PMGI, (i) U2Fusion, (j) STDFusionNet, (k) IFSepR, and (I) CLF-Net.

Fig. 9. Qualitative comparison results of CLF-Net and eight state-of-the-art
methods on FLIR_03952. We select a background area of the banner (i.e., the
green box) and zoom in it in the bottom-left corner for ease of comparison and
select the salient road scene object (i.e., the red box). The first two images in
the first row are (a) infrared image and (b) visible image. These are followed
by (c) DenseFuse, (d) RFN-Nest, (e) FusionGAN, (f) GANMcC, (g) IFCNN,
(h) PMGI, (i) U2Fusion, (j) STDFusionNet, (k) IFSepR, and (I) CLF-Net.

from the infrared and visible images. In addition, both SF and
AG can reveal the details and textures, respectively, of the
fused image. Although the SF and AG metrics using our
methods are not the best, the comparable results still mean that
the fused images obtained using our method contain adequate
gradient information.

C. Generalization Experiment on RoadScene Dataset

To explore the generalization capability of our method,
we compare our proposed CLF-Net with eight other methods
on the RoadScene dataset.

1) Qualitative Results: We select four typical image pairs
from the RoadScene dataset for analysis. As shown in
Figs. 8-11, we select the salient targets of typical road scenes
with red boxes (i.e., the cars and people). In the comparison
with other methods, the salient object of the fused image
generated by CLF-Net has a clear edge contour and the
highest contrast, which maximizes the retention of thermal
targets in the infrared images. Due to the unique imaging
mode of the infrared image, it is difficult to distinguish the
time or weather in the infrared image because the sky of the
infrared image is always dark regardless of the time of day.
In Figs. 8, 10, and 11, the scenes were all taken during the
day. However, it is difficult to estimate whether the scene

Fig. 10. Qualitative comparison results of CLF-Net and eight state-of-the-art
methods on FLIR_04302. We select a background area of the bole (i.e., the
green box) and the salient road scene object (i.e., the red box). The first two
images in the first row are (a) infrared image and (b) visible image. These are
followed by (c) DenseFuse, (d) RFN-Nest, (e) FusionGAN, (f) GANMcC,
(g) IFCNN, (h) PMGI, (i) U2Fusion, (j) STDFusionNet, (k) IFSepR, and
(1) CLF-Net.

Fig. 11. Qualitative comparison results of CLF-Net and eight state-of-the-art
methods on FLIR_04598. We select a background area of the writing on wall
(i.e., the green box) and mark the salient road scene object (i.e., the red box)
and zoom in them in the bottom corner for ease of comparison. The first two
images in the first row are (a) infrared image and (b) visible image. These are
followed by (c) DenseFuse, (d) RFN-Nest, (e) FusionGAN, (f) GANMcC,
(g) IFCNN, (h) PMGI, (i) U2Fusion, (j) STDFusionNet, (k) IFSepR, and
(1) CLF-Net.

represents day or night from the resulting fusion image,
except when using IFCNN, STDFusionNet, and CLF-Net.
Among these methods, the best performance is achieved using
STDFusionNet and CLF-Net. Meanwhile, compared with
STDFusionNet, CLF-Net has the brightest sky background
and is closest to the visible images. In addition, we select
some background areas, such as the tree, banner, and writing
on the wall, with green boxes. Through comparison, the most
detailed texture information of visible images is retained when
using our method. In Fig. 10, it is worth noting that the
sunlight makes the visible images taken by the camera appear
slightly overexposed, resulting in blurred details. However, the
influence of overexposure is effectively reduced in the fusion
image generated by our method.

