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Abstract— This article presents a compact continuous-flow
automaton for the metrological characterization of an array of
low-cost gas sensor systems (up to 17 devices) used in air quality
monitoring. The automaton readily generates homogeneous gas
mixtures of carbon monoxide (CO), nitrogen monoxide (NO) and
dioxide (NO2), and ozone (O3) in the parts-per-billion range (ppb,
nmol mol−1) that are stable, that is, dispersion of 1 ppb (NO, NO2,
O3) and 9 ppb (CO), with response times of 2 min (CO, NO, O3)
and 30 min (NO2). The resulting mixtures, which are traceable
to the International System of Units (SI) due to the usage of
calibrated high-grade reference instruments, can be humidified
[0%–60% relative humidity (RH)] and, in addition, the devices
under test (DUTs) can be heated (to temperatures between
5 ◦C and 30 ◦C) to systematically simulate different atmospheric
environments. The application of fractional factorial designs
makes the protocol efficient and leads to orthogonal variables.
With the presented installation, ten low-cost gas sensor systems
are calibrated and an uncertainty estimation is performed. The
average values of the relative standard uncertainties across all
DUTs are estimated as 52% (CO), 61% (NO), 22% (NO2),
and 21% (O3).

Index Terms— Air quality monitoring, calibration, design of
experiments, gas sensor, low cost, metrology.

I. INTRODUCTION

A IR pollution is harmful to human health and leads to
premature death [1], [2], [3]. Meanwhile, studies have

shown that air quality can vary greatly across space and time
within cities [4], but high-grade measurement instruments are
scarcely distributed due to their high costs. Therefore, individ-
ual exposure generally remains unknown. Thus, there has been
a wide interest in high-resolution air quality monitoring with
low-cost gas sensors, for example, for carbon monoxide (CO),
nitrogen monoxide (NO) and dioxide (NO2), and ozone (O3),
in the last years [5], [6], [7], [8], [9], [10]. These sensors,
however, suffer from cross-sensitivities [11], interferences
with environmental factors like relative humidity (RH) [12]
and temperature (T) [11], unit-to-unit variability [11], and
aging [13].

To counter some of these effects and to meet data qual-
ity objectives such as the ones defined in the Directive
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2008/50/EC [14], different sensors are usually merged into the
so-called low-cost sensor systems (known as sensor fusion)
so that cross-sensitivities and interferences can be calibrated.
Examining that many variables, each with several levels, in a
laboratory setting is undeniably laborious and, as a con-
sequence, rarely affordable. Consequently, low-cost sensors
are usually characterized or calibrated in field campaigns
(i.e., by placing them next to high-grade environmental mon-
itors) [15], [16] using machine-learning algorithms such as
neural networks [5] or random forests [8].

However, it can be shown that field calibration only captures
the local pollutant distribution (both with respect to space
and time) [17], [18], [19]. The main problem lies in the
field data used for calibration, as the underlying pollutant
distribution is not representative of every location and season
(i.e., a sampling bias), leading to relocation problems and
concept drift. No causality can be established in field studies,
as all variables of interest are generally correlated (i.e., not
orthogonal), as they are generated by the same processes
(e.g., combustion).

To avoid these problems, the distinct factors must be orthog-
onal [20]. To achieve this, several factors must be varied
between individual experiments, that is, complex gas mixtures
must be generated under varying environmental conditions,
which is anything but trivial (e.g., due to potential chemical
reactions). At the same time, the generation of reference
conditions should also be affordable and traceable to the
International System of Units (SI) [21]. While producing
arbitrary gas mixtures is well established (e.g., in chemical
manufacturing), the generation of SI-traceable mixtures for
metrological characterization of measurement instruments is
more challenging, that is, having mixtures of well-known
measurement uncertainty. This is due to potential chemi-
cal or physicochemical reactions when generation is per-
formed using methods such as dynamic dilution. For instance,
NO and O3 react to NO2, and NO2 is adsorbed strongly
on certain surfaces. Another important aspect is that calibra-
tion must be affordable, particularly for low-cost products.
Hence, the amount of manual labor should be reduced to a
minimum.

