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Abstract— This article deals with a novel method for detecting
and analyzing inter-area oscillations on electric power trans-
mission networks. The method starts from the modal analysis
performed by the dynamic mode decomposition (DMD) algo-
rithm, which is able to exploit the synchronized acquisitions
of various measurement instruments to detect the mode of a
dynamic system. Compared with the classical algorithm, the
proposed method presents a fundamental improvement, which
ensures its reliability even without having prior information
on the type of input signal. In particular, the order of the
DMD, i.e., the number of modes characterizing the acquired
signal, is dynamically updated according to its energy content.
The method has been tested with simulated signals, considering
both single-oscillation signals and two-oscillation signals, vary-
ing the amplitude, frequency, and damping of the oscillatory
components. In this way, the improvement with respect to the
classical DMD was highlighted and the performance in terms of
deviation between the estimated and nominal parameters was
evaluated. Furthermore, the assessment on real life acquired
signals has been performed; the results confirmed the reliability
and accuracy of the measurement method, even in the presence
of noisy signals and ambient data.

Index Terms— Dynamic mode decomposition (DMD), dynamic
order, inter-area oscillations, transmission grid stability.

I. INTRODUCTION

THE energy transition that is currently underway is causing
profound changes in the world electrical systems. The

electricity transmission system is among the most involved
in this change. In fact, the reliability and robustness of the
transmission network is a fundamental prerequisite for the
national and international exchange of the increasing quantities
of electrical energy.

One of the phenomena that jeopardizes the stability of the
transmission grid is the rotor angle stability [1]. It consists
of the oscillatory transients that occur between long-distance
generation systems whenever the balance between the gener-
ated power and the power demand changes [2], [3]. These
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transients appear on the transmission grid as frequency oscil-
lations, called inter-area oscillations, characterized by an
extremely low-oscillation frequency (typically between 0.1 and
0.4 Hz) [4]. The variation of the grid frequency can lead to the
instability of the transmission system, since it can cause the
out of step of the generators or the intervention of protection
devices; these events produce, in turn, further transients, with
a domino effect that, if not stopped, can lead to the power
down of a section of the grid [5].

One of the crucial tasks of a transmission system oper-
ator (TSO) is the monitoring of the grid frequency to:
1) promptly detect the presence of oscillations; 2) evaluate
the associated risk for the grid stability; and 3) undertake,
if necessary, the appropriate countermeasures [6]. For this
reason, the Italian TSO, Terna, constantly monitors the electri-
cal quantities of the Italian transmission grid, through a wide
area monitoring system (WAMS) [7], [8]. The measurement
instruments of the WAMS are the phasor measurement units
(PMUs), which are synchronized with each other through
GPS, and measure and transmit the phasors of voltage and
current, the measured frequency, the rate of change of the fre-
quency, and eventual other analog and digital signals [9], [10].
To ensure the stability of the network, the raw data must be
appropriately processed; so it is essential to invest in research
and development of high-performance and reliable measure-
ment methods, which processes the WAMS measurements to
carry out an effective low-frequency oscillation analysis.

In this article, a novel method is proposed, based on an
optimization of the traditional dynamic mode decomposition
(DMD). The DMD processes the frequency measurements pro-
vided by WAMS and performs a modal analysis, to identify the
main oscillatory modes characterizing the system state [11].
A joint research group from Terna Rete Italia and the Elec-
trical and Electronic Measurements group of the University
of Naples Federico II, worked to deeply characterize this
approach and develop a strategy to determine the optimal
energy threshold, according to which the DMD algorithm
recognizes the significant modes immersed in the measure-
ments provided by the WAMS. Compared with traditional
modal analysis, the proposed approach is able to adapt to
the input signal, because it dynamically detects the effective
number of oscillations involved in the acquired measurements,
without requiring a priori information.

This article is organized as follows: in Section II the most
adopted methods for the analysis of inter-area oscillations are
described; in Section III, a theoretical background on the DMD
approach is provided; the proposed method is described in
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Section IV-B; in Sections V and VI results obtained during the
method assessment with synthesized signals and real WAMS
acquisitions, respectively, are presented; in Section VII some
concluding remarks are discussed.

II. MEASUREMENT OF INTER-AREA OSCILLATIONS

The typical method for inter-area oscillation analysis con-
sists of modeling the frequency signal as a damped oscillation,
or the composition of multiple damped oscillations, according
to the formula

x(t) =
N∑

i=1

Ai e
−σi t sin 2π fi t . (1)

The parameters Ai , σi , and fi , which are, respectively, ampli-
tude (in Hz), damping (in s−1), and frequency (in Hz) of the
i th oscillation, are estimated as the parameters that best fit the
input signal.

Amplitude, damping and frequency provide the neces-
sary information to identify the type of oscillation and its
dangerousness.

The amplitude estimation, first of all, allows to verify that
the frequency oscillations remain below an alarm threshold,
beyond which it is necessary to operate with corrective actions
(such as load shedding) to preserve the stability of the network.