2) Quantitative Results: Twenty image pairs from the Road-
Scene dataset are selected for quantitative evaluation, and
the quantitative comparison results are shown in Fig. 12 and
Table III. Specifically, the largest average values in terms of
EN, MI, VIF, AG, and SF are obtained using our method.
For the SD metric, our proposed algorithm has a comparable
performance with the NestFuse and STDFusionNet method by
a narrow margin. In general, good results in both qualitative
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Fig. 12. Quantitative comparison results of CLF-Net and nine state-of-the-
art methods on 20 images from the RoadScene dataset. Six metrics are used
for comparison: EN, MI, VIF, SD, AG, and SF. The compared methods are
DenseFuse, RFN-Nest, FusionGAN, GANMcC, IFCNN, PMGI, U2Fusion,
STDFusionNet, IFSepR, and CLF-Net.

TABLE III

QUANTITATIVE COMPARISON RESULTS OF CLF-NET AND NINE
STATE-OF-THE-ART METHODS ON 20 IMAGES FROM THE ROADSCENE
DATASETS. SIX METRICS ARE USED FOR COMPARISON: EN, MI,
VIF, SD, AG, AND SF. RED REPRESENTS THE BEST RESULT,
BLUE REPRESENTS THE SECOND BEST RESULT, AND BOLD
REPRESENTS THE THIRD BEST RESULT

RoadScene
EN[41] MI[42] VIF[43] SD[44] AG|[45] SF[46]
DenseFuse [9] 6.6546  2.8861  0.6291  9.4781  3.1148  0.0319
RFN-Nest [17] 7.2604 27260  0.7049 10.0316 3.3159  0.0306
FusionGAN [11]  7.0384  2.8801  0.5674 10.2825 3.0991 0.0318
GANMCC [13] 72160  2.7471  0.6739 10.2207 3.5105  0.0335
IFCNN [14] 6.9926 29782 0.7290 10.2938 5.4211  0.0570
PMGI [15] 7.3049 33469 0.7676 10.0579 42302  0.0409
U2Fusion [16] 7.1546  2.7608  0.6806  9.9800 59251  0.0582
STDFusionNet[19] 7.4365 47425  0.9989  10.5826 5.8935  0.0652
IFSepR [47] 6.7080  2.6837 0.6107 9.7581  4.0815  0.0498
CLF-Net 7.4540 5.1649 1.0838 104617 6.0765  0.0683

analysis and quantitative analysis are achieved using our
method, indicating that our model has good generalization
ability.

D. Generalization Experiment on Medical Image

In this section, we have compared the image fusion methods
on medical images. The medical images for the experiment are
collected from [48] and include 24 pairs of images.
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Fig. 13.  Qualitative comparison results of CLF-Net and nine state-of-the-
art methods on medical image. We have selected the significant region of
MR-T1 (i.e., the red boxes) and zoomed in on it in the bottom-right corner
for ease of comparison. The first two images in the first row are (a) MR-T1
and (b) MR-T2. These are followed by (c) DenseFuse, (d) RFN-Nest,
(e) FusionGAN, (f) GANMcC, (g) IFCNN, (h) PMGI, (i) U2Fusion,
(j) STDFusionNet, (k) IFSepR, and (1) CLF-Net.

Fig. 14. Qualitative comparison results of CLF-Net and nine state-of-the-art
methods on medical image. We have selected the texture details of MR-T2
(i.e., the red box) and zoomed in it in the bottom-right corner for ease
of comparison. The first two images in the first row are (a) MR-T1 and
(b) MR-T2. These are followed by (c) DenseFuse, (d) REN-Nest, (e) Fusion-
GAN, (f) GANMcC, (g) IFCNN, (h) PMGI, (i) U2Fusion, (j) STDFusionNet,
(k) IFSepR, and (1) CLF-Net.

1) Qualitative Results: We select MR-T1 and MR-T2 as
source images. MR-T1 contains bright skull features and
MR-T2 contains rich texture information. Two typical image
pairs from [48] are shown in Figs. 13 and 14. We select the
significant region of MR-T1 in Fig. 13 and the texture detail of
MR-T2 in Fig. 14 with red boxes. In Fig. 13, different fusion
algorithms have inconsistent effects on bright skull features
in MR-T1. Among them, STDFusionNet and our CLF-Net
have the best retention effect for bright skull area. The images
generated by IFSepR have some distortion but contain rich
texture details. For the marked significant region, RFN-Nest
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Fig. 15.

