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Abstract— This article introduces a novel estimation frame-
work for the parameters in a linear-in-the-parameter estimation
problem when one-bit measurements are processed. We consider
a periodic signal, whose components have unknown amplitudes
and phases. This signal is assumed to be quantized by a single
comparator under various problem settings. To provide enough
information for the estimation of the signal parameters based
on one-bit quantized signal measurements, the threshold in
the one-bit comparator is assumed known. Several problem
settings are considered. They include synchronous/asynchronous
sampling, presence or absence of deterministic or stochastic
dither, and presence or absence of additive noise. The results
obtained by applying three alternative methods are compared
and analyzed. Experimental results on a two-component 1.2-GHz
signal validate the theoretical analysis. It is shown that several
estimation approaches are available, which provides different
performance levels, in terms of final estimation accuracy and
computational complexity.

Index Terms— Estimation, identification, nonlinear estimation
problems, nonlinear quantizers, quantization.

I. INTRODUCTION

MEASUREMENT of signals that depend linearly on
unknown parameters is a common problem in elec-

trical engineering. As an example, this occurs in system
identification when the user records system input and output
signals to apply model identification methods [1]. Similarly,
the amplitudes and phases of the components of a periodic
signal are of interest when, e.g., synchrophasors must be
measured in a power distribution network [2]. The possibility
to perform measurement and estimation of the unknown signal
parameters using simple approaches based on a minimum
hardware setup can lead to new applications, ease hardware
complexity, and reduce design costs by transferring complexity
from the hardware to the software domain.

In this article, we demonstrate how to estimate the ampli-
tudes and phases of a periodic signal based on binary data
obtained through a comparator. This problem was the object
of several studies dating back to [3], where the problem
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of reconstructing an analog signal from its binary quantized
version is analyzed, and to [4], where the effect of quantization
for estimation and control purposes was analyzed. It was
further considered in [5] and [6] under the assumption of
known and unknown probability density function (PDF) of
the noise affecting the quantizer input and acting as a dither
signal [7] and solved using a maximum-likelihood estimator
(MLE). In [8], estimates of multivariate signal parameters are
obtained under the assumption of dependent noise affecting
the processed one-bit quantized data. An MLE is used and
theorems are proved about the normality and consistency of
the proposed statistics. In [9], a technique is illustrated for
channel estimation using Gaussian corrupted piloting signals
quantized using a 1-bit analog-to-digital converter (ADC).
An MLE-based approach is described along with a maximum
a posteriori probability estimator.

Processing of binary data for estimation purposes was also
extensively covered in the area of signal processing [10]–[13],
telecommunications [14], radar signal processing [15]–[17],
and one-bit compressive sensing [18]–[20]. The idea of joining
standard ADC architectures based on a binary quantizer,
with embedded estimation methods, is also a recent research
topic [21]–[24]. Motivation and a theoretical foundation for
one-bit estimation can be found in [25]. A variety of meth-
ods and problem settings for system identification based on
quantized data can be found in [26], while Wang et al. [27]
introduced a unifying approach. Finally, Saito et al. [28]
and Carbone et al. [29] discussed the usage of Bussgang’s
theorem [30] in the context of multiantenna receivers and
one-bit system identification, respectively.

This article illustrates a novel estimation framework that
enables processing of binary data under several problem
settings, possibly including dither and noise sequences. The
illustrated estimators are based on constrained optimization,
following the ideas described in [31] and [32]. Three estima-
tion approaches are introduced, which process binary data to
provide estimates of a linear-in-the-parameter periodic signal.
The considered problem settings include the presence of
known/unknown deterministic and stochastic dither samples
and wideband noise. Monte Carlo simulations and experi-
mental results validate the proposed techniques and prove
their applicability when high-frequency periodic signals are
sampled and quantized by a simple comparator.

II. PROBLEM SETUP

In this article, we consider the estimation of the para-
meters of band-limited periodic signals expressed as a
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trigonometric polynomial

s(t) =
H�

p=1

ap cos(2πpf t) +
H�

p=1

bp cos(2πpf t) (1)

where the coefficients ap and bp represent the amplitudes to
be estimated, f is the known fundamental frequency, H is the
number of harmonic components, and t is the time. It is further
assumed that some of these components have amplitude 0 and
need not be estimated. Define P = {m1, . . . , m P } as the set
of component indices whose corresponding amplitudes need
to be estimated, and P ≤ H its cardinality. The signal (1) is
input to a comparator to provide

sq(t) = Q(s(t)) =
�

1, s(t) ≤ T

−1, otherwise
(2)

where T is the comparator’s constant threshold. The problem
addressed in this article is the following: the users collect
binary discrete-time samples of sq(·), knows P , and wants
to estimate the 2P × 1 vector � = [θ1, . . . , θ2P ]T =
[am1 , . . . , am P bm1 , . . . , bm P ]T , of still unknown amplitudes.

III. ESTIMATION FRAMEWORK

The general estimation principle that exploits binary data
to estimate the parameters of an otherwise unknown periodic
signal is based in this article on the solution of constrained
problems. Three estimation techniques will be analyzed and
compared:

1) method 1, QUADPARAM, based on the numerical min-
imization of a quadratic cost function;

2) method 2, QUADSIGNAL, based on quadratic program-
ming;

3) method 3, LINPARAM, based on linear programming.

All methods rely on constrained optimization. The setup of
constraints depends on the particular problem setting. The
following list includes settings that can be solved with the
techniques described in this article:

1) type of sampling (asynchronous/synchronous);
2) presence of added dither to perform quantization (known

deterministic dither, random dither with known PDF);
3) disturbances affecting quantization (random noise with

known/unknown PDF).