The study of the damping is also fundamental, since it
allows to establish in advance the risk associated with the
oscillation. A positive and high damping value indicates an
oscillation that tends to extinguish rapidly, while if the damp-
ing is negative, the oscillation is characterized by increasing
amplitude and should be counteracted. Even a weakly damped
oscillation (with σ < 0.05) is considered a dangerous condi-
tion that should be monitored [2].

Frequency provides information about the type of oscil-
lation. In particular, the historical measurements within the
Continental European system show three main oscillation
modes: the East-West mode, appeared following the Turkey
connection, characterized by a frequency of about 0.15 Hz,
the East-Center-West mode shows frequency around 0.2 Hz,
the North-South mode, that exhibits a typical frequency near
to 0.3 Hz [12], [13].

Therefore, it is clear that the skill in preserving network
stability is closely related to the performance of the adopted
measurement method. Several approaches are available in lit-
erature. Zamani et al. [14] have focused their attention on the
so-called signal-based methods, that are those relying on the
processing of signals coming from measurement instruments,
rather than on the knowledge of the network model.

The most widely used method in the past was the Prony
approach, based on the decomposition of the signal proper
into a set of damped oscillations. This method, however,
proved to be very sensitive to the noise affecting the analyzed
signal [15], [16].

Among the methods that attempt to extend the Prony
approach in the presence of noise [17], the Tufts–Kumaresan
method is the best known [18], [19]. The characterizing modes
of the system are identified through the study of the extraneous
zeros of the system itself and the parameters characterizing
these modes are estimated. The method shows remarkable

accuracy in the estimation of frequency and damping, while
it is less reliable as concerns to the estimation of amplitude.

Among the methods that do not require a priori information
about the input signal, approaches based on Empirical Mode
Decomposition should also be considered [20]. In the past,
Bonavolontà et al. [21] and Lauria and Pisani [22] have also
proposed a method based on this decomposition approach.
The method is particularly suitable for non-stationary signals
and provides very accurate frequency estimates. The main
observed drawback, however, concerns the difficulty to cor-
rectly resolve near frequency oscillations. Considering that on
the transmission system it is possible to detect simultaneously
oscillations at 0.25 and 0.3 Hz, in these cases the method is
not sufficiently accurate.

Heuristic methods (Particle Swarm Optimization, Genetic
Algorithm) also perform well without requiring a priori infor-
mation of the input signal [23], [24]. The problem with such
methods is that rarely they converge on solutions that are very
far from the actual ones, especially in the presence of noise.
In critical applications, such as the monitoring of transmission
network stability, the estimate of totally incorrect parameters,
though if rarely occurs, can lead to bad decisions and must be
avoided.

Kalman Filter-based methods are fascinating because of
their flexibility and the ability to estimate the parameters
of oscillations in real time; as new measurement data enter
the algorithm, the estimates are updated [25], [26]. The
performance of the method is highly dependent on the choice
of initial values of the R and Q matrices. In addition, the
computational load is not negligible, especially if multiple
oscillations are to be determined. In some applications in
literature, in fact, the computational load is reduced by limiting
the analysis to a single dominant oscillation.

The methods based on wavelet transform (WT), provide
promising results, especially with transient signals such as
inter-area oscillations [27]. The problem, in this case, is the
optimal choice of the time scale [28]. The WT, in fact, allows
to privilege the temporal resolution at the expense of the
frequency resolution and vice versa. In this case, the typical
oscillations have very low frequencies and very close to each
other (so it is required a notable frequency resolution); but it
is also essential to locate in time the trend of oscillations to
appreciate the consequences of countermeasures taken (so it
is required also an equally high time resolution).

This same issue characterizes all methods based on time-
frequency analysis. It is not possible to determine in advance
if it is necessary to increase the frequency resolution (because
there are more oscillations on the network) or the temporal
resolution (because there is a predominant transient that must
be monitored and counteracted).

All of the described methods are single-channel approaches,
which process the data frame from a single measure-
ment instrument. These approaches, therefore, are not very
robust to the problems that can affect instrument measure-
ments, as noise, missing measurements, and data transmission
failure).

For this reason, the authors’ attention has shifted to
multi-channel methods, in which multiple signals, coming
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from different measurement systems, are processed. Terna,
in fact, monitors the transmission network through several
synchronized PMUs that transmit the measurements to a cen-
tral node, which aligns them temporally and stores them into a
database. Thus, at a given instant of time, synchronized sets of
measurements from all PMUs of the WAMS are available, and
this can be exploited for more robust oscillation estimation.

In [29] a multi-channel extension of the WT is proposed,
exploiting multiple signals from different measurement instru-
ments. It has been observed, however, that the choice of algo-
rithm parameters (choice of mother wavelet, center frequency,
dilation, and translation) greatly affects the accuracy of the
estimate. In [30], the Ibrahim time domain (ITD) method was
applied to estimate the modes of oscillation. The algorithm is
really robust to noise and has been tested on real PMUs mea-
surements; unfortunately, to ensure good accuracy, a process-
ing window of 5–10 min is required; these time windows are
not compatible with the response times required to implement
corrective maneuvers and preserve the system stability.