Qualitative comparison results of CLF-Net and nine state-of-
the-art methods on multifocus images. We have selected the blurred area
(i.e., the red box) and zoomed in it in the bottom-right corner for ease
of comparison. The first two images (a) and (b) in the first row are two
different multifocus images in the same scene. These are followed by
(c) DenseFuse, (d) REN-Nest, (e) FusionGAN, (f) GANMcC, (g) IFCNN,
(h) PMGI, (i) U2Fusion, (j) STDFusionNet, (k) IFSepR, and (I) CLF-Net.

TABLE IV

QUANTITATIVE COMPARISON RESULTS OF CLF-NET AND NINE
STATE-OF-THE-ART METHODS ON 24 MEDICAL IMAGES. SIX METRICS
ARE USED FOR COMPARISON: EN, MI, VIF, SD, AG, AND SF.
RED REPRESENTS THE BEST RESULT, BLUE REPRESENTS THE
SECOND BEST RESULT, AND BOLD REPRESENTS
THE THIRD BEST RESULT

5021015

6]

Fig. 16.  Qualitative comparison results of CLF-Net and nine state-of-
the-art methods on multifocus images. We have selected the blurred area
(i.e., the red box) and zoomed in it in the bottom-right corner for ease
of comparison. The first two images (a) and (b) in the first row are two
different multifocus images in the same scene. These are followed by
(c) DenseFuse, (d) REN-Nest, (e) FusionGAN, (f) GANMcC, (g) IFCNN,
(h) PMGI, (i) U2Fusion, (j) STDFusionNet, (k) IFSepR and (1) CLF-Net.
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and FusionGAN have almost lost the features of this region.
In contrast, IFCNN, PMGI, and CLF-Net retain the features
of the significant region well, which are closer to the source
image.

In Fig. 14, the analysis of the effect of the bright skull
area is consistent with that in Fig. 13. In addition, for
the orbital region, MR-T2 is brighter than MR-T1, only
GANMCcC, IFCNN, STDFusionNet, and CLF-Net retain the
brightness of MR-T2 better. Finally, compared with Fig. 13,
the MR-T2 image of Fig. 14 contains richer and more useful
texture information. DenseFuse, FusionGAN, GANMcC, and
PMGI retain less texture information, and IFCNN, U2Fusion,
STDFusionNet, IFSepR, and CLF-Net retain more texture
information.

2) Quantitative Results: The quantitative comparison
results are shown in Table IV and Fig. 17. AG and SF reflect
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Fig. 17.  Quantitative comparison results of CLF-Net and nine state-of-
the-art methods on 24 pairs of medical images. Six metrics are used for
comparison: EN, MI, VIF, SD, AG, and SF. The compared methods are
DenseFuse, RFN-Nest, FusionGAN, GANMcC, IFCNN, PMGI, U2Fusion,
STDFusionNet, IFSepR, and CLF-Net.

the texture information of images, and IFSepR, CLF-Net, and
IFCNN are the top three in these two metrics, followed by
U2Fusion and STDFusionNet, indicating that these algorithms
better retain rich texture information in the image, which
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TABLE V

QUANTITATIVE COMPARISON RESULTS OF CLF-NET AND NINE
STATE-OF-THE-ART METHODS ON 36 MULTIFOCUS IMAGES. S1X
METRICS ARE USED FOR COMPARISON: EN, MI, VIF, SD,
AG, AND SF. RED REPRESENTS THE BEST RESULT, BLUE
REPRESENTS THE SECOND BEST RESULT, AND BOLD
REPRESENTS THE THIRD BEST RESULT

Multi-focus Image
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EN[41] MI[42] VIF[43] SD[44] AG[45] SF[46] B
DenseFuse [9]  7.2860 10.1347 1.7746  10.2895 6.0100  0.0748 5
RFN-Nest[17] ~ 7.4388 57572 1.6765 10.3452 43296  0.0430