Other settings can, in principle, be considered such as the num-
ber of components P or signal frequency f being unknown.
These cases are excluded from the following analysis.

A. Signal Sampling and Preprocessing

By sampling (2) with a constant period TC , such that
λ = f TC , we obtain a discrete-time sequence sqn , n = 0, . . . ,
N − 1, where N is the number of collected samples. If λ is a
rational number, synchronous sampling results, asynchronous
sampling if λ is irrational. In the rest of this article, λ is
assumed to be known. Because of the periodicity of the
trigonometric functions, sampling of (1) for n = 0, . . . ,

Fig. 1. Measurement framework considered in this article: estimation of
the parameters � in a periodic signal, sn , based on binary measurements,
xqn , when synchronous/asynchronous sampling is adopted under the possible
presence of unmodeled noise (gray color), and the possible alternative pres-
ence of stochastic or deterministic dither sources. Solutions to the problems
associated with the various settings are described in this article.

N − 1 provides

sn = s(nTc) =
P�

p=1

am p cos(2πm p�nλ�)

+
P�

p=1

bm p cos(2πm p�nλ�) (3)

where �·� is the fractional part operator.

B. Discrete-Time Models

The samples of the signal to be measured can be represented
as a vector s = [s0, s1, . . . , sN−1]T or s = H�, where the
parameter vector � = [am1 , . . . , am P bm1 , . . . , bm P ]T is a
2P × 1 vector and H is an N × 2P matrix, whose nth row is
hn , a 1×2P vector. Under the noiseless case, each sample sn ,
n = 0, . . . , N − 1 is quantized to provide sqn = Q(sn) so that
the N × 1 vector sq = [sq0, sq1, . . . , sq(N−1)]T can be defined.

Some of the problem settings require modeling the presence
of noise and dither. If ηn and dn are the unknown and
known noise and dither samples, respectively, define xqn =
Q(sn + ηn + dn), and the corresponding N × 1 vector xq =
[xq0, xq1, . . . , xq(N−1)]T . The sequence ηn may also represent
random dither with known PDF, as explained in Section III-F.
A scheme of the signal chain considered in this article is
shown in Fig. 1 that illustrates the various estimation problem
settings.

The application of the most suitable estimator requires
knowledge of how the signal was sampled. Some of the
estimation procedures described in the following exploit the
principle of equivalent-time sampling (ETS) [33]. Two such
methods are described in Sections III-C and III-D.

C. ETS When Sampling Is Synchronous

When sampling is synchronous, λ = D/M , where D and M
are two irreducible natural numbers. Consider the map λn =
�nλ�, when n = 0, . . . , N −1. The sequence λn represents the
equivalent-time instants at which one period of (3) is sampled.
When N > M , some of these values repeat, whereas when
N ≤ M , this map provides distinct values. If D = 1, samples
sn are already sorted in increasing time order and sequential
ETS results. If D > 1, they must be first ordered to represent
a single period of (1). Accordingly, a new sequence s̃m ,
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m = 0, . . . , N − 1, is obtained by permuting samples in s
so that they represent signal samples in increasing order of λn

within a single period. Other theoretical details can be found
in [34].

D. ETS When Sampling Is Asynchronous: Quasi-ETS

When sampling is asynchronous, λ is irrational and λn =
�nλ� provides different samples for different values of n.
Thus, ETS cannot be exploited since signal periodicity is
not considered. However, its benefits can be approximated
through quasi-ETS (QETS), introduced in [34]. Consider the
map λn when n = 0, . . . , N − 1 [35]–[37]. The indices
n = 0, . . . , N − 1 are partitioned in E � 1 subsets I j such
that

I j = {n| j� ≤ λn < ( j + 1)�}, j = 1, . . . , E (4)

where � = (1/E) � 1 is a user-defined value. Since P is
finite, the first derivative of s(t) is bounded in magnitude.
Moreover, since s(t) is a continuous function, it is always
possible to find a value of � such that points in a neighborhood
of j� in (4) are transformed in points in a neighborhood of the
signal amplitude. Thus, indices in I j , for a given j , correspond
approximately to the same sampled value, provided that � is
sufficiently small. To apply QETS, the partition of indices (4)
must first be constructed and indices in I j used to recover
samples in sn as if they referred to the same value. Observe
that if � is sufficiently small and synchronous sampling is
adopted, partitioning of the time indices becomes equivalent
to applying ETS, as explained in Section III-C.

E. Setup of the Solution Constraints: Noise-Free
Deterministic Dither

When the acquisition is noise-free, the binary sequence
directly induces a natural set of constraints on the estimated
input signal ŝn . In fact, the comparator provides knowledge on
the input signal being above or below the known threshold T .
Thus, the estimator is constrained to search estimates ŝn , such
that ŝn ≤ T if sqn = 1 and ŝn > T if sqn = −1, when dithering
is not applied. If known time-varying dither dn is added, the
corresponding constraints become ŝn ≤ T − dn , if sqn = 1,
and ŝn > T − dn , if sqn = −1.

F. Setup of the Solution Constraints: Noise-Free Random
Dither

When random dither, η j , having known PDF, is added to
perform quantization, ETS or QETS can first be applied to
preprocess data. When QETS is applied, preprocessing results
in a partition of the time indices, as described in Section III-D.