Cai et al. [31], Sarmadi and Venkatasubramanian [32],
and Kutz et al. [33], thus, have identified approaches based
on modal analysis as more reliable; among them, DMD is
particularly promising since it is a data-driven approach, which
does not approximate the system dynamics with a particular
model, but it is based on the observation of experimental
data. As it will be described, a crucial point of DMD is the
order selection, which greatly affects the performance of the
method. The authors propose a measurement method that is
based on automatic order selection, chosen according with the
characteristics of the input signal.

III. FUNDAMENTALS ON DMD

The first rigorous formulation of the DMD algorithm is due
to Peter Schmidt and Jörn Sesterhenn, who in 2008 defined
the algorithm and demonstrated how it was able to recognize
the nonlinear dynamics of fluid motion by having photographs
over time of a set of measurements taken at different points
in the fluid [34], [35].

The DMD is based on the local approximation of a dynamic
system with a linear system, which can be described by the
system of differential equations

dx
dt

= Ax (2)

whose solution is

x(t) =
n∑

k=1

φkeωk t bk = �e�t b. (3)

The components of x(t) are the dynamic modes of the system.
The terms φk and ωk are, respectively, the eigenvectors and
eigenvalues of the dynamic matrix A, while the coefficients
bk represent the coordinates of the initial value x(0) in the
base of the eigenvectors.

In the presence of discrete-time representation of the system,
(2) is expressed by the following formula:

xk+1 = Axk (4)

where A = eA�t and �t is the sampling time.

Consider, now, to have m snapshots of a system, taken
at different time instants, each �t . For i = 1, . . . , m, each
snapshot is a vector [x1,i , x2,i , . . . , xn,i ] containing n spatially
distributed measurements in the system. It is possible to
arrange the data by constructing the two matrices

X1 =

⎡
⎢⎢⎢⎣

x1,1 x1,2 . . . x1,m−1

x2,1 x2,2 . . . x2,m−1
...

...
. . .

...
xn,1 . . . . . . xn,m−1

⎤
⎥⎥⎥⎦ (5)

X2 =

⎡
⎢⎢⎢⎣

x1,2 x1,3 . . . x1,m

x2,2 x2,3 . . . x2,m
...

...
. . .

...
xn,2 . . . . . . xn,m

⎤
⎥⎥⎥⎦. (6)

The local approximation of (4) can be written as follows:
X2 = AX1. (7)

Therefore, the matrix A can be determined according to

A = X2X†
1 (8)

where X†
1 is the pseudo-inverse of X1.

The knowledge of A allows to derive the eigenvalues and,
consequently, the parameters that characterize the dynamic
modes of the system. The problem is that often the dimension
of the matrix A is considerable and it is complicated to
represent all the modes in which the system is decomposed.
Considering that in the system the number of significant modes
is low if compared to the size of the matrices, the DMD does
not estimate all the eigenvalues of the matrix A, but those of
a reduced-rank matrix Ã, which approximates the most signif-
icant part of A. For the determination of Ã, the factorization
technique called singular value decomposition (SVD) is used.
The SVD is adopted to decompose the n × m − 1 matrix X1,
according to this formula

X1 = U	V
 (9)

where U is an n × n unitary square matrix; 	 is an n × m
rectangular diagonal matrix with non-negative real numbers
on the diagonal; V
 is the conjugate transpose of V, that is
an m × m unitary matrix. The matrices U and V are also
orthogonal.

The elements of 	 are called singular values of X1; each
column of U is called left singular vector, while each column
of V is called right singular vector. The SVD, in practice,
performs the decomposition of a matrix with respect to the
orthonormal basis consisting of the columns of U. The singular
values represent the components of X1 in this basis.

Singular values are characterized by the following property:
si ≥ 0 and si ≥ si+1 ∀i = 1, . . . , n. (10)

This means that the singular values are arranged in the matrix
	 in descending order; for the physical meaning of singular
values, this means that the diagonal of 	 gives the components
of X1 on the orthogonal basis of U in order of importance.

Actually, in the proposed measurement method the truncated
SVD is exploited, which is preferred when the input matrix
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X1 is rectangular. It can be demonstrated that the rank r of
	 is equal to the rank of the matrix being decomposed; so,
if the input matrix is rectangular, the number of non-zero
singular values would be, at most, equal to the smaller of
the dimensions between n and m. The truncated SVD directly
constructs a square matrix 	 with dimension equal to the rank
r . The decomposition is performed according to this formula

X1(n×m−1) = U(n×r)	(r×r)V

(r×m−1). (11)

If the decomposition in (9) is used to replace X1, (8) becomes

A = X2V	−1U
. (12)

Instead, if the truncated SVD is adopted, the matrices with
reduced rank r are obtained from (11); so, the reduced rank
Ã can be determined directly in the orthogonal basis U

Ã = UAU
 = U
X2V	−1. (13)

The eigenvalues and eigenvectors of the matrix Ã provide the
dominant modes of the system, the number of which will be r .
It is worth noting, however, that for sufficient knowledge of the
system, it may not be necessary to evaluate all the modes. The
singular value matrix, as mentioned, shows the components
of the input matrix in the orthogonal basis U, in order of
amplitude. It is possible to decide, therefore, to consider a
small number of singular values. This can be achieved by
reducing the matrices U, 	 and V. In particular, if only p
modes are desired to represent the input matrix X1, with
p < r , the matrix of singular values will be 	p, that is a
p × p square matrix having on the diagonal the first p values
of 	r . The matrices Up and V


p will have dimension n× p and
p × m − 1, respectively, and p is called order of the DMD.

