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Abstract— Bearings are the backbone of every rotary machine
that ranges from civilian to military applications. A single fault in
a bearing can shut down the whole machine that causes personal
damage and economic loss. To prevent the sudden shut down
of rotating machines, signal processing techniques are used to
find out the early-stage faults. In this article, a new early-stage
fault detection algorithm is proposed that uses the harmony
search (HS) algorithm to determine the optimum fault frequency
spectrum. For that, a bandpass filter is applied to the vibration
signal, and the parameters of the bandpass filter such as center
frequency, bandwidth, and order of the filter are dynamic and
depend on the type of faults and the fault frequency resonance
band. To estimate the dynamic parameters of the bandpass
filter, different fitness functions are used based on kurtosis
and spectrum kurtosis. The fitness functions of the optimum
fault frequency spectrum have the highest value compared to
the healthy frequency spectrum. The proposed method is fully
data-driven, and the HS algorithm is employed to optimize the
parameters of the bandpass filter. The results of the proposed
method have been compared with the fast kurtogram, and it has
been concluded that the bandpass filter designed using the HS
algorithm has a better performance. To validate the proposed
method, two datasets are employed and the simulation results
are obtained using the MATLAB environment.

Index Terms— Early-stage fault, fast kurtogram, harmony
search (HS) algorithm, short-time Fourier transform (STFT),
signal processing, spectral kurtosis (SK).

I. INTRODUCTION

EVERY rotary machine is composed of bearings that
range from civilian to military applications, such as

motors, industrial fans, compressors, automobiles, turbines,
and vehicles [1]–[4]. A single fault in a bearing can shut down
the whole machine it is contained within; therefore, vibration
analysis techniques are extensively studied to detect early-
stage faults in rotary machines [5], [6]. Predictive maintenance
of rotating machines in the modern industry can nullify
the failure in rolling element bearings that results in both
economic loss and personal damage.

Based on sensor properties, different methods are used
to compute the faults, such as current-based methods,
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torque-based methods, sound-based methods, acoustic
emission-based, or vibration-based methods [3], [7]–[9]. The
vibration-based methods are extensively researched because
the signal generated by the vibration sensors represents the
dynamic behavior of a bearing. However, it is a challenging
task to accurately detect the fault frequency resonance band
because of the unwanted signals and noise. The faulty
vibration signal S measured from the rolling element bearing
is expressed as follows:

S = Sv + S f + Sn (1)

where Sn , S f , and Sv are the noise signal, periodic signal,
and shaft signal, respectively. In reality, a vibration signal
measured from a rotary machine consists of many other
frequencies along with its shaft rotating frequency [10] and
given as follows:

Sv = α1 cos(2π f1t)+ α2 cos(2π f2t)+ α3 cos(2π f3t) (2)

where f1 is the shaft rotating frequency, f2 and f3 are
the selected harmonics of f1, and α1, α2, and α3 are the
magnitudes of the signals (usually less than one).

The periodic signal occurs due to the faults in the bearing
and the purpose of the fault diagnosis is to determine these
periodic signals [5]. This is a challenging task as the energy of
these faulty signals is very small compared to the total energy
of the signal

S f =
�

k

Xkh(t − ρk) (3)

where h(t) represents the impulse response with a random
time of the impacts ρk and a random sequence of amplitudes
Xk . k is the set of real numbers. The rolling elements of the
bearing possess random slips and random pulses, and hence
it is known as a stochastic process. The resulting signals are
pseudo-cyclostationary instead of cyclostationary due to the
lack of memory of the previous slips, but are usually treated
as cyclostationary [11], [12].

Different signal processing and artificial intelligence meth-
ods are used for early-stage fault diagnoses [13]–[17]. Both
groups of methods present many challenges, for example,
fault frequency detection is difficult for a weak signal with a
high level of noise, and for neural network-based AI methods,
a large dataset and a substantial amount of time are required
for the neural network training [13], [18], [19]. In recent
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years, many new techniques such as wavelet transform, and
so on [13], [15], [20] were developed for the analysis of a
rolling element bearing. However, these analysis techniques
are subjected to constraints, and diagnosis sensitivity is not
much efficient for alternative working conditions. In the lit-
erature, envelope analysis is widely applied to detect fault
frequencies [21] by calculating the power spectrum density
(PSD). Unfortunately, when the signal is exposed to high levels
of noise, PSD fails to compute the faults and hence is not
suitable. In such cases, kurtosis can be used as a statistical
index that gives different values from health to damage of
a bearing and is, therefore, more suitable to measure the
transients in the signal.