By making the approximation that � is sufficiently small,
it is assumed that indices in I j , j = 1, . . . , E , refer approx-
imately to the same signal amplitude si . A mean value s j =
(1/|I j |) �

n∈I j
sn , where |A| is the cardinality of A, can then

be defined. Correspondingly, p j = (1/|I j |) �
n∈I j

(1/2)(xqn+
1) approximately represents the probability of the event E j =
{s j + η j ≤ T }, where η j = (1/|I j |) �

n∈I j
ηn is the average

noise amplitude of samples in I j . Observe that P(E j ) � p j �

Fη(T − s j ), where Fη(·) is the dither cumulative distribution
function (CDF).

The next step is to find an approximated confidence interval
for p j . In the made assumption, |I j |p j = �

n∈I j
(1/2)(xqn+1)

is a binomial random variable with success probability in each
trial approximately equal to p j and number of trials |I j |. For
j = 1, . . . , E , the choice of a confidence level 0 < α <
1 results in the calculation of

L j = F−1(α/2, |I j |, p j), U j = F−1(1 − α/2, |I j |, p j)

(5)

such that P(L j < |I j |p j < U j) � 1−α, where F−1(β, N, π)
is the inverse CDF of a binomial random variable with N trials
and π as success probability, calculated in 0 ≤ β ≤ 1. When
the user chooses a small value for α

L j

|I j | < p j <
U j

|I j | (6)

can be considered a hard constraint on p j . This constraint
finally results in a corresponding hard constraint on s j to be
included in the problem solution setup. By recalling that p j �
Fη(T − s j ), from (6), we have

l j = T − F−1
η

�
U j

|I j |
�

< s j < T − F−1
η

�
L j

|I j |
�

= u j

j = 1, . . . , E (7)

where F−1
η (·) represents the dither inverse CDF.

Observe that if U j or L j is equal to |I j | or 0, the dither CDF
in (7) might not be invertible. Accordingly, the corresponding
constraint is dropped from further processing and the confi-
dence interval may become one sided or even can be dropped
entirely. Thus, only a subset S of all possible E indices might
result in applicable constraints. By approximating

s j � h j�, j ∈ S ⊆ {1, 2, . . . , E} (8)

where the 1 × 2P vector h j is given by

h j � 1

|I j |
�
i∈I j

hi (9)

it can be written s � H�, where the |S| × 1 vector s =
[s1, s2, . . . , s |S|]T and H is the reduced |S|×2P matrix, with
rows h j , j ∈ S.

The estimator introduced in Section IV-E1 will search
feasible values for the parameters in (8) so that constraints (7)
are satisfied. Because of the made approximations and of the
assumption on (7) being hard constraints, a feasible solution
might not be found. In this case, the user may relax the
constraints by decreasing the value of α in (5).

Fig. 2 shows the working principle of QETS, along with the
indication of the constraint intervals, using red segments that
are, in some cases, open-ended. This approach will tolerate
modeling uncertainties, such as due to imperfect knowledge of
the added dither PDF or due to other unmodeled disturbances.

Observe that the choice of the added dither variance is the
result of a compromise. Dither allows samples that are far
from the quantizer’s threshold to possibly cross the threshold.
Crossing probability depends on how distant the samples are
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Fig. 2. One period of a two-component periodic signal acquired by a one-bit
quantizer with threshold T = −0.02, indicated in (a), (c), and (d). Zero-
mean Gaussian dither with σ = 0.0225 is assumed and N = 5000 samples
collected and processed. An irrational value for λ = 0.18132 . . . is set,
with λn representing the ETS variable. By processing data as explained
in Section III-F, QETS is implemented using � = 0.01 that results in
E = 100 subintervals of the [0, 1) equivalent-time period. (a) Noiseless
original signal; dots represents the indices j ∈ S for which 0 < p j < 1.
(b) Estimated probabilities p j are obtained by processing the one-bit quantized
sequence as detailed in Section III-F. (c) Each of these probabilities is used
to estimate confidence intervals expressed in (7) when assuming α = 0.01.
These are graphed using red vertical lines. (d) Expanded view. The estimator
provides a solution resulting in a reconstructed signal, shown using dashed
lines, intercepting all intervals, acting as problem solution constraints. Observe
that some of the red-colored intervals are one sided, because of the lack of
invertibility of the dither CDF in (7) when calculating l j and u j . In fact, when
the signal is close to the threshold, because of the noise span, p j is more
likely not to result in 0 or 1.

from the threshold and on the dither magnitude. Thus, for
any given sample, larger dither variance results in a larger
probability of the samples to cross the threshold and to provide
information useful for estimation purposes. At the same time,
the dither variance affects the variance with which the crossing
probability p j is estimated. The effect of added noise used
as dither in the estimation of sinewave parameters is further
discussed in [34].

G. Setup of the Solution Constraints: Noisy Case

When additive noise affects the acquisition process, con-
straints can be set up as in the noise-free case. However,
a tolerance value δ > 0, considered as the maximum noise
magnitude, can be programmed in the solver of the opti-
mization problem, to consider the constraint satisfied, if the
constraint violation is less than δ in magnitude. Alternatively,
the estimation can be performed by a suitable choice of the
cost function, as explained in Section IV-A3, which explains
the usage of the QUADSIGNAL estimator. Finally, if the noise
PDF is known, noise can be regarded as stochastic dither and
the estimation problem can still be solved by adopting the
applicable solver as described in Sections III-F and IV-E1.