Meanwhile, automated gas generation and mixing with
diffusion/permeation tubes and dynamic dilution followed
by humidification within exposure chambers have been
explored [22], [23], whereas both existing works use calibrated
instruments as reference methods. Although high-volume
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Fig. 1. Schema of the setup.

installations enable parallel sampling of many different sensors
or devices under test (DUTs) regardless of their opening, they
also come with several limitations, such as large response time,
risk of inhomogeneity, and large consumption of resources.

Thus far, a compact continuous-flow installation with a
short response time and low risk of inhomogeneity as well
as an efficient protocol in which all relevant parameters
are varied simultaneously in a systematic manner has not
yet been presented. In doing so, the orthogonality of the
synthetic atmospheres must be guaranteed, which is crucial
for multidimensional calibration models with interactions. This
motivates the usage of experimental designs and fractional
factorial designs, in particular, leading to an efficient protocol
with a minimum number of experiments [20], [24].

This work builds on the existing knowledge and demon-
strates how the metrological characterization (and traceable
calibration) of low-cost gas sensor systems can be made
affordable. In particular, mixtures of CO, NO, NO2, and O3 are
dynamically generated and humidified, whereas DUTs can
be tempered within a climate chamber; high-grade reference
instruments serve as a reference method. Moreover, it will be
demonstrated how these mixtures can be delivered to the DUTs
in parallel, how it is guaranteed that the number of experiments
is minimal, and how the resulting atmospheres (i.e., com-
binations of pollutants and environmental factors) become
orthogonal. A web application for the design of orthogonal
experiments is made available. Most importantly, no flooding
of a high-volume chamber is required, thereby leading to a
comparatively responsive system with low consumption of
resources and homogeneous mixtures so that a variety of
synthetic atmospheres can be simulated in a few experiments.
In a final step, the installation is used to characterize ten
low-cost gas sensor systems of a collaborator.

II. MATERIALS AND METHODS

A. Hardware

1) Gas Generation: A schema of the setup is shown in
Fig. 1 and was operated according to ISO/IEC 17025 and
ISO/IEC 6145 [25]. All instruments were interconnected by
perfluoroalkoxy alkane tubings and metal fittings (6.35 mm,

Fig. 2. Schema of the manifold (fabricated from polytetrafluoroethylene).

Swagelok Company, Solon, OH, USA). The (dry zero) base
air stream was fixed to 7.0 L min−1, whereas the flow was
regulated by a calibrated mass flow controller (SFC5400,
Sensirion AG, Stäfa, Switzerland). Amount fractions of CO,
NO, and NO2 in the parts-per-billion (ppb, nmol mol−1) range
were generated from gas cylinders (20 × 103 to 100 × 103 ppb
(CO and NO in nitrogen, NO2 in synthetic air), Messer
Schweiz AG, Switzerland), also regulated via calibrated mass
flow controllers (SFC5400, Sensirion AG, Switzerland). The
mixing region was designed to yield instantaneous blending
and the design is described in [26]. The gas mixture was
humidified using a water tempering system (RC6 & RC22,
MGW Lauda, Germany) in combination with nafion tub-
ings (FC125-240-10MP, Perma Pure LLC, Lakewood, NJ,
USA), whereas the resulting RH was measured and regulated
according to the desired set point. O3 was injected (after
humidification) from a dynamic gas generator (Sonimix4001,
LNI Swissgas SA, Switzerland) with a fixed flow of 3.3 L
min−1 but variable amount fractions.

The mixture was then delivered to the reference instruments
and DUTs via some custom-made manifold (depicted in
Fig. 2), fabricated from polytetrafluoroethylene to minimize
physicochemical interactions. The design of the manifold
enables parallel characterization of up to 17 DUTs and guar-
antees that every device that is connected measures at the
same location. One of the openings was not connected to avoid
overpressure. Finally, yet importantly, all DUTs were placed
inside a climate chamber to temper the constituents.