Spectral kurtosis (SK) for nonstationary signals is presented
in [22]–[24]. The basic difference between kurtosis and SK is
that kurtosis is computed over one frequency band, whereas
SK is computed over each frequency band. Currently, several
results in the literature have exemplified that the time-domain
kurtosis, frequency-domain kurtosis, and SK can better dis-
tinguish the healthy and faulty bearing due to their property
of determining the spikes in the vibration signals [24]–[26].
Moreover, if the faulty vibration signal is subjected to high
noise as represented by (1), then kurtosis or SK fails to
diagnose the faults of cyclostationary signals. In that case,
a bandpass filter can be applied to the faulty signal to filter
out the background noise of harmless vibration Sn and then
kurtosis or SK can be computed to detect the fault frequency
resonance band. However, parameters of the bandpass filter
such as the center frequency and the bandwidth need to be
selected for specific working conditions, making the filter
effective only for those conditions. Different methods are
proposed to improve the bandpass filter such as enhanced
kurtogram [25] and fast kurtogram [26]. In an enhanced
kurtogram, the vibration signal is decomposed to different
depths, and kurtosis is calculated based on the power spectrum
of the envelope of the decomposed signals. Whereas in a
fast kurtogram, the vibration signal is decomposed with a
1/3 binary tree algorithm, and kurtosis is calculated using
the short-time Fourier transform (STFT). In both methods,
the resultant parameters of the bandpass filter such as central
frequency and bandwidth are static and, therefore, it is highly
possible for the filtered signal to miss the fault frequency
spectrum and fail to diagnose the faults.

Motivated by the aforementioned literature, this article pro-
poses an alternative method to design the improved bandpass
filter that can vary its central frequency and bandwidth accord-
ing to the fault frequency spectrum and external noises with
alternative working conditions. The main contributions of this
article include a new early-stage fault detection algorithm in
which the signal-to-noise ratio of the faulty vibration signal is
improved. Different from the enhanced kurtogram and fast kur-
togram methods, the proposed method utilized the improved
harmony search (HS) algorithm [27], [28] to optimize the
parameters of the dynamic bandpass filter using different
fitness functions based on kurtosis and SK. The values of
these fitness functions increase from healthy to faulty signals.
Using this attribution of fitness functions, optimum bandpass
filters are constructed for each fitness function. The proposed

method is fully data-driven that uses different datasets. The
detail of the utilized datasets is mentioned in Section IV.
The results of the proposed method are also compared with
the fast kurtogram-based bandpass filter and it is concluded
that the proposed method improves the power of the signal
and enhances the fault frequency that helps to diagnose the
faults more efficiently.

The rest of this article is arranged as follows. In Section II,
the theoretical background for the fitness functions and the HS
algorithm are reviewed. In Section III, the proposed algorithm
is presented. In Section IV, different faulty vibration signals
are used to diagnose the faults using the proposed method,
and simulation and results are given. Section V consists of
the conclusion.

II. THEORETICAL BACKGROUND

In this section, different fitness functions and the HS algo-
rithm are reviewed. The fitness functions used in this article
are composed of kurtosis and SK.

A. Kurtosis

Kurtosis is a statical feature of the probability density
function (PDF) to determine the strength of transient impulses
of the nonstationary signal. In statistics, kurtosis can be
defined as the fourth standardized moment [22], [26]. For a
signal x with N number of samples and x̄ sample means, the
kurtosis is given as follows:

K =
1
N

�N
i=1(xi − x̄)4

�
1
N

�N
i=1(xi − x̄)2

�2 . (4)

When faults take place in a bearing, high-frequency tran-
sient impulses generated periodically raise the value of the
kurtosis. Using this phenomenon, transient faults can be deter-
mined and the bearing faults can be diagnosed. By simple
calculation, the kurtosis cannot distinguish between the noise
and the fault impulses, and it is difficult to characterize the
resonant band of the filtered signal.