To efficiently explain the meaning of the DMD order and the
effect of the reduction of the matrices U, 	, and V, an example
based on image analysis is considered. The general input
matrix X is the matrix of pixels of the black and white image
shown in Fig. 1(a), taken among the test images provided by
the MATLAB environment [36]. The size of X is 246 × 300.
Applying SVD to the matrix X, the matrices U, 	, and V of
size, respectively, 246 × 246, 246 × 246, and 300 × 246 are
obtained.

Fig. 1(b)–(d) show the images reconstructed by reducing
the rank of the matrix 	 to 50, 30, and 10, respectively.
It can be observed that if only the first 50 singular values are
considered, i.e., a compression ratio of about 80% is applied,
the information content of the image is still intact. If the rank
is reduced to 30 (compression ratio equal to 88%), part of the
information is lost; it is feasible to understand that the image
represents coins, but it is not possible to distinguish the surface
to understand the type of coins. Finally, if only ten singular
values are considered (96% compression ratio) the image is
strongly degraded. It is possible to identify the edges of the
objects and their number, but it is impossible to understand
what kind of object is represented in the image.

This result shows that it is certainly possible to work with
reduced-rank matrices without losing necessary information,
but it is crucial to identify the appropriate order of the DMD,
i.e., the rank to which the singular matrix will be truncated

Fig. 1. Reconstructed input image with different ranks of the matrix 	p .
(a) Original input image. (b) p = 50. (c) p = 30. (d) p = 10.

and, consequently, the rank of the matrix Ã with which the
dynamics of the system will be represented.

IV. PROPOSED METHOD

A. DMD Optimization With Dynamic Order

In the classical DMD approach, the order is a priori estab-
lished, based on the information content that is desired. It is
clear, however, that one value of the order is not necessarily
the optimal one for all scenarios. If the order is too low,
fundamental information may be lost. Conversely, if the order
is too high compared to the salient information, the algorithm
may also return artifacts due to the request to model the system
with more components than that really significant. This last
aspect will be fully clarified in Section V, where DMD will
be applied to a synthesized signal, characterized by a reduced
number of oscillatory modes.

The authors, therefore, considered the algorithm, hereafter
referred to as dynamic-order DMD [11], [37], capable of
automatically adapting the order according to the signal to
be processed.

In particular, the method is based on the estimation of the
parameter called cumulative sum of singular value (CSSV),
evaluated as

CSSV(p) =
∑p

i=1 si∑r
i=1 si

(14)

where si is the i th singular value, r is the rank of the matrix
	r obtained by the truncated SVD, and p = 0, . . . , r . The
CSSV represents the cumulative sum of the amplitudes of the
singular values, related to the total sum.

In Fig. 2 the evolution of the CSSV parameter of the image
of Fig. 1(a) is shown. It can be seen from the figure that most
of the information content resides in the first singular values.
In particular, the image in Fig. 1(b) reconstructed with the
SVD order of 50 holds the 83% of the information provided
by the singular values. If the 97% of the information content
is desired, the order cannot be less than 127.

The use of the CSSV parameter, therefore, allows to set
a priori the desired percentage of information content; the
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Fig. 2. CSSV evolution in dependence on the rank p.

order, i.e., the rank p at which the dynamic matrix will be
approximated, is established a posteriori, on the basis of the
obtained singular values of the input matrix decomposition.

The selection of the threshold, however, is not a trivial
step; in some scenarios, the operator is interested in one
main component, in other cases, where energy is spread
over multiple components, the operator want to observe all
components excluding noise. For this reason, a large part of the
activity consisted in identifying the optimal threshold, through
an intensive characterization of the method on synthetic and
real data.

B. Method for the Estimation of the Oscillations Parameters

In this section, the whole proposed measurement method
is shown to make it applicable to the measurement data
coming from the WAMS of the transmission network. The
data coming from the PMUs are organized into 20-s time
windows. This choice is dictated by the trade-off between
a low-response time of the algorithm and the need to have
a sufficient number of cycles of the oscillatory signals to
correctly estimate its parameters. At the expected minimum
frequency of 0.1 Hz, 2 periods of the signal would be observed
in a 20-s window. The PMU measurements are transmitted at a
rate of 50 frames per second (fps), so, the processing window
contains 1000 samples.

The samples of the window are preliminary arranged to
provide them as input to the measurement algorithm. In par-
ticular, missing data, due to possible transmission problems,
are searched and estimated by interpolation with a moving
average algorithm.

Subsequently, the signal is filtered using a Hilbert-type FIR
filter with a bandwidth characterizing the frequency range of
inter-area oscillations. In this way, any unwanted frequency
components are excluded from the analysis. To limit the edge
effects of the filter, the boundaries of the time window are
extended by adding 500 samples at the start and at the end
of the processed array; after filtering, the subset of the central
1000 samples is taken as filtered data.