H. Role of the Threshold Value T

The output binary sequence must be enough informative
to allow estimation. As an example, if T is larger than the
maximum value in s(t), sq will always be equal to 1 and
estimation will not be possible. The additional assumption is

made that T 
= 0. In fact, when T = 0, binary quantization
does not return enough information for the estimation of the
amplitudes of the signal components when dithering is not
applied. When P = H , it is known that the number of roots
in one period of the trigonometric polynomial s(t) − T is,
in the complex domain, 2P [38].

The choice of T results in some or in all of these roots to be
real-valued. Neglecting the possible multiplicity of solutions,
when P = H and all roots of s(t) − T are real-valued,
T intercepts a single period of s(t) in 2P distinct values
t1, . . . , t2P when t ∈ [0, (1/ f )). Under these assumptions,
if these crossing times were exactly known, the estimation
problem could be solved without approximations through a
system of equations. In practice, the binary output provides
constraints that result in lower and upper bounds for each ti ,
that is, no longer exactly known. The estimation framework
described in this article solves this problem.

When P = H , if some of the roots t1, . . . , t2P are complex-
valued, T intercepts a single period of s(t) in fewer than 2P
distinct crossing times. With the need to estimate 2P para-
meters, this setting results in a number of degrees of freedom
for the value of the unknown parameters that hold even if
crossing times were known exactly. By also considering the
additional uncertainty due to constraints, consistent estimation
of all parameters becomes unfeasible. By processing the signal
binary output, it is possible to check the number of crossing
times under the noiseless signal assumption or under large
signal-to-noise ratio (SNR) conditions.

When noise or dither affects quantization, the probability of
having less than the 2P equations needed to avoid this problem
can be controlled by the magnitude of the dither that can be
made larger to increase the probability of samples crossing the
threshold when knowing the noise PDF.

IV. ESTIMATORS

The detailed constrained estimation approaches are
described in this section. They are classified according to
whether additive noise affects or does not affect quantization,
while the type of sampling does not affect the estimation
principles. The descriptions include the cases when determin-
istic or random dither is assumed. The following describes the
estimation framework under the considered problem settings.

A. No Noise, No Dither Setting

1) Theory: While the absence of assistive signals during
quantization makes this problem the hardest to solve, signal
estimation is still possible, as done, e.g., in [39]. Estimation
can be performed by setting the problem as a constrained
minimization problem. In fact, each element in sq informs
the user about the corresponding sample in s being below
or above the threshold T . Thus, any feasible solution for �
must satisfy these constraints. Three methods are described
in this section. The first one is based on the minimization of
a cost function calculated from the measurement data. In the
second one, the cost function includes the estimation of each
signal sample before quantization. The third approach uses
linear programming to explore the region of feasible parameter
values.
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2) Method 1—QUADPARAM: If a quadratic cost function
is selected, the minimization problem providing estimates of
� can be setup as follows:

�̂ = arg min
�

1

N

N−1�
n=0

(sqn − hn�)2

s.t. sn ≤ T, if sqn = 1 or sn > T, if sqn = −1 (10)

that can equivalently be written as

�̂ = arg min
�

1

N
(sq − H�)T (sq − H�)

s.t. diag(sq)H� � T sq (11)

where diag(sq) is an N × N matrix, whose principal diagonal
contains the elements in sq , and � means componentwise
inequality between two vectors. Efficient algorithms exist to
solve (11), such as the interior-point technique [40], [41]
implemented, e.g., by fmincon in MATLAB that provides
quick solutions for problems with N in the order of 104.
This estimator requires the output sequence to be sufficiently
informative about the input signal. The value of T strongly
influences this condition, as explained in Section III-H.

3) Method 2—QUADSIGNAL: An alternative method can
be obtained by adapting the technique described in [42] and
[43]. First, the following constrained minimization problem is
setup:

�̂ = arg min
(s,�)

1

N

N−1�
n=0

(sn − hn�)2

s.t. sn ≤ T, if sqn = 1 or sn > T, if sqn = −1. (12)

Notice that, with respect to (10), this cost function involves sn

and not sqn . It can be rewritten as [42], [43]

1

N

N�
t=1

(sn − hn�)2 = 1

N
(s − H�)T (s − H�)

= 1

N

�
�T sT

�	HT H −HT

−H IN


	
�
s




� 1

N
YT ZY (13)

where IN is the N × N identity matrix [43]

Y =
	
�
s



, Z =

	
HT H −HT

−H IN



. (14)

Thus, the following quadratic programming problem can be
setup:

Ŷ = arg min
Y

1

N
YT ZY

s.t. AY � YU (15)

where

YU =
	
�U

SU



(16)

�U is assumed as a prior upper bound for �, SU = T sq , and

A =
	

I2P 0
0 diag(sq)



(17)

Fig. 3. Feasible regions in the estimation of the two parameters of a
single sinusoids, quantized using a noise- and dither-free comparator with
T = 0.15 when N takes the values indicated in (a). (a) Asynchronous
sampling with λ = 0.11323 . . . (b) Synchronous sampling case with λ = 0.2.
Blue and black squares refer to the true and estimated parameters using
QUADPARAM, respectively. In (a), the regions shrink about the true values
when N increases and sampling is asynchronous. Conversely, in (b), the
feasible regions overlap and do not depend on N .

with I2P as the 2P × 2P identity matrix. Efficient procedures
exist to solve quadratically constrained problems, such as
the interior-point-convex method [44], implemented by, e.g.,
quadprog in MATLAB.