FusionGAN [11]  7.0896  5.8655 12374 97979 53408  0.0643
GANMcC[13]  7.0103 55935 1.1978 107624 6.1092  0.0731
IFCNN [14] 73324 63636 17750 103278 7.2626  0.0919
PMGI [15] 6.6468 39707 07788 93841  6.5229  0.0800
U2Fusion [16]  7.4039  5.8298  1.6015 105110 8.3527  0.0940
STDFusionNet[19] 7.1489  6.9463 14562 9.4457  6.5482  0.0828
IFSepR [47] 73363 83457 16208 10.4764 7.1306  0.0935
CLF-Net 74048 62178  1.6919 102464 73844  0.0936

is consistent with qualitative analysis. In the VIF metric,
CLF-Net, IFCNN, and PMGI are the top three algorithms,
indicating that the images obtained by these algorithms have
a better human visual effect. In addition, IFSepR has the
lowest VIF, which is related to image distortion. Finally, our
algorithm also has good performance in EN and MI, which
demonstrates its great ability in transferring information.
Medical image fusion task is similar to infrared and visible
image fusion task to some extent. Based on the above qualita-
tive and quantitative analysis, our proposed method has good
application potential in the medical image fusion task.

E. Generalization Experiment on Multifocus Image

In this section, we evaluate our method in the field of
multifocus image fusion. The multifocus images for the test
are collected from [49] and include 36 pairs of images in
different scenarios.

1) Qualitative Results: The source images are derived from
the same image, which are blurred in different nonoverlapping
regions. Two typical image pairs from [49] are shown in
Figs. 15 and 16. As for the overall image fusion effect, the
distortion of PMGI fusion results is serious, which contains
a large amount of noise. IFSepR can fuse the blurred region,
but the distortion occurs in the sky. The fusion performance
of RFN-Nest, FusionGAN, GANMCcC, and STDFusionNet for
the blurred region is poor, mainly reflected in the difficulty
in clearly identifying the blurred text. In contrast, IFCNN,
U2Fusion, and DenseFuse retain the details of the blurred area,
and the text is clearly visible. CLF-Net preserves the details
of the blurred area to a certain extent and the text is legible.

In Fig. 16, IFCNN, U2Fusion, and IFSepR have the best
reservation for the detail features of the fuzzy region, which
is closest to the source image. DenseFuse and CLF-Net can
also better retain enough texture details, while RFN-Nest,
FusionGAN, and STDFusionNet are barely able to discern the
blurred details.

2) Quantitative Results: The quantitative comparison
results of multifocus image fusion are shown in Table V
and Fig. 18. U2Fusion ranks first in AG and SF, which
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Fig. 18.  Quantitative comparison results of CLF-Net and nine state-of-
the-art methods on 36 pairs of multifocus images. Six metrics are used for
comparison: EN, MI, VIF, SD, AG, and SF. The compared methods are
DenseFuse, RFN-Nest, FusionGAN, GANMcC, IFCNN, PMGI, U2Fusion,
STDFusionNet, IFSepR, and CLF-Net.

demonstrates that it retains a wealth of detailed texture infor-
mation. IFCNN has the best effect in the VIF metric, and the
images generated are closer to human vision. Our algorithm
ranks second in EN, AG, and SF, and third in VIF, indicating
that our method is competitive in multifocus image fusion.

Compared with infrared and visible image fusion, the strat-
egy of multifocus image fusion is a little different. Specifically,
for the blurred region in the source image, the multifocus
fusion image is more inclined to retain the corresponding
unblurred part in the single source image. Therefore, some
algorithms with good performance in infrared and visible
image fusion have poor performance in multifocus image
fusion. However, our proposed algorithm based on contrastive
learning is also biased to retain information in local areas
reserving the region with the highest similarity in the source
image. Therefore, our method still has strong application
potential in multifocus image fusion.