2) References: Since reactions between the different com-
pounds are possible (NO and O3, in particular [27]), the whole
process was monitored by reference instruments that were
periodically calibrated with national standards; these measure-
ments served also as the reference method for calibration of
the DUTs. Tubings from manifold to reference instruments and
DUTs were of equal length to account for potential reactions.
In addition, the tubings outside the climate chamber were insu-
lated to prevent condensation. CO (u1 = 1.0%) and RH (u =
2.0%) were measured by a cavity ring-down analyzer (G2401,
Picarro Inc., Santa Clara, CA, USA), NO (u = 1.2%) and NO2

(u = 1.2%) by a chemiluminescence analyzer (42i, Thermo
Fisher Scientific, Waltham, MA, USA), and O3 (u = 0.6%)
by an ultraviolet photometric analyzer (49C, Thermo Fisher
Scientific). T (u = 0.2%) within the climate chamber was
measured by a thermometer (Almemo2890-9/Pt100, Ahlborn,

1Throughout the article, standard uncertainties (k = 1) are used.
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TABLE I

FRACTIONAL FACTORIAL DESIGN FOR SIX VARIABLES

Ilmenau, Germany). The sampling rate was set to 4 min−1,
but the time series was then resampled to average values of
30 min (i.e., a mean from 120 samples).

3) DUTs: Ten low-cost gas sensor systems (protoypes, LNI
Swissgas SA, Versoix, Switzerland) were characterized with
the setup, repeating the experimental protocol in Table I three
times. No assessment of the sensors or systems was per-
formed before these experiments. The low-cost sensor systems
consisted of electrochemical sensors for CO, NO, NO2, and
NO2/ O3 (B4 series, Alphasense Ltd., Braintree, U.K.) [28],
[29], [30], [31], as well as sensors for RH and T. All
measurement values were only available in mV. The original
sampling frequency was 4 min−1, but the resulting time series
was resampled to average values of 30 min (i.e., a mean from
120 samples). The low-cost sensor systems were equipped
with fans and sucked actively.

B. Software

1) Design of Experiments: Although arbitrary atmospheric
settings can be simulated, the default sequence of experi-
ments performed, that is, combinations of amount fractions
and environmental conditions were based on experimental
designs [20]. In these designs, factors of interest are orthog-
onal, and the number of experiments to be performed is
minimized, thereby leading to an efficient protocol. As an
example, Table I illustrates a fractional factorial design for six
variables (written as 26−2

IV ), which also served as a protocol
for the characterization of the low-cost sensor systems in
this study. Each row corresponds to one atmosphere with a
unique combination of pollutants and environmental factors.
The evaluation of the performance in all atmospheres should
result in a representative estimate that is largely independent
of location or season.

Moreover, a publicly available web app named design-R,
based on the Python library pyDOE [32], was developed with
which designs can be created and downloaded. Design-R is
available under the domain design-r.herokuapp.com.

2) Calculations: For the automated computation of flows
and amount fractions, n mass balances (1) and (2), with input

Fig. 3. State machine.

flow rate Qi,in, input amount fraction xi,in, output flow rate
Qi,out, output amount fraction xi,out, and flow rate of the base
air stream Qair, were solved with a Python script on-the-fly

Qi,inxi,in = Qi,outxi,out (1)

Qi,out = Qout = Qair +
n∑

i=1

Qi,in. (2)

3) State Machine: Software written in LabVIEW (v2020,
NI, TX, USA) communicated with all instruments (see Fig. 1).
Its function was to send commands to the mass flow controllers
and generators (to set flows/amount fractions) and to request
measurement values from all reference instruments. Moreover,
all measured values were recorded in one single (TDMS) file
at a rate of 4 min−1. The state machine of the automaton is
depicted in Fig. 3. Initially, the automaton starts the measure-
ment process by checking all instruments. Once the test passes,
it requests an experimental design (like the one in Table I) as
input. Next, it starts the base airflow and requests the user to
set the climate conditions manually, that is, adjust T and RH.
If the user confirms that these have been set, the automaton
waits until the set points are met (tc). In general, the climate
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Fig. 4. Visualization of the reference device measurements in a typical sequence of experiments; only the retained part of the measurements is shown.

chamber heats up/cools down within 1–2 h and the humidifier
does so within 20–30 min. However, even if the set points are
met, the DUTs require some time to reach equilibrium with
the environment. Therefore, climate stabilization is followed
by waiting for the devices to reach equilibrium with the
environment (te). In a subsequent step, the flows and amount
fractions are computed, and another timer starts for the gas
mixture to stabilize (ts). Finally, the actual measuring process
is initiated (tm). After that, all flows are stopped and the next
experiment is prepared.