4) Method 3—LINPARAM: It is expected that regardless of
the cost function, the set of inequalities in the constraints alone
will result in a feasible region for the searched parameters.
It can be observed that when sampling is asynchronous,
by increasing N , λn uniformly fills the [0, 1) interval according
to Weyl’s equidistribution theorem [45]. Accordingly, the
feasible region increasingly shrinks around the true sets of
parameters. Conversely, if sampling is synchronous, region
shrinking does not occur when N increases. However, con-
straints still provide boundaries of a feasible region for the
searched parameters.

As an example, consider the case of a single sinusoid
with a1 = 0.3449 . . . and b1 = 0.0459 . . . The sinusoid
is sampled either asynchronously with λ = 0.11323 . . . or
synchronously with λ = 0.2 and quantized by a comparator
with T = 0.15. When no dither is employed and quantization
is noise-free, the shapes of the feasible regions are shown in
Fig. 3(a) and (b) under the asynchronous and synchronous
sampling assumptions, respectively. The number of processed
samples takes values in [1, 2, 3, 4, 5, 6, 7, 15] · 102, in both
cases. The position of � is indicated by a blue square, while
the estimate provided by QUADPARAM is indicated by a
black square. It can be observed that the region shrinks around
the true parameters when sampling is asynchronous and N is
increased. Conversely, the regions overlap when N is increased
and synchronous sampling is adopted.

By randomly selecting 103 sets of parameters within the
feasible region associated with N = 500, the envelope of
all single-period reconstructed sinewaves is shown in Fig. 4.
All sinewaves within the envelope are based on parameters
obeying the constraints. The choice of a cost function to be
minimized forces the selection of one among them.

A canonical linear programming problem can be setup to
solve a set of minimization problems that share the same
sets of constraints, but different cost functions are chosen
to explore the boundaries of the feasible region for each
parameter. As an example, for each j = 1, . . . , 2P , the two
following linear programming problems can be setup, for a
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Fig. 4. Envelope of minimum and maximum values of the reconstructed
sinewaves, with parameters within the feasible region, associated with N =
500 in the same example as in Fig. 3. The two graphs are obtained by
processing 103 sets of parameters, randomly chosen within the feasible region.

TABLE I

VALUES OF THE SIMULATION PARAMETERS. FUNDAMENTAL FREQUENCY
SET AT THE VALUE λ = 0.011323235562

total of 2P problems:
θ̂+

j = arg min
�

θ j

s.t. diag(sq)H� � T sq (18)

and

θ̂−
j = arg min

�
(−θ j)

s.t. diag(sq)H� � T sq . (19)

These solutions provide bounds for the maximum and mini-
mum values in the estimate of θ j . A single estimated value
may be selected by choosing, e.g., their mean value θ̂ j =
1/2(θ̂+

j + θ̂−
j ). After each θ̂ j is calculated, an estimate of �

is achieved. The simplex algorithm can be used to solve (12)
and (18) [44].

5) Simulation Results: A fifth-harmonic component peri-
odic signal is considered in this article with parameters’ values
specified in Table I. Define sn(h) = sin(2πn ·hλ) and cn(h) =
cos(2πn · hλ), where λ is the normalized frequency, n is the
time index, and h is the harmonic index. Furthermore, define
H as in (20), shown at the bottom of the page. Consider that
P = 5, � = [θ1, θ2, . . . , θ10]T , and s = H�. By chosing
λ = 0.011323235562 and N = 2500, the equivalent-time
signal sequence is shown in Fig. 5. Samples in s are graphed
after permuting the time indices so to obtain a single signal
period. The permutation is performed by sorting in increasing
order the time sequence λn = �nλ�, n = 0, . . . , N −1. Sorting
provides a new sequence of permuted equivalent-time values
λ(n) that is used to plot all data in this article.

Fig. 5. One period of a five-component noiseless periodic signal based
on H defined in (20). N = 2500 equivalent-time indices are obtained by
sorting the sequence λn = �nλ�, n = 0, . . . , N − 1 in increasing order and by
accordingly reordering the time indices (see the text). Table I shows the used
signal components, with λ = 0.011323235562.

Fig. 6. No noise, no dither setup: estimation error in the case of the signal
with components listed in Table I. N = 2500 equivalent-time values are
processed by sorting the sequence λn = �nλ� in increasing order (see the
text). Results of all methods are shown when T = −0.1643 . . .

Results obtained by processing sq are shown in Figs. 6
and 7. Fig. 6 shows one period of the estimation errors asso-
ciated with the usage of all three methods. Results obtained
by varying the threshold T in (−0.2, 0.2) are shown in Fig. 7,
where the L2-norm of these errors is graphed normalized to
N . This figure also shows that when T is close to 0, the
error provided by all estimators increases largely, as expected.
In fact, when T = 0, information about the amplitudes of the
signal components is lost since the output sequence becomes
insensitive to multiplication factors applied to the input signal.
Thus, the value of T influences the estimator performance.

Observe also that estimation accuracy is influenced by
the periodicity of the sequence in sq . For instance, when
λ is a rational number (D/M), D and M do not share
common dividers, and N > M , sq contains repeated samples.
Consequently, increasing N will not result in better estimation
accuracy. Conversely if N < M or when λ is an irrational
number, increasing N will improve estimation accuracy.