Compared with infrared and visible image fusion, the
results of our method on medical image and multifocus image
fusion are slightly inferior. In the future work, we can carry
out in-depth research from two aspects: on the one hand,
we can use specific training sets to make the model targeted.;n
the other hand, based on the characteristics of medical and
multifocus images, some new modules can be introduced to
optimize the model.
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(a)

(b)

(c)

(d)

(e)

Fig. 19. Visualization of the results of ablation experiment on four
typical TNO image pairs. From left to right: Kaptein_1123, lake, bench, and
2_men_in_front_of_house. From top to bottom: (a) infrared images, (b) visible
images, (c) fused images of CLF-Net, (d) fused images of CLF-Net without
patchNCE loss, and (e) difference between (c) and (d).

TABLE VI

QUANTITATIVE COMPARISON RESULTS OF ABLATION EXPERIMENT ON 20
IMAGES FROM THE TNO DATASETS. SIX METRICS ARE USED FOR
COMPARISON: EN, MI, VIF, SD, AG, AND SF. RED REPRESENTS
THE BEST RESULT

EN[41] MI[42] VIF[43] SD[44] AGI[45] SF[46
W/opatchNCE  7.1474 34332 09703 94721  4.0682  0.0389
CLF-Net 72262 3.6359  1.0484  9.6135 49897  0.0495

F. Ablation Experiment

In our model, in addition to introducing the SSIM loss
function, we mainly design the loss function based on a
comparative learning framework: the patchNCE loss. The two
loss functions work together to guide the CNN network to
explore the most appropriate parameters. The PatchNCE loss
contrasts the source images with the fused image at the deep
feature level to guide the network to fully retain the significant
target of the infrared image and the detailed texture of the
visible image. To verify the effectiveness of the patchNCE
loss, we conduct relevant ablation experiments, in which we
have removed the patchNCE loss by setting the parameter 4,
to 0 and only use the SSIM loss to train our network.

The results of ablation experiments are shown in Fig. 19 and
Table VI. As shown in Fig. 19(d), the model can only realize
the fusion of infrared and visible images with the use of the
SSIM loss. However, there are still some flaws in the fusion of
the background texture information. Meanwhile, to intuitively
compare the difference between the two fusion images with
or without patchNCE loss, we directly perform the subtraction
operation for the two images and invert the results, which are
shown in Fig. 19(e). The darker the image is, the greater the
difference between the two fusion images. Fig. 19(e) shows
that there are many dark parts in the overall background
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TABLE VII

METHODS ON THE TNO AND ROADSCENE (UNIT: SECOND). RED
REPRESENTS THE BEST RESULT, BLUE REPRESENTS THE
SECOND BEST RESULT, AND BOLD REPRESENTS
THE THIRD BEST RESULT

Methods TNO RoadScene Parameters(M)

DenseFuse [9] 0.0912 + 0.0540  0.0484 + 0.0223 0.296772
RFN-Nest [17] 0.2692 + 0.1246  0.1142 + 0.0357 30.096996
FusionGAN [11] 1.2279 + 0.5322  0.6627 + 0.1029 1.323586
GANMCcC [13] 24147 + 1.0291  1.3869 + 0.2020 2.271299
IFCNN [14] 0.0246 + 0.0273  0.0148 + 0.0186 0.334348
PMGI [15] 0.2702 + 1.1260  0.1436 + 0.0317 0.042017
U2Fusion [16] 1.5748 + 0.6614  0.8602 + 0.1272 0.659217
STDFusionNet[19] ~ 0.6971 + 0.3126  0.3671 * 0.0762 0.282513
IFSepR [47] 2.7371 £ 0.5484  1.4836 + 0.1634 0.513827

CLF-Net 0.0857 + 0.0530  0.0459 + 0.0239 0.190632

area and the edge part of the salient target, which indicates
that the patchNCE loss has made up for a large amount
of background texture information and edge information of
the salient target. In addition, the results of the quantitative
comparison are demonstrated in Table III. Compared with the
fused images of CLF-Net without patchNCE loss, our method
has significantly improved in all metrics, especially in the AG
and SF metrics, which shows that the fused images generated
by our method have richer gradient and texture information,
which is consistent with the previous analyses.