At this point, the matrix X to be processed with DMD has
dimension n × m, where n is the number of PMUs and m is
the number of sampling instants of the time window (1000).

The generic entry xi j is the frequency measurement performed
by the i th PMU in the j th sampling instant.

Matrices X1 and X2 are constructed, both of m−1 columns;
X1 has columns of X ranging from 1 to m−1; X2 has columns
of X ranging from 2 to m. The truncated SVD is performed
on matrix X1, according to (11), obtaining the matrices U, 	,
and V
.

The CSSV parameter of the singular values is estimated and
the order of the DMD p is determined when the 97% threshold
is exceeded. The reduced matrices Up, 	p, and V


p are then
determined.

Once the matrix Ã is obtained through (13), the spectral
decomposition is performed according to

ÃW = W� (15)

where W is a matrix whose columns are the eigenvectors of Ã
and � is a diagonal matrix, which contains the corresponding
eigenvalues λk .

At this point it is possible to reconstruct the characteristic
modes of the system and, then, estimate all the parameters of
(19). The columns φk of the matrix �, called DMD modes,
are the eigenvectors reported from the orthogonal basis U to
the representation space

� = X2V	−1W. (16)

The eigenvalues of the dynamic matrix A, indicated as ωk , are
derived from the eigenvalues of Ã through the formula

ωk = ln λk

�t
. (17)

The eigenvalues of A are both real and complex numbers.
Since the modes to be detected are the damped oscillatory
modes, the algorithm selects only pairs of complex and
conjugate eigenvalues. In this case, the real part represents the
damping of the oscillation, while the imaginary part, divided
by 2π , gives the frequency of the oscillatory component. The
algorithm, makes a further sifting, selecting only the modes
characterized by the frequency that falls in the range of interest
between 0.1 and 0.4 Hz.

Finally, to derive the value of the coefficients bk , the state
vector x(0) at time t = 0 has to be evaluated. Equation (3),
when t = 0 becomes x(0) = �b. Therefore,

b = �−1x(0). (18)

V. ASSESSMENT ON SYNTHESIZED SIGNALS

To assess the performance of the proposed method, tests
on synthesized signals have been preliminarily performed in
MATLAB environment. The data coming from the WAMS
have been emulated, so a set of signals have been synthesized
consisting of one or two damped oscillations, characterized
by frequencies close to those expected on the transmission
network. The frame containing the frequency measurements
is 25-min long and the sampling rate is 50 S/s. The DMD
algorithm works with snapshots containing spatially distrib-
uted measurements; so, it was necessary to simulate a set
of measurements provided from different PMUs located at
different points of the network. To obtain correlated signals,
a constant phase displacement has been applied. The phase
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Fig. 3. Synthesized single-oscillation signal.

shift was achieved by imposing a time delay of 0.6 s. There-
fore, the simulated signal for each PMU is described by the
equation

xi(t) = Ae−σ t sin (2π f t + 2π f 0.6 i) (19)

where i =1,…,10 is the PMU number.
The signals, then, were corrupted with Gaussian noise

associated with a signal-to-noise ratio (SNR) of 40 dB.
In all the performed tests, the estimates of the classical

DMD algorithm were compared with those provided by the
proposed method. It should be noted that the classical DMD
algorithm was configured to detect three main oscillations.
In several tests, it has been observed that the optimal order of
the DMD should be set equal to twice the expected number
of modes increased by two. This is because each mode
is described by two complex, conjugate eigenvalues of the
dynamic matrix A. The other two eigenvalues are needed to
describe modes with which the response of the used digital
filter is modeled. Therefore, in the classical DMD algorithm,
the singular value matrix is truncated to the order p equal
to 8. The proposed method with dynamic order DMD has
been configured to set the order in correspondence of a CSSV
greater than 0.97.

As an example, the synthesized signal, shown in Fig. 3 is
considered. It consists of a single oscillation, characterized by
amplitude A equal to 0.01 Hz, frequency f equal to 0.33 Hz
and damping σ equal to 0.0006 s−1.

In Fig. 4, the frequency, amplitude, and damping estimated
by the classical DMD algorithm at the sampling rate of 50 S/s
are shown, respectively. From Fig. 4(a), it can be seen that the
0.33-Hz frequency of the set oscillatory mode is determined
correctly in almost all time windows. Having configured the
algorithm to search for three oscillatory modes, two more
modes of frequency varying around 0.25 and 0.18 Hz are
returned. These modes are artifacts, probably related to the
frequency response of the filter which, not being perfectly flat,
in the presence of noise tends to amplify some frequencies and
attenuate others. The presence of these two fictitious modes
creates a mode mixing problem; in Fig. 4(a), at t = 8:17 it
can be noted that the frequency of 0.33 Hz is attributed to
mode 2, because a mode with a higher frequency, equal to
about 0.34 Hz, is identified as mode 1.

Fig. 4. Estimated parameter from a single-oscillation signal with the classical
DMD. (a) Estimated frequency. (b) Estimated amplitude. (c) Estimated
damping.