To show the accuracy with which parameters are estimated
when N increases, the differences θ̂+

j − θ̂−
j , j = 1, . . . , 2P ,

with definitions in (18) and (19) are evaluated. Results are
shown in Fig. 8. When asynchronous sampling is adopted,
increasing N results in signal samples that are closer to the

H =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 1 · · · 0 1
s1(1) c1(1) s1(3) c1(3) · · · s1(11) c1(11)
s2(1) c2(1) s2(3) c2(3) · · · s2(11) c2(11)

...
sN−1(1) cN−1(1) sN−1(3) cN−1(3) · · · sN−1(11) cN−1(11)

⎤
⎥⎥⎥⎥⎥⎦ (20)
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Fig. 7. No noise, no dither setup: normalized L2-norm of the error sequences
in estimating the signal with components listed in Table I, as a function of
the comparator’s threshold when N = 2500 samples. Points at T = 0 are
removed because amplitude estimation is unfeasible in this case.

Fig. 8. Amplitude of the constraint intervals θ̂+
j − θ̂−

j , j = 1, . . . , 2P defined
in (18) and (12), as a function of N . The example with P = 5 and values listed
in Table I is considered. By increasing N , asynchronous sampling results in
shrinking of all constraint interval amplitudes.

threshold value and provide tighter bounds for the parameters
to be estimated. In turn, this results in θ̂+

j approaching θ̂−
j .

When synchronous sampling is adopted, all graphs remain
constant and independent on N .

B. No Noise, With Known Deterministic Dither Setup

1) Theory: If the amount of information at the comparator’s
output is too little, the estimation accuracy is low. As an
example, if the input signal is constant or it rarely intercepts
the threshold, sq will mostly contain repeated binary infor-
mation that may be insufficient for estimation purposes [46].
Similarly, if sq is obtained by sampling synchronously a
periodic sequence, its associated information will not increase
when N increases, limiting the consistency of all estimators.
This problem can be overcome by the addition of dither before
quantization. A dither sequence can be sourced by a digital-
to-analog converter or through an analog reference voltage,
suitably processed by dedicated analog circuitry. Dither can
be in the form of a noise sequence [7] or a deterministic
sequence [47]. This latter case can also be solved with the
presented methods.

When the effect of noise is not included in the model,
according to (2), xqn is equal to 1 if sn + dn ≤ T , that is,
sn ≤ T − dn , where the rightmost term is a known value.
Thus, the set of constraints must be modified as described in
Section III-E. Define D = [d0, d1, . . . , dN−1]T , as the vector
of dither samples. The application of method 1 provides

�̂ = arg min
�

1

N
(xq − H�)T (xq − H�)

s.t. diag(xq)H� � (T − D) ◦ xq (21)

Fig. 9. No noise, sinusoidal dither setup: error in the estimation of the signal
with components listed in Table I, when N = 2500 samples. Known dither
dn = 0.5 sin(2π(π/7)n), n = 0, . . . , N −1, is assumed. Results of all methods
are shown when T = −0.1643 . . .

where ◦ indicates the Hadamard product between two matri-
ces. Similarly, from (15), method 2 can be updated as follows:

Ŷ = arg min
Y

1

N
YT ZY

s.t. AY � YD (22)

where

YD =
	
�U

SD



(23)

is an (N+2P)×1 vector, SD = (T −D)◦xq is an N×1 vector,
and

A =
	

I2P 0
0 diag(xq)



(24)

is an (N + 2P) × (N + 2P) matrix.
Method 3 must be modified such that for each j =

1, . . . , 2P , the two following linear programming problems
can be setup:

θ̂+
j = arg min

�
θ j

s.t. diag(xq)H� � (T − D) ◦ xq (25)

and

θ̂−
j = arg min

�
(−θ j)

s.t. diag(xq)H� � (T − D) ◦ xq (26)

and by selecting, e.g., θ̂ j = (1/2)(θ̂+
j + θ̂−

j ), j = 1, . . . , 2P .
2) Simulation Results: The same example as in Section IV-

A5 is considered in this section. As an example, the sinusoidal
signal dn = 0.5 sin(2π(π/7)n), n = 0, . . . , N −1, is used as a
known dither sequence, throughout this article. The application
of all methods provides the results shown in Figs. 9 and 10,
to be compared with Figs. 6 and 7, respectively. As shown in
Fig. 7, dither provides much more information available for
the estimator that results in a much lower error norm and also
allows estimation when T = 0.

C. Estimator Bias

The bias of estimator QUADSIGNAL is analyzed in this
Section. First, Monte Carlo simulations were used to graph the
norm of the bias in estimating each component of �, assuming
dither with dn = 0.5 sin(2π(π/7)n + φ), n = 0, . . . , N − 1,
where φ is assumed as a uniform random variable in [0, 2π).
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Fig. 10. No noise, sinusoidal dither setup: normalized L2-norm of the error
sequences in estimating the signal with components listed in Table I, as a
function of the comparator’s threshold when N = 2500 samples.

Fig. 11. No noise, sinusoidal dither setup: normalized L2-norm of the error
sequences in estimating the signal with components listed in Table I, using
QUADSIGNAL, as a function of N .

The L2-norm of the bias components obtained by averaging
10 data records associated with the signal with components
listed in Table I is shown in Fig. 11, as a function of N .
It can be seen that it decreases with N as (1/N). This
behavior can be explained as follows. If the constraints are not
active, � can be chosen by the algorithm such that the cost
function (12) approaches 0. For any θi in �, the sensitivity
of the solution ŝn = hn� to variations of θi can be written as

ŝn = (∂ ŝn/∂θi)
θi = hni
θi , where hni is the i th element
of hn . Define ε as the distance of the signal point closest
to threshold. When sampling is asynchronous, ε ∈ O(N−1).
Thus, |
ŝn| < ε or |
θi | < (1/(|∂ ŝn/∂θi |))ε = (1/|hni |)ε ∈
O(N−1), as shown in Fig. 11.