C. Uncertainty Estimation

The experimental design protocol (see Table I) was per-
formed three times within three weeks. Within each of the
three repetitions (runs), estimates of the calibration parameters
were obtained. An extended calibration model was developed
(i.e., predicting the amount fraction of each pollutant with
all available sensors). More specifically, the collection of all
n = 16 experiments leads to averages of p = 6 sensor
signals S ∈ R

n × (p+1) which can be mapped to the mean
of the q = 4 reference signals R ∈ R

n × q with parameters
β ∈ R

(p+1) × q (3). The additional dimension is for the
intercept

R = Sβ. (3)

These parameters are found via linear regression using the
Python library scikit-learn [33], whereas each run leads to a
set of calibration parameters. Before performing the fit, each
variable (raw sensor signal) in matrix S was scaled to the
range of [0, 1]. The quality of the models was assessed with
the coefficient of determination R2 that essentially evaluates
the amount of information contained in the sensor signals.
(In other words, it evaluates the suitability of the basis S for
the prediction of R.)

The uncertainty of the predictions, upred., was estimated
according to the law of uncertainty propagation [34] and
consisted of two relevant terms. The first term is the average
relative root mean squared error (RMSE), ēr̂ . It was computed
by squaring and averaging the relative residuals er̂ between
predictions r̂ and reference values r over all runs and all
experiments, given by (4) and (5)

e2
r̂ = (

r̂ − r

r
× 100)2 (4)

TABLE II

CORRELATIONS BETWEEN REFERENCE MEASUREMENTS

ēr̂ =
√∑

e2
r̂

n
. (5)

However, a residual was only included in the sum, if the
predicted reference value was greater or equal to 10 ppb. The
second term is the uncertainty of the corresponding reference
instrument, uref.. The resulting formula is given by (6). Note
that this leads to an uncertainty estimate that is representative
of the whole range of generated amount fractions (see Table I)

upred. =
√

ē2
r̂ + u2

ref. (6)

To assess the added value of sensor fusion, simple calibration
models were also fit (with unscaled variables).

III. RESULTS AND DISCUSSION

A. Characterization of the Installation

Fig. 4 and Fig. 5 depicts a typical sequence of experiments
(the one shown in Table I) in which the four gases as well
as RH and T are varied simultaneously, whereas only the
retained part of each step is shown. The sequence is split
into two working days (with overnight heating of the climate
chamber in between). The most important observation is that
the set points are not met, which is not a problem per se
due to the availability of references. On the one hand, the
levels of CO are too high since no air purifier was used (the
baseline was around 200 ppb). On the other hand, NO and
O3 react to NO2. However, this reaction slightly breaks the
desired orthogonality. To assess the extent of introduced rela-
tionships between the reference signals, a correlation matrix
was computed (see Table II). It shows that some correlation
is indeed introduced, but the values remain rather low and
in any case lower than what can be found in the field [17].
To circumvent this issue and to remove the need for reference
instruments, chemical reactions could be characterized and
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Fig. 5. Visualization of the reference device measurements in a typical sequence of experiments; only the retained part of the measurements is shown.

Fig. 6. Time trace of reference device measurements (one single step).

then added to the mass balances for computing the inputs in (1)
and (2), or alternatively, a black-box model (mapping from
composition and environmental factors to flow rates) could be
developed.

Each step lasts exactly 60 min and the response time of
the system is rather short, that is, 2–3 min (excluding NO2),
as shown in Fig. 6. The longer response time for NO2, that
is, 20–30 min, originates from its stickiness, as all adsorption
sites on the tubings need to be occupied first. Over the course
of a measurement campaign, however, this time eventually
decreases as all adsorption sites will be occupied. Note that
this was also the motivation to discard the first 20–30 min
of each step, as it is part of the flow stabilization state
(see Fig. 3).