B. Spectral Kurtosis

SK describes the kurtosis over each frequency band and
allows to discover hidden transients and frequency bands in
which these transients occur. We can calculate the SK value
for the nonstationary signal in the presence of noise as follows:

Kx+n( f ) = Kx( f )

[1+ ρ( f ) ]2 (5)

where ρ( f ) is the function of frequency representing the
noise-to-signal ratio and Kx( f ) is the SK without noise. The
latter can be given as the fourth-order normalized cumulant

Kx( f ) = limx→∞ 1
N

�N
i=1|H (n, f )|4�

limx→∞ 1
N

�N
i=1|H (n, f )|2

�2 − 2 (6)

where H (n, f ) is the complex envelope of x(n). The relation-
ship between the signal x(n) and complex envelop H (n, f ) is
given by the following equation:

x(n) =
� −1/2

+1/2
H (n, f )e j2π f nd Zn( f ). (7)
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C. STFT-Based SK

In (6), the complex envelope H (n, f ) is the function of
time and frequency. The stochastic process x(n) in (7) is
characterized by a double stochasticity, both in H (n, f ) and
d Zn( f ). STFT is an efficient tool that can estimate better
results and in the proposed algorithm, and H (n, f ) is replaced
with STFT. For any stochastic process x(n) with given analysis
window w(n) of length N , the STFT of x(n) is defined as
follows [22], [24], [29]:

STFT(k, f ) =
N�

n=1

x(n)w(n − k)e− j2πn f (8)

where w(n−k) is the short-time window with the shift k. The
STFT-based SK is given by the following equation:

SKSTFT =
limx→∞ 1

N

�N
i=1|STFT|4�

limx→∞ 1
N

�N
i=1|STFT|2

�2 − 2. (9)

D. HS Algorithm

The HS algorithm was inspired by the music-based meta-
heuristic optimization algorithm that was first introduced in
2011 [27]. The population of the HS algorithm consists of
different musical sounds, and the aim is to find the best state
of harmony. The optimization problem of a given function,
subjected to the constraints is defined as

max f (X) or min f (X)

subjected to g(X) ≤ 0 and h(X) = 0 (10)

where X is the set of solution candidates and the goal is to
find the best solution candidate that optimizes (10), also called
the fitness function.

There are three main key parameters of the HS algorithm
that are described as follows.

1) Harmony memory size (HMS) or the number of solution
candidates.

2) Harmony consideration rate (HMCR).
3) Pitch adjustment rate (PAR).
Generally, the values to these three key components are

assigned in the following range [30] 10 ≤ HMS ≤ 50,
0.7 ≤ HMCR ≤ 0.95, and 0.2 ≤ PAR ≤ 0.5. The HS
algorithm consists of the following five steps. In the first step,
the specifying parameters, including the fitness function along
with the constraints are defined, according to (10), and specific
values are assigned to the three main parameters, that is, HMS,
HMCR, and PAR. In the second step, a random harmony
memory (HM) of order HMS × N is generated according to
the following equation:

HM =

⎡
⎢⎢⎢⎣

x1
1 x1

2 · · · x1
N

x2
1 x2

2 · · · x2
N

...
...

. . .
...

xHMS
1 xHMS

2 · · · xHMS
N

⎤
⎥⎥⎥⎦ (11)

where x j
i , i ∈ HMS, j ∈ N , is the element of the solution

candidates x j = x j
1 , x j

2 , x j
3 , . . . x j

N , and N is the number of
elements in each solution candidate. Each element x j

i of the

solution candidate is bounded with upper bound xub and lower
bound xlb as follows:

xlb ≤ x j
i ≤ xub. (12)

The fitness value is calculated using (10) for each solution
candidate and the worst fitness value is determined. In the
third step, a new harmony solution xnew is generated and its
fitness value is calculated using (10). In the literature, different
techniques are reported to generate the new harmony solution
xnew. In general,

xnew =



x j
i from HM with probability HMCR

New solution with probability (1− HMCR)
(13)

and then PAR for pitch adjustment is applied to xnew,
as follows:

xnew =



xnew ± bw with probability PAR
xnew with probability (1− PAR)

(14)

where bw = r×(xub− xlb) and r is a positive random number
such that 0 < r < 1.

In the fourth step, the fitness values of xnew and the worst
solution x j from HM are compared. If the fitness value of xnew

is better than the worst fitness value, then HM is updated by
replacing the worst solution candidate x j with xnew; otherwise,
xnew is discarded.

In the fifth step, steps three and four are repeated until
the stopping criteria or termination conditions are achieved.
Finally, the best solution candidate is determined. This best
solution candidate fulfills the optimization problem.

III. PROPOSED METHOD

Kurtosis and SK are efficient tools that vary their values
from normal to faulty vibration signals and hence, fault can
be diagnosed. But when the vibration signal is subjected to the
high noise as given in (1), the kurtosis and SK are inefficient,
and finding the fault frequency in the spectrum for a nonsta-
tionary signal is challenging because of the unwanted noise.
To enhance the signal-to-noise ratio, a bandpass filter centered
around the fault signal frequency is necessary. Because of the
randomness of the fault frequency, a dynamic filter that can
adjust its bandwidth and central frequency, depending on the
processed signal, is needed.