The phenomenon of mode mixing is even more evident on
the estimated amplitudes in Fig. 4(b). The initial amplitude
of the simulated mode is estimated to be 0.0108 Hz, with
a deviation of 8% from the nominal value. However, this
amplitude is attributed in some windows to mode 1 and
in others to mode 2, making the information difficult to
understand.

As for the damping in Fig. 4(c), mode mixing is also
observed here in some cases. In any case, the mode 1 damping
is estimated to be 0.0003, with a 50% deviation from the
nominal value; the estimated damping for the other two
modes is not significant and, in fact, exhibits very high values
compared to typical real conditions.

The same signal has been analyzed by means of the pro-
posed dynamic-order DMD, obtaining the results shown in
Fig. 5. It can be seen that the algorithm correctly recognizes
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Fig. 5. Estimated parameter from a single-oscillation signal with the proposed
method. (a) Estimated frequency. (b) Estimated amplitude. (c) Estimated
damping.

only one dominant mode, of which it estimates amplitude
frequency and damping with excellent accuracy. In fact, the
maximum deviation between the estimated and nominal fre-
quency is 60 μHz. The initial estimated amplitude of the
oscillation is 0.00987 Hz, with a deviation of 1.3% from the
nominal value. Regarding the damping, the maximum devia-
tion between estimated and nominal value is 4 × 10−4 s−1; in
particular, the mean estimated value in all windows is 5.99 ×
10−4 s−1 and the standard deviation is 0.95 × 10−4 s−1.

A particularly significant signal, which shows the better
performance of the proposed algorithm compared to classical
DMD, is shown in Fig. 6. The synthesized signal consists of
two damped oscillations: the first, divergent, characterized by
amplitude equal to 0.02 Hz, frequency of 0.3 Hz, and damping
equal to −0.001 s−1; the second is characterized by amplitude
equal to 0.05 Hz, frequency of 0.2 Hz and damping equal to

Fig. 6. Synthesized two-oscillation signal.

0.01 s−1. The order of the classical DMD was set equal to 6.
The results provided by the classical DMD are shown in Fig. 7.

It can be seen that in the first part of the frame, the DMD
correctly estimates frequency, amplitude and damping, since
the considered order is the optimal one to detect two oscil-
lations within the signal. When, however, the first oscillation
is completely damped and, therefore, the signal is composed
of only one divergent oscillation, the order equal to 6 is no
longer adequate and the algorithm again shows mode mixing
problems in the amplitude estimates.

Fig. 8 shows the results obtained from dynamic-order DMD.
In this case, it can be noted that the order is automatically
modified by the algorithm during window processing. In fact,
two modes are recognized until time 8:10. Successively, the
second oscillation decays and does not contribute to the signal
energy anymore. Therefore, when the dynamic-order algorithm
processes the 20-s windows, the main energy contribution
is given only by the 0.3-Hz oscillation; the estimated order
becomes equal to four and the parameters of only one oscil-
lation are estimated.

The frequency estimates are very accurate, as observed in
all the performed tests; the worst condition is observed in the
interval where mode 2 is extinguishing, where the frequencies
of the mode 2 is estimated to be 0.192 Hz. In the remain-
ing intervals, the maximum deviation between estimated and
nominal frequency is 50 μHz for both the modes.

Also the amplitudes are estimated with notable accuracy; in
particular the amplitude of the first mode is estimated equal
to 0.0203 Hz, the amplitude of the second mode is equal
to 0.0483 Hz. Finally, as far as damping is concerned, the
estimate of the first mode varies around −9.7 × 10−4 s−1 and
that of mode 2 varies around 10 × 10−3 s−1. Also for the
damping, estimates worsen in the time interval when mode
2 is extinguishing.

The proposed method was tested on several types of signals,
varying frequencies, amplitudes, and damping of the oscilla-
tions, to obtain a global indication of the performance of the
method on simulated signals. In particular, a set of experiments
was first performed in which the synthesized signal consisted
of a single oscillation; the amplitude was varied, with logarith-
mic step, between 0.01 and 0.5 Hz, the frequency was varied
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Fig. 7. Estimated parameter from a two-oscillation signal with the classical
DMD. (a) Estimated frequency. (b) Estimated amplitude. (c) Estimated
damping.

with linear step between 0.15 and 0.35 Hz and the damping
was changed with logarithmic step between 0.001 and 0.01,
both with positive and negative values. For the frequency,
amplitude, and damping estimates, percentage deviations from
the nominal value were evaluated according to the formulas

� f% = 100 · f̂ − f

f

�A% = 100 · Â − A

A

�σ% = 100 · σ̂ − σ

σ
(20)

where f̂ , Â, and σ̂ are the estimates of frequency, amplitude
and damping, respectively, while f , A, and σ are the nominal
values.

Fig. 8. Estimated parameter from a two-oscillation signal with the proposed
method. (a) Estimated frequency. (b) Estimated amplitude. (c) Estimated
damping.