Within the retained part of each step, the reference signals
and environmental factors are quite stable (σintra) as shown in
Table III. On average, the values are below 9 ppb for CO and
around 1 ppb for NO, NO2, and O3, suggesting a homogeneous
gas mixture. This is also supported by fluid dynamics, that is,
the Reynolds number [Re = (ρuL/μ)]. At 20 ◦C, the density
(ρ) and dynamic viscosity (μ) of air are 1.2041 kg m−3 and
18.13 × 10−6 kg m−1s−1, respectively. The inner diameter
of the tubings (L) is 4.6 × 10−3 m. The lower bound of the
total flow is 0.172 × 10−3 m3 s−1, leading to a flow velocity
(u) of 10.3 m s−1. Hence, the Reynolds number takes a value
of 3162, which is above the critical Reynolds number (2250)
for pipes and tubes [35], that is, the transition from laminar to
turbulent flow. Since the flow is turbulent in this case, it can be
expected that the resulting gas mixture is indeed homogeneous.
The variability along different runs (σinter) is slightly higher
than σintra, but still relatively low on average (see Table III).

No condensation of water could be observed, which is in part
due to the chosen upper level of RH (i.e., 60%).

Nonetheless, there are still a few options on how to improve
the installation. In the current state, changes in RH and
T are not automatized and have to be adjusted manually.
Since the changes between different levels of RH and T are
only few, this is not much of a problem, but it could be
interesting to automatize that as well in the future to minimize
slack time or to operate during the night. (That would allow
doing more experiments.) Moreover, the response time for
NO2 could be drastically lowered by using some nonstick coat-
ing (e.g., SilcoNert2000) [26], which would enable performing
more experiments per unit time.

The setup is currently intended to simulate orthogonal
atmospheres using fractional factorial designs with two levels
per factor. As a consequence, nonlinearity cannot be captured.
This constraint can be relaxed by using mixed-level fractional
factorial designs [36], in which orthogonality and balance are
traded against efficiency (i.e., the total number of experiments)
and additional levels per factor. This would enable an even
more representative estimate of the measurement uncertainty,
but more experiments would have to be performed. It should
be clarified, however, that the installation can assess the
steady state but no transient behavior. In particular, it could
be shown that humidity transients cause fluctuations in the
sensor signals [12]. Hence, results from the laboratory must
be validated in field experiments, as the atmosphere in the
field is far more complex.

B. Characterization of the Low-Cost Sensor Systems

In the following, the results from the experiments with
the low-cost sensor systems are presented. Fig. 7 shows the
distribution of the calibration coefficients from the multiple
multivariate linear regressions from the three runs and all ten
devices (each black dot/bar, that is, μ ± σ , represents one
device). Since the variables have been scaled before fitting,
the unit of all parameters corresponds to the unit of the output
and the magnitude is proportional to the importance of the
sensor signal in the chosen intervals (see Table I).

For the prediction of the CO levels, the relevance of RH and
T is of a similar magnitude as the sensor signal itself. In other
words, without knowing these variables, no reliable prediction
of the CO pollution levels is possible. As a consequence,
sensor fusion seems strongly recommended, which is also true
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TABLE III

STANDARD DEVIATION OF REFERENCE MEASUREMENTS WITHIN EXPERIMENTS (σINTRA , n = 120) AND BETWEEN RUNS (σINTER , n = 3)

Fig. 7. Parameter distribution of extended linear calibration models across
all three runs (dot/bar: μ ± σ ) from all DUTs (area: unit-to-unit variability).

for the other pollutants. In addition, all sensors appear to see
NO2 and O3 as both sensor signals seem to be required for all
calibration models. In general, the calibration coefficients vary
from run to run, suggesting low repeatability with significant
unit-to-unit variability.

Fig. 8 shows the distribution of the coefficients using a
simple calibration model (using nonscaled input variables this
time). In this plot, the dispersion of the coefficients across
units and runs becomes even more apparent. Ideally, every
low-cost sensor system should be calibrated individually to

Fig. 8. Parameter distribution of simple linear calibration models across all
three runs (dot/bar: μ ± σ ) from all DUTs (isoclines: unit-to-unit variability).

obtain accurate measurements. For the other three pollutants,
similar observations can be made. However, the repeatability
for NO2 and O3, which are two of the most relevant pollutants,
is much better according to Figs. 7 and 8.