In the proposed method, the HS algorithm is employed
to optimize the bandpass filter using the different fitness
functions based on kurtosis and SK. The fitness functions used
to detect early-stage faults are: 1) kurtosis of the time-domain
vibration signal; 2) kurtosis of the envelope spectrum of the
vibration signal; and 3) sum of the STFT-based SK. The results
of all three fitness functions are compared for the different
faulty signals.

For that, fitness values of all the solution candidates from the
randomly initialized HM [see (11)] are computed. The solution
candidate with the highest fitness value is the best solution and
vice versa. Then, using the HS algorithm, HM is improved by
generating new solutions and computing the fitness values.
This process is repeated for each subsequent epoch, until the
stopping criteria are reached. At the end of the HS algorithm,
the solution candidate with the highest fitness value is the
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Algorithm 1 Bandpass Filter Design Using Improved HS
Algorithm
Input : Fitness Function, HMS, HMCR, PAR, initial

HM
Output: Bandpass Filter (central frequency, bandwidth,

filter order)
1 // Main loop
2 for i ← 1 to max. no. of epoch do
3 Construct BPF using updated HM and filter out

vibration signal;
4 Evaluate fitness value of each filtered signal
5 if j < max. no. of solution candidates then
6 // xnew generation
7 if rand > HMCR then
8 Generate xnew by random selection from HM
9 else

10 Generate xnew randomly within limits
11 end if
12 // Pitch adjustment of xnew

13 if rand > PAR then
14 Adjust the pitch of xnew

15 else
16 Keep xnew unchanged
17 end if
18 else
19 // Offspring’s Matrix
20 ;
21 Built offspring’s Matrix;
22 Construct BPF using offspring matrix and apply to

vibration signal;
23 Evaluate fitness value of each filtered signal;
24 Accept xnew if better and update HM, otherwise

discard xnew;
25 end if
26 Find the current best solutions;
27 end for
28 // Optimized Bandpass Filter
29 Find the best solution
30 Construct the Bandpass filter
31 Filtered out the vibration signal
32 Plot Envelope Spectrum and visualize the fault frequency

best solution. From that best solution, the bandpass filter is
constructed and faults are diagnosed. The overall flow diagram
for the proposed algorithm is depicted in Fig. 1. The three main
key parameters HMS, HMCR, and PAR are chosen as 20, 0.72,
and 0.08, respectively. The pseudocode for the modified HS
algorithm for the proposed algorithm is given below.

IV. SIMULATIONS AND RESULTS

To validate the proposed method, two datasets were tested
and the results were generated using the MATLAB envi-
ronment. The first dataset was an intelligent maintenance
system (IMS) bearing the dataset for test-to-failure vibration
signal [31] and the second dataset was machinery failure
prevention technology (MFPT) bearing the fault dataset [32].

Fig. 1. Flow diagram of the proposed method.

Fig. 2. Setup of test-to-failure experiment [33].

TABLE I

TEST-TO-FAILURE BEARING SPECIFICATION

Different vibration signals from these two datasets were taken
to detect the fault frequencies. The detailed results are shown
in Sections IV-A and IV-B.

A. Test-to-Failure Vibration Signal

To generate the datasets for test-to-failure vibration sig-
nal [31], [33], an ac motor with 2000 RPM constant speed
was coupled to the shaft having four bearings and 6000 lbs
radial load was applied by a spring mechanism as shown
in Fig. 2. The vibration data was recorded for 1 s at spe-
cific intervals. The specification of the bearing is given in
Table I.
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Fig. 3. RMS values of bearing 3 with roller element fault.

Fig. 4. Vibration signal 1515 with early-stage roller element fault. (a) Time
plot. (b) Envelope spectrum.

Each data file comprises 20 480 points with 20-kHz sam-
pling rate. The life of the bearing is 100 million revolutions
and after this life, faults occur in the bearing. To validate the
performance of the proposed method, we considered roller
element fault and outer race fault from the test-to-failure
dataset. Fig. 3 shows the root mean square (rms) plot of each
data file of bearing 3 throughout the experiment. At the end of
the experiment, roller element fault occurred in bearing 3 with
a fault characteristic frequency of 14.7752 Hz.