The deviation observed in the frequency estimates are shown
in Fig. 9. It can be noted that the proposed method estimates
the frequency with excellent accuracy. Under all the tested
conditions, � f never exceeds 1%. Clearly, the higher the
frequency, the lower the deviation, since the window processed
by the algorithm contains more signal cycles.

In Fig. 10 the amplitude deviation is shown. The most
noticeable effect is the apparent periodicity of the estimation
deviation with respect to the set frequency. This is due to
the frequency response of the filter which exhibits the typical
Gibbs effect oscillations. They are due to the tradeoff made in
the filter design between the filter length and its performance.
The filter effects have been partially compensated, but they
persist in the final results. The deviation values are, however,
within accepted limits for monitoring applications. It is
noted that the estimation error is proportional to the absolute
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TABLE I

ESTIMATES DEVIATION OBSERVED WITH CLASSICAL DMD AND DYNAMIC-ORDER DMD

Fig. 9. Deviation of frequency estimates with single-oscillation signals.

value of the damping; for strongly damped oscillations, the
amplitude value is underestimated, while it is overestimated
in the case of divergent oscillations. In the typical range of
damping between −0.005 and 0.005, �A remains within
5%. Finally, the higher deviations (near to 25%) are observed
when the amplitude value of the synthesized oscillation is
lower than 0.02 Hz. For greater amplitudes, �A is within the
range from −15% to 15%.

The deviation of the damping estimate is shown in Fig. 11.
Again, a periodicity with the frequency of the oscillation can
be seen, again due to the filter response. On the other hand,
the damping estimate and amplitude are intimately related to
each other. No significant effects related to the amplitude and
damping of the input signal are observed. In each experiment,
however, the �σ is less than 25%, i.e., absolute values less
than 0.0025 s−1.

To verify the performance guaranteed by the dynamic-order
algorithm, the same tests were repeated with the classical

Fig. 10. Deviation of amplitude estimates with single-oscillation signals.

DMD. Moreover, to show the different performance observed
if the energy threshold value changes, the tests were repeated
with the dynamic-order DMD, but with a threshold value
equal to 95%. In Table I only some of the observed results
are reported, for the sake of brevity. The shown values are
the estimate deviations, as defined in (20). It can be noticed
that the deviations of frequency estimates provided by the
classical DMD are close to those granted by the dynamic-order
algorithm. As regards the amplitude and damping estimates,
the deviations observed for the classical algorithm exhibit
values much higher than those provided by the dynamic-order
DMD. This difference is mainly due to the mode mixing
problem, which occurs especially when the signal amplitude is
low. As regards the results observed with the threshold set to
0.95, higher estimates deviation is observed. In fact, according
to the 0.97 threshold, four modes are always detected. With
the 0.95 threshold, the number of detected modes varies from
two to four; when the number of modes is less than four,
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Fig. 11. Deviation of damping estimates with single-oscillation signals.

Fig. 12. Deviation of frequency estimates with two-oscillation signals.

an increase in the estimates deviation (especially as regards
amplitude and damping) is observed.

A global assessment of performance has been also per-
formed with two-oscillation signals. In particular, a signal
was synthesized in which the first oscillation is characterized
by fixed parameters (amplitude equal to 0.02 Hz, frequency
equal to 0.1 Hz, and damping equal to 0.005 Hz), the second
oscillation is characterized by parameters ranging in the same
intervals used for the characterization with single-oscillation
signals. The results obtained for � f , �A, and �σ are shown,
respectively, in Figs. 12–14.

It can be observed that the estimate deviations exhibit the
same behavior than that appreciated with a single-oscillation
signal. The deviations assume a slightly higher value, probably
due to the interference related to the second component. In any
case, even in the presence of two oscillations, the deviations
of the estimates assume satisfactory values, especially with
regard to the frequency and amplitude estimates.

VI. ASSESSMENT ON REAL WAMS SIGNALS

The proposed method has been tested also with real signals,
obtained from the WAMS of the Italian transmission network.
For confidentiality issues, the names of the PMUs are not
shown and the time labels have been changed with respect
to the real transmitted timestamps.

Fig. 13. Deviation of amplitude estimates with two-oscillation signals.

Fig. 14. Deviation of damping estimates with two-oscillation signals.

Fig. 15. Frequency measurement provided by WAMS: example 1.

An example of an event captured by the WAMS measure-
ment systems is shown in Fig. 15. Compared to the synthesized
signal, it has to be considered that the actual signal in most of
the observation time does not exhibit significant oscillations.
Therefore, the signal presents some zones, referred to as
ambient data, in which there is only noise. The areas called
transient data, instead, are the intervals in which oscillatory
phenomena are present. In Fig. 15, the ambient data have been
highlighted with gray rectangles and the transient data have
been highlighted with a blue rectangle. In Fig. 16(a) and (b),
the estimates of frequency and damping obtained by the
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Fig. 16. Estimated parameters for the WAMS signal in Fig. 15 with classical
DMD. (a) Estimated frequency. (b) Estimated amplitude.

classical algorithm with static order are shown, respectively.
Even on the real data, the phenomenon of mode mixing is
observed, so that, in some windows, the amplitude of mode 1 is
attributed to mode 2. The classical DMD does not make
a difference between ambient data and transient data, since
it tries to reconstruct always the same number of modes.
The damping has not been reported, because when the mode
mixing occurs, damping estimates are not significant.