The R2 and RMSE scores of both models (Figs. 9 and 10)
suggest once again that calibrating interfering effects is essen-
tial for low measurement uncertainty. For the extended calibra-
tion model, the average RMSE values are 95 ppb (CO), 25 ppb
(NO), 10 ppb (NO2), and 5 ppb (O3); the average R2 values
are 0.94 (CO), 0.68 (NO), 0.96 (NO2), and 0.99 (O3). For
the simple calibration model, the average RMSE values are
367 ppb (CO), 44 ppb (NO), 41 ppb (NO2), and 39 ppb
(O3); the average R2 values are 0.19 (CO), 0.08 (NO), 0.39
(NO2), and 0.45 (O3). Fig. 11 shows low-pass filtered sample
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predictions (first half of Table I) from one of the devices after
an extended calibration.

The high R scores suggest that the available basis vectors
[columns of S in (3)] are sufficient for the collected dataset.
However, if center points were available, the same basis
vectors might lead to lower R2 scores because it might turn out
that the true relationship was nonlinear. Supposing that the true
function was indeed not linear but convex, the obtained models
would overestimate the amount fraction (with the opposite
being true for a concave function).

For a high-end product, this would be certainly not accept-
able; for low-cost gas sensor systems, such an error can be
considered acceptable as it is most likely smaller than the error
that would result if the cross-sensitivities and interferences
were not characterized at all. An equivalent Box–Behnken
design with three levels per factor would require 64 experi-
ments instead of 16 [20], thereby increasing the workload sub-
stantially. Mixed-level fractional factorial designs [36] would
be a potential solution.

Both scores are significantly higher in the case of an
extended calibration model. More precisely, the additional
sensors contain valuable information for the reliable prediction
of pollution levels. Furthermore, the models for NO2 and
O3 appear to be much more reliable than the ones for NO
according to the RMSE, which is related to the measurement
uncertainty (6). For CO, there appears to be a large spread
in the quality. It is also important to stress that these scores
assess the model as a whole and not just the gas sensor for the
corresponding pollutant. For example, malfunctioning sensors
for RH and T would also lead to low performance because the
RH and T sensor signals contain relevant information.

Overall, the observations are largely consistent with ear-
lier findings using the same gas sensors in field campaigns
[9], [10]. Mueller et al. [11] also observed the relevance
of RH and T, high unit-to-unit variability, and time-varying
sensor behavior for NO2 and O3 calibration models. However,
they achieved RMSEs of 5–7 ppb (NO2) and 2–5 ppb (O3),
respectively. Zimmerman et al. [8] reported mean absolute
errors of 40 ppb (CO) and 5 ppb (NO2, O3) using multiple
multivariate linear regressions. (These absolute errors could
be even lowered with random forest models, hinting at some
nonlinearity.) Bigi et al. [37] reported RMSE values below
5 ppb (NO, NO2), which is rather impressive given how low
the estimated performance of the NO sensor is.

Evidently, a higher model performance would be traced
back to a better engineered low-cost sensor system, mod-
els, or methodology (e.g., data preprocessing and filtering).
Nonetheless, the cause of higher performance in field stud-
ies might also have other causes. Outdoors and pollutants
are correlated because they stem from the same chemical
processes [17]. Consequently, one good gas sensor such as
the one for NO2 or O3 could also predict more than one
pollutant due to the existing correlations. In this manner,
a NO2 sensor could also accurately “measure” (or rather, infer)
the pollution levels of NO. In the laboratory, this is inhibited
by the orthogonal factors. At the same time, selection bias,
for example, due to preliminary screening in the laboratory,
might also be an issue.

Fig. 9. (a) Coefficient of determination (R2) and (b) absolute RMSE (in ppb)
of the predictions for each device and pollutant using an extended model.

Fig. 10. (a) Coefficient of determination (R2) and (b) absolute RMSE (in ppb)
of the predictions for each device and pollutant using a simple model.