It can be visualized from the rms values that file number
1515 has a high value which means the signal is faulty. Fig. 4
depicts the time-domain vibration signal and its envelope
spectrum, respectively.

The power of the fault frequency could be enhanced if the
unwanted signals are filtered out from faulty signals, as shown
in Fig. 4(a). The bandpass filters were constructed using the
proposed method and fast kurtogram method and results were
compared to verify the performance of the proposed method.
The parameters of the three bandpass filters designed using
the proposed method are given below.

1) Bandpass filter 1: Center frequency = 2687.6 Hz;
bandwidth = 1118.7 Hz; order of the filter = 46.

2) Bandpass filter 2: Center frequency = 1531 Hz;
bandwidth = 843.6874 Hz; order of the filter = 61.

3) Bandpass filter 3: Center frequency = 3852 Hz;
bandwidth = 3132.3 Hz; order of the filter = 88.

The faulty signals were filtered by the proposed method and
their envelope spectrums are depicted in Fig. 5. The first fitness
function is referred to as the time domain because it measures

Fig. 5. Envelope spectrum of vibration signal 1515 with roller element fault.
(a) Filtered using fitness function (1). (b) Filtered using fitness function (2).
(c) Filtered using fitness function (3).

Fig. 6. Vibration signal 1515 with early-stage roller element fault. (a) Fast
kurtogram. (b) Envelope spectrum.

the kurtosis of the time-domain signal, whereas the other
two fitness functions are frequency domain. From the results,
it was concluded that the frequency-domain fitness functions
are better than the time-domain fitness function because they
estimate the bandpass filter more efficiently.

A bandpass filter was constructed using the fast kurtogram
shown in Fig. 6(a). The envelope spectrum of the filtered
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Fig. 7. RMS values of bearing 3 with outer race fault.

Fig. 8. Vibration signal 6100 with early-stage outer race fault. (a) Time plot.
(b) Envelope spectrum.

signal improved the power of the fault frequency as shown in
Fig. 6(b). When this result was compared with the proposed
method, it was concluded that the proposed method is better.
It is noted that the signal employed in this example was
not taken from the early-stage fault region and therefore the
unfiltered envelope spectrum shows the fault frequency. From
this example, it can be concluded that the proposed method
improves the power of the fault frequency and visualization.
In the next example, we considered early-stage outer race fault
signals and examined the validity of the proposed method.
Outer race fault appeared with the fault characteristic fre-
quency 236.4035 Hz in bearing 3. The rms plot of all the
files is depicted in Fig. 7.

From the rms values, it can be seen that file number 6100 is
within the early-stage fault. Therefore, this file or signal was
taken to validate the proposed method. Fig. 8 shows the
vibration signal 6100 and its envelope spectrum.

Due to the early-stage fault, the power of the faulty signal
is very low and could not distinguish from the noise in the
envelope spectrum in Fig. 8(b). To increase the signal-to-
noise ratio and diagnose the early-stage fault, following three
bandpass filters were constructed using the proposed method.

1) Bandpass filter 1: Center frequency = 3963.2 Hz;
bandwidth = 2367.1 Hz; order of the filter = 98.

2) Bandpass filter 2: Center frequency = 3709.5 Hz;
bandwidth = 1402.1 Hz; order of the filter = 46.

3) Bandpass filter 3: Center frequency = 2943.1 Hz;
bandwidth = 4699.4 Hz; order of the filter = 67.

Fig. 9 shows the envelope spectrums of the filtered signal
where early-stage outer race fault is clearly visualized.

Fig. 9. Envelope spectrum of vibration signal 6100 with outer race fault.
(a) Filtered using fitness function (1). (b) Filtered using fitness function (2).
(c) Filtered using fitness function (3).

Fig. 10. Vibration signal 6100 with early-stage outer race fault. (a) Fast
kurtogram. (b) Envelope spectrum.

Fig. 10 shows the fast kurtogram and envelope spectrum
of the filtered signal. The power of the fault frequency in the
early-stage signal is very low, and therefore, fault frequency
cannot visualize in the envelope spectrum in Fig. 8(b). More-
over, the traditional method is inefficient to construct an accu-
rate bandpass filter, and therefore, the envelope spectrum in
Fig. 10(b) could not distinguish fault frequency. Consequently,
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TABLE II

NICE BEARING SPECIFICATION

Fig. 11. Vibration signal (1) with outer race fault. (a) Time plot. (b) Envelope
spectrum.

it can be concluded that the proposed method is efficient to
diagnose early-stage faults.