D. Noise, With Known Deterministic Dither Setting

1) Theory: Additive noise may corrupt the input signal.
Accordingly, xqn = Q(sn + dn + ηn), where the sequence
ηn , n = 0, . . . , N − 1, represents the sequence of noise
occurrences. By this redefinition, method 2 in (22) can be
applied as is, assuming dn known. Conversely, when applying
method 1, because of the presence of noise, the constraints
in (10) could result in an unfeasible solution. Thus, δ > 0 can
be seen as a guardbanding, tolerance value that can be set at
the assumed maximum noise magnitude. Since, in practice,
this value is not known, if δ is too small, running the solver
can result in an unfeasible solution. If this occurs, δ can
be increased until a feasible solution is found by running
the solver on the same record of data. While also method
3 could be modified by the inclusion of a tolerance value
when searching for a solution satisfying the constraints, a new

Fig. 12. Noise, sinusoidal dither setup: normalized L2-norm of the error
sequences in estimating the signal with components listed in Table I, as a
function of the comparator’s threshold when N = 2500 samples and R = 20 is
the number of data records.

Fig. 13. Noise, sinusoidal dither setup: average error sequences in estimating
the signal with components listed in Table I, when N = 2500 samples and
R = 20 is the number of data records. Results of both methods are shown
when T = −0.1643 . . .

Fig. 14. Noise, sinusoidal dither setup: standard deviation of the error
sequences in estimating the signal with components listed in Table I, when
N = 2500 samples and R = 20 is the number of data records. Results of
methods 1 and 2 are shown when T = −0.1643 . . .

method is introduced in Section IV-E1 that exploits the results
presented in Section III-F.

2) Simulation Results: The same example as in
Section IV-B2 is considered in this section. As an example,
zero-mean additive Gaussian noise having standard deviation
σ = 0.01 is added to the periodic signal in front of the
comparator. The application of methods 1 and 2, assuming
δ = 0.05, provides the results shown in Figs. 12–15.
By comparing Fig. 12 with Fig. 10, you can appreciate the
regularizing effect of noise: with a slight increase in the
overall error norm, peaks are partially smoothed in Fig. 12.

E. No Noise, Random Dither Setting

1) Theory: When random dither with known PDF is used to
assist quantization at the comparator’s input, constraints with
boundaries l j , u j , j ∈ S can be obtained by the procedure
described in Section III-F. Then, method 3 can be applied by
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Fig. 15. Zero-mean Gaussian dither with σ = 0.125: original noiseless signal
and signal reconstructed using Method 3. N = 104 samples are processed,
assuming T = 0.075 shown using dashed lines; blue and red circles represent
the values of the constraints calculated with � = 0.01 and α = 10−4. The
inset shows an enlarged view. Observe that bounds appear close to T , within
the reach of the random dither amplitude span in the order of ±3σ about T .

solving the two following linear programming problem sets,
for a total of 2P problems:

θ̂+
j = arg min

�
θ j

s.t. l j < h j� < u j , j ∈ S (27)

and

θ̂−
j = arg min

�
(−θ j)

s.t. l j < h j� < u j , j ∈ S (28)

and by selecting, e.g., θ̂ j = (1/2)(θ̂+
j + θ̂−

j ), j = 1, . . . , 2P .
2) Simulation Results: Method 3 was simulated using 20

Monte Carlo records and zero-mean Gaussian dither with
σ = 0.125. Results are shown in Fig. 15. The same example
as in Section IV-B2 was considered with the simulation
parameters set as listed in Fig. 15. Blue and red circles indicate
the range of each constraint, calculated by (7). Based on
these constraints, signal parameters are estimated using (27)
and (28).

F. Statistical Performance

The L2-norms of the variance and mean square
errors (MSEs) of LINPARAM based on Gaussian random
dither to build equivalent constraints are evaluated using a
Monte Carlo method. Results based on simulation parameters
listed in Table I are graphed in Fig. 16(a) along with the
L2-norm of the Cramér–Rao lower bound (CRLB) applicable
to this case. The CRLB was computed by using its expression
published in [6, eq. (55)]. It can be observed that the loss
of statistical efficiency is moderate. The estimator variance
and MSE associated with each component in the vector
of parameters are shown in Fig. 16(b), together with the
corresponding CRLB, when N = 6 × 103.

Observe that if noise corrupts the samples in addition to
dither, two cases apply: if the noise PDF is known, its effects
can be aggregated to those of the dither and can be modeled
to retain estimation accuracy; alternatively, its effects remain
unmodeled and LINPARAM cannot be applied as is, since
noise could invalidate the check performed by the algorithm on
the solution feasibility. In this latter case, a tolerance parameter
could be defined as described in Section III-G or α in (5) can
be modified until feasibility is achieved. This approach is not
further discussed in this article.

Fig. 16. Zero-mean Gaussian dither with σ = 0.3: signal reconstructed
using method 3 (LINPARAM) based on the random dither constraints setup
as illustrated in Section III-F. (a) CRLB, estimator variance, and MSE as a
function of N and associated with (b) each of the ten signal components.
T = −0.16435 . . . is assumed, with � = 0.02 and α = 10−3.