As for the estimated standard measurement uncertainty,
Fig. 12 shows its distribution for each pollutant across all
devices. The data quality objectives (k = 1) for indicative
measurements are 12.5% for CO, NO, and NO2 as well as 15%
for O3 [14]. The standard measurement uncertainties averaged
over all devices were estimated as 52% (CO), 61% (NO), 22%
(NO2), and 21% (O3). The spread among the CO models is
the largest, with three below 50%, two above, and the rest
somewhere around that value. The predictions of the NO levels
have the lowest quality on average. Interestingly, the estimated
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Fig. 11. Low-pass-filtered predictions of (a) CO, (b) NO, (c) NO2, and
(d) O3 from device 3 after an extended calibration.

uncertainty for NO2 and O3 is the lowest and only misses the
data quality objective by a few percent. It is important to stress
that low and high pollution levels are taken into account in the
estimates. Alternatively, the residuals could be normalized by
hourly (or daily) limit values (e.g., 100 ppb for NO2 [14]),
thereby potentially fulfilling the data quality objectives.

One other commonly used low-cost technology to estimate
pollution levels are passive samplers, which accumulate the

Fig. 12. Standard uncertainties of the measurements across all devices. The
dotted line refers to the data quality objective for CO/NO/NO2 (i.e., 12.5%).

mass of pollutants over time via diffusion, thereby providing
one average measurement value per location per time interval
(e.g., week or month) [38], [39], [40]. After sampling, the
concentration is determined via manual chemical analysis,
whereas the standard uncertainties can range from 8% to 74%
(depending on pollution levels and sampling duration) [41].
Therefore, properly calibrated low-cost gas sensor systems
could be an alternative to passive samplers, in particular, for
NO2 and O3.

However, these gas sensors are consumables, guaranteeing
long-term performance, for example, as part of a wireless
sensor network in a smart city, is an unsolved problem. For
instance, a recent study suggests the exchange of sensors after
six months [13], and consequently, the whole system would
need a recalibration. Deploying the systems in batches would
also facilitate the recalibration process since they could be
recalibrated in batches again. A more modern approach would
be to apply a calibration strategy for the whole wireless sensor
network [9], [19], [42]. Nonetheless, such an approach should
also be SI-traceable but no best practice exists yet.

IV. CONCLUSION AND OUTLOOK

This work presented a compact continuous-flow automaton
that efficiently generates orthogonal atmospheres, that is, com-
binations of pollutants and environmental factors so that the
resulting reference variables are hardly correlated. Moreover,
up to 17 low-cost gas sensor systems can be characterized in
parallel within two working days. The focus of the protocol
was to create reliable, yet inexpensive calibration models that
are representative, that is, models that perform well regardless
of the location at which a low-cost sensor system is deployed.

The automaton generates gas mixtures almost instanta-
neously with response times of 2–30 min, whereas this period
could be shortened in the future by using an appropriate coat-
ing, thereby enabling to perform more experiments per run.
Moreover, the reference gas mixtures are SI-traceable due to
the usage of calibrated reference instruments. Moreover, they
are stable as well as homogeneous, with standard deviations
ranging from 1 ppb (NO, NO2, O3) to 9 ppb (CO) within single
experiments. In the current state, the orthogonal mixtures are
generated based on fractional factorial designs with two levels
per factor, thus nonlinearity cannot be captured. In a subse-
quent step, however, chemical reactions should be included in
the mass balances and mixed-level fractional factorial designs
should be explored.
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The importance to quantify and correct the effects of
cross-sensitivities and interferences with environmental factors
could be confirmed in a laboratory setting. In some instances,
the interferences with environmental factors were of similar
magnitude as the pollutant sensor signal itself. Moreover,
unit-to-unit variability and lack of repeatability, especially
for CO and NO sensors, were observed to be nonnegligible.
Finally, yet importantly, standard measurement uncertainties
were estimated as 52% (CO), 61% (NO), 22% (NO2), and
21% (O3). These values do not yet meet the data quality
objectives for indicative measurements. For NO2 and O3,
however, the uncertainties are lower or at least as high as the
ones from passive samplers. Hence, it could be reasonable to
replace passive samplers with well-calibrated low-cost sensors
to increase spatial and temporal resolutions. In the next step,
it would be important to validate the estimated performance
in field experiments, that is, by collocation next to high-grade
reference instruments at different sites.
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