B. MFPT Bearing Fault Dataset

The MFPT dataset with different loads was assembled [32].
The main purpose of this dataset is to improve the bearing
analysis algorithms, research, and develop new techniques.
To generate the dataset, a test rig with a NICE bearing was
used. The bearing specification is presented in Table II.

From the MFPT dataset, we considered two highly noisy
outer race fault signals and verified the performance of the
proposed method to enhance the power of the fault fre-
quency. The fault characteristic frequency for both signals is
81.1245 Hz. The time-domain vibration signal and its envelope
spectrum of the first faulty signal are depicted in Fig. 11.
From the envelope spectrum, it is difficult to visualize the
fault frequency, and therefore, a bandpass filter is required to
filter out the unwanted noise.

To compare the results of the proposed method with the
traditional method, bandpass filters were optimized using the
kurtosis and SK-based fitness functions as follows.

1) Bandpass filter 1: Center frequency = 3854.6 Hz;
bandwidth = 1050.4 Hz; order of the filter = 95.

2) Bandpass filter 2: Center frequency = 2865 Hz;
bandwidth = 4946 Hz; order of the filter = 60.

3) Bandpass filter 3: Center frequency = 2351.9 Hz;
bandwidth = 3392.2 Hz; order of the filter = 61.

Fig. 12 shows the envelope spectrum of the filtered signal.
It can be concluded that the signal-to-noise ratio is enhanced,
and visualization of the fault frequency is improved.

Fig. 13 shows the fast kurtogram and envelope spectrum of
the filtered signal. Comparing Fig. 13(b) with Fig. 12, it can

Fig. 12. Envelope spectrum of the vibration signal (1) with outer race fault.
(a) Filtered using fitness function (1). (b) Filtered using fitness function (2).
(c) Filtered using fitness function (3).

Fig. 13. Vibration signal (1) with outer race fault. (a) Fast kurtogram.
(b) Envelope spectrum.

be concluded that the proposed method is more efficient to
visualize the fault frequency.

Fig. 14 shows the second outer race fault signal and its
envelope spectrum. The envelope spectrum of this signal does
not show any fault frequency due to the high noise level.
Following are the parameters of the bandpass filters designed
using the proposed method.
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Fig. 14. Vibration signal (2) with outer race fault. (a) Time plot. (b) Envelope
spectrum.

Fig. 15. Envelope spectrum of the vibration signal (2) with outer race fault.
(a) Filtered using the fitness function (1). (b) Filtered using fitness function
(2). (c) Filtered using fitness function (3).

1) Bandpass filter 1: Center frequency = 10 862 Hz;
bandwidth = 1377.3 Hz; order of the filter = 99.

2) Bandpass filter 2: Center frequency = 24 415 Hz;
bandwidth = 48 826 Hz; order of the filter = 97.

3) Bandpass filter 3: Center frequency = 6913 Hz;
bandwidth = 10 218 Hz; order of the filter = 75.

Similar to the previous results, it can be concluded from
Figs. 15 and 16(b) that the bandpass filters designed using the
proposed method with frequency-domain fitness functions are
more efficient than the time-domain fitness function as well
as the fast kurtogram-based bandpass filter.

Fig. 16. Vibration signal (2) with outer race fault. (a) Fast kurtogram.
(b) Envelope spectrum.

V. CONCLUSION

It is difficult to diagnose the faults from the early-stage
vibration signals of the faulty bearings. Filtering out the
vibration signal is an efficient tool to determine the fault
frequencies, but it is challenging to estimate the optimized
parameters for the bandpass filter. In this article, an improved
HS algorithm is employed to estimate the dynamic parameters
for the bandpass filter. Three different fitness functions based
on kurtosis and SK are utilized to estimate the transients in
the faulty vibration signals.

The resultant bandpass filters constructed with the help of
kurtosis and SK-based fitness functions are compared with
each other as well as with the fast kurtogram-based bandpass
filter. It is concluded that the bandpass filters constructed
using the frequency-domain fitness functions are efficient to
diagnose the early-stage faults compared to the time-domain
fitness function and fast kurtogram-based method. Frequency-
domain fitness functions such as kurtosis of the envelope
spectrum and STFT-based SK measure the transients in the
frequency spectrums and hence are more efficient compared
to the time-domain features. On the contrary, the kurtogram-
based bandpass filter is constructed using the static tree
algorithm and hence could fail to diagnose the fault frequency
which can be seen in the simulation results.
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