G. Efficiency and Complexity Evaluation Experiment

For image fusion tasks, model generation efficiency is also
an important indicator to evaluate the model performance,
which can be intuitively evaluated by running time. By testing
on the TNO and RoadScene datasets, we list the mean and
standard deviation of the running time of nine different algo-
rithms, including our algorithm in Table VII. The mean of the
running time can reflect the comprehensive running efficiency
of the model, and the standard deviation of the running time
can reflect the robustness of the model for the fusion of
source images with different resolutions. According to the
results, our methods are superior to most algorithms except
for IFCNN, which indicates that our CLF-Net is competitive
in the evaluation of running efficiency.

In addition, we also test the number of parameters of the
model. The result shows that the number of parameters of
CLF-Net is relatively low compared with other comparison
algorithms, only higher than PMGI slightly, which indicates
that our network is lightweight.

H. Expending Experiment

In this section, we discuss negative sample selection in the
adaptive patchwise contrastive learning framework. There are
three possible implementations, as described in the following
example. If we select a query from the fused image obtained
by the infrared encoder and a positive sample from the infrared
image, then we can acquire the negative examples from the
following three strategies: 1) the visible image encoded by the
visible encoder; 2) the visible image encoded by the infrared
encoder; and 3) the rest of the infrared image, which is the
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TABLE VIII

QUANTITATIVE COMPARISON RESULTS OF EXPENDING EXPERIMENT
ON 20 IMAGES FROM THE TNO DATASETS. S1X METRICS ARE USED
FOR COMPARISON: EN, MI, VIF, SD, AG, AND SF. RED
REPRESENTS THE BEST RESULT

strategy (a) strategy (b) strategy (c)

EN [41] 6.9340 6.5267 7.2262
MI [42] 33141 2.7148 3.6359
VIF [43] 0.8139 0.4436 1.0484
SD [44] 9.3358 9.5201 9.6135
AG [45] 4.2819 4.2593 4.9897
SF [46] 0.0479 0.0465 0.0495

Time 16’527 17°29” 16°50”

implementation adopted in this study. The comparative test
results are shown in Table VIII.

From Table VIII, it can be seen that the best performance in
all metrics is achieved using strategy 3), the method proposed
in this article. The reasons are analyzed as follows. First, for
strategy 1), the features extracted from different encoders are
inconsistent, which results in a significant difference between
the negative examples obtained from the visible encoder and
the query obtained by the infrared encoder. Based on this
issue, the contrastive loss is maintained at a low value from
the beginning of training. As a result, this strategy cannot
be implemented as a good guiding role in the optimization
of network parameters. Second, for strategy 2), positive and
negative patches are encoded by the same encoder, which
can ensure that positive and negative patches are in the same
space. However, since the function of the infrared encoder is
specific, it has no practical significance in obtaining visible
image features from the infrared encoder. Thus, there is still
a significant difference between the positive sample and the
negative sample, which also exists at the beginning of the
training. In addition, strategy 2) has considerable computa-
tional redundancy, which can also be seen from the training
time per epoch.

V. CONCLUSION

In this article, we propose a novel end-to-end infrared and
visible image fusion network, named CLF-Net. A novel unsu-
pervised NCE framework is introduced into the image fusion.
Based on the framework, we design an adaptive patchwise
contrastive loss, which focuses on the deep representation
similarity. The structural similarity loss is also adopted, which
focuses on the structural similarity. Both loss functions guide
the network in adaptively extracting and fusing features. As a
result, not only is the significant thermal target in the infrared
image retained, but the rich texture features in the visible
image are also retained. Based on extensive qualitative and
quantitative experiments, our CLF-Net is superior to most
advanced methods in both visual perception and quantitative
metrics. In the future, on the one hand, we will optimize the
model to further improve the performance, and on the other
hand, we will apply infrared and visible image fusion to a
wider range of tasks, such as target detection and RGB-thermal
(RGBT) tracking.
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