The frequency, amplitude, and damping estimates obtained
by the proposed method are shown in Fig. 17. Here it can be
observed that the measurement algorithm behaves differently
depending on whether it processes ambient data or transient
data.

In ambient data, since there are no predominant modes, the
order at which the CSSV exceeds 97% of the total amplitude
of the singular values can also be very high (between 15 and
18); in fact, the contribution of each singular value to the
information content of the signal is negligible. To avoid the
representation of such a high number of modes, that are also
non-significant, the maximum value of the order was forced
to 8, so that the algorithm returns the same output of the DMD
with static order.

Another issue concerns the damping estimates on the
ambient data. Clearly, these estimates are non-significant; so,
to avoid getting wrong information from the damping observa-
tion, the damping estimates are not plotted if the corresponding
mode amplitude is less than 0.01 Hz. Clearly, this solution
cannot also be used for classical DMD because, due to mode
mixing, amplitude estimates are not always reliable.

Fig. 17. Estimated parameters for the WAMS signal in Fig. 15 with
the proposed method. (a) Estimated frequency. (b) Estimated amplitude.
(c) Estimated damping.

The notable difference between the proposed method and
classical DMD can be appreciated on the transient data.
Dynamic-order DMD effectively focuses on the dominant
mode which, this time, represents most of the information con-
tent of the signal; the oscillatory mode is correctly recognized
and a single estimate of amplitude, frequency, and damping
associated with the only recognized mode is obtained.

It can be seen from the figures that the amplitude estimate
reproduces quite faithfully the envelope of the acquired signal.
Also the values of the estimates are consistent with the peak-
to-peak amplitude of the oscillations observed in Fig. 15. Also
the damping estimates are consistent with the raw data, since
negative values are observed in correspondence of the time
windows in which the amplitude of the oscillations increases.

Another example of the method reliability is given on the
signal shown in Fig. 18.
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Fig. 18. Acquired frequency measures.

The corresponding estimated parameters are shown in
Fig. 19. Again, the zone where a transient is occurring is
immediately identified, as the algorithm determines only one
dominant mode, of frequency equal to 0.28 Hz. The amplitude
estimate effectively follows the peak-to-peak amplitude of
the acquired signal, and the damping estimate highlights the
time windows in which the oscillation is diverging with good
reliability.

It is worth pointing out that this analysis is off-line,
so it is not subject to time-criticality issues; the authors,
then, were able to compare the obtained frequency estimates
with the output provided by algorithms typically adopted for
frequency trajectory estimation, such as short time Fourier
transform (STFT) and WT. A relevant agreement of the values
has been appreciated.

VII. CONCLUSION

In this article, a new method for the analysis of inter-area
oscillations on transmission networks is proposed. The method
exploits the modal analysis performed by the DMD algorithm.
However, traditional DMD has a limitation related to the
selection of the order to which the matrix of the singular
value should be reduced. The proposed algorithm overcomes
this limitation, as it automatically identifies the optimal order,
on the basis of the energy content of the input signal.

The proposed method has been characterized through sev-
eral tests, with both synthesized signals and signals actu-
ally acquired by WAMS. The former was performed in
MATLAB environment, synthesizing signals consisting of one
or two oscillations and varying the amplitude, frequency,
and damping parameters. In all tests, there was a significant
improvement in performance compared to the classic DMD
algorithm, which, in the presence of noise, suffers from the
problem of mode mixing and makes the estimates of amplitude
unreliable.

Simulated tests have shown that the proposed algorithm
has excellent accuracy in frequency estimation; the deviation
between estimated and nominal value, in all tests, is never
greater than 1%.

The amplitude estimation also presents satisfactory accu-
racy. If the synthesized oscillation is not too attenuated

Fig. 19. Estimated parameters for WAMS signal in Fig. 18 with the proposed
method. (a) Estimated frequency. (b) Estimated amplitude. (c) Estimated
damping.

(amplitude greater than 0.02), the deviation of the amplitude
estimate remains within the range of 15%.

Damping is the parameter with the highest deviations,
although they are still lower than 30% if the amplitude of
the synthesized signal is not too low.

Tests conducted on real frequency measurements from the
WAMS confirmed the reliability observed in the simulated
tests.

The obtained results suggest that the proposed method
exhibits excellent performance in the real-time analysis of the
oscillatory transient. By means of a trigger on the amplitude
estimation, it is possible to early detect dangerous oscillations
and take the proper countermeasures. On the other hand,
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a good damping estimation allows to recognize in advance the
behavior of the oscillation, so it would be advisable to improve
the accuracy guaranteed by the proposed method. To this end,
the authors are going to evaluate the possibility of combining
dynamic-order DMD with other approaches more specialized
to damping estimation. Dynamic-order DMD would be used
to estimate frequency and amplitude; the estimates could be
the input for a successive algorithm that only needs to estimate
damping and refine the amplitude estimate accordingly.
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