TABLE II

PROPERTIES OF THE METHODS DESCRIBED IN THIS ARTICLE: * IF THE

NOISE PDF IS KNOWN, NOISE CAN BE REGARDED AS BEING

ADDITIONAL STOCHASTIC DITHER

V. MONTE CARLO COMPARISON OF ALL METHODS

The estimation performance of the three methods proposed
in this article was determined by Monte Carlo simulations
based on 20 records. All possible problem settings listed
in Table II were considered. Simulations were divided into
two subgroups according to the type of applied dither sig-
nal: stochastic, that is, zero-mean Gaussian noise with stan-
dard deviation σ = 0.3 and deterministic, given by dn =
0.5 sin(2π(π/7)n), n = 0, . . . , N − 1. Observe that the
dither prior information differs significantly in the two cases.
Deterministic dithering implies that the amplitude of each
dither sample is known, and stochastic dithering only assumes
the dither PDF to be known.

Results assuming deterministic and stochastic dithering
are shown in Fig. 17(a) and (b), respectively. Each bar in
Fig. 17 represents the mean value of the root-mean-square
error (RMSE), calculated over all data records. A 3-bit code
was assigned to each setting, where, from the leftmost to the
rightmost positions, each bitcode 0/1 represents asynchro-
nous/synchronous sampling, absence/addition of dithering,
and absence/addition of noise. In this latter case, zero-mean
Gaussian noise with standard deviation 0.01 was added prior
to quantization. The generated signal is the same signal used
in the simulations illustrated throughout this article, with N =
5 × 103. In the asynchronous case, λ = 0.011323235562 was
assumed, while λ = (99/N), in the synchronous case.

Observe that the LINPARAM method, under the determin-
istic dither setting, does not support the addition of noise.
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Fig. 17. Monte Carlo comparison of all methods under the various estimation
settings, coded using the displayed 3-bit code. Shown is the RMSE averaged
over R = 20 records of data, each assuming the periodic signal whose
parameters are shown in Table I: (a) and (b) Usage of sinusoidal deterministic
dither, with 0.5 peak amplitude, and zero-mean Gaussian stochastic dither,
having standard deviation 0.3, respectively. The LINPARAM method in
(a) does not support the addition of additive noise. It outperforms the other
methods under the settings in which it can be applied. When additive noise
affects data prior to quantization, the QUADSIGNAL method works at best; in
(b), the comparison is made between LINPARAM and the BQBE proposed
in [34]. The former has a better performance at the expense of increased
computational burden.

Fig. 18. Monte Carlo comparison of the mean execution times under the
same estimation problem settings, adopted in Fig. 17, and coded using the
displayed 3-bit code. Results are based on R = 20 data records, each obtained
on a double-core i7 computer.

At the same time, when deterministic dithering is not applied,
LINPARAM can support the presence of noise, if noise can be
regarded as a stochastic dither, and thus, its PDF is assumed
known. Thus, only four bars are shown in Fig. 17(a).

LINPARAM and QUADSIGNAL provide similar results,
while QUADPARAM provides worse results under the settings
000 and 010 and under all noisy settings XX1, where X
is either 0 or 1. However, LINPARAM is much faster than
QUADSIGNAL, as shown in Fig. 18, which reports average
processing times under the same settings. These were deter-
mined empirically on a dual-core i7-based computer.

Fig. 17(b) shows the average RMSE associated with the
usage of LINPARAM under the stochastic dithering setting.
Since QUADPARAM and QUADSIGNAL do not support this
setting, the comparison was made with an applicable estimator,
the binary quantile-based estimator (BQBE) presented in [34].

Fig. 19. No noise, known sinusoidal dither setup: mean values of the
estimators’ execution times in seconds, as a function of the record length
N . Results of all methods are shown, under the setting 010 when using a
double-core i7 CPU. Sinusoidal dither amplitude is equal to 0.5.

Fig. 20. No noise, known sinusoidal dither setup: average RMSE of the
error sequences in estimating the signal with components listed in Table I,
as a function of the record length N , averaged over R = 10 Monte Carlo
records. Sinusoidal dither amplitude is equal to 0.5. Results of settings coded
as 000 and 010 are shown when T = −0.1643 . . . group of graphs refers to
the usage of the estimation techniques listed in the legend.

A. Effect of Record Length

The average of the RMSE of the signal reconstruction error
associated with all methods as a function of the record length
N is shown in Fig. 20, assuming a sinusoidal dither sequence.
The same example as in Section IV-D2 is considered.
Monte Carlo results are based on R = 10 records of data.
Observe that LINPARAM and QUADPARAM outperform
QUADSIGNAL. However, the average execution times of
QUADPARAM are about one order of magnitude larger on
a dual-core i7-based computer, as shown as a function of N ,
in Fig. 19.

VI. EXPERIMENTAL RESULTS

An area where binary quantization could result in sim-
pler acquisition hardware than more complex multibit res-
olution ADCs is that of high-frequency signal acquisition.
Accordingly, experimental data were obtained by generating
a two-tone signal using a vector signal generator and by
collecting samples using a 4-GHz, 10-bit, 40-GS/s digital
sampling oscilloscope. Two tones are generated with nominal
frequencies equal to f1 = 1.195 GHz and f2 = 1.205 GHz.
Amplitudes of signal samples ranged in [−0.3156, 0.3269]
V. The estimated signal spectrum, based on the full record
of N = 100 002 samples, collected by the 10-bit resolution
digital storage oscilloscope (DSO), is plotted in Fig. 21.
It can be observed the presence of several tones due to signal
distortion and of colored wideband noise. Data were quantized
via software using a threshold T = 0.239861832917778 V.
The signal mean value was preliminary filtered. The one-bit
time series was then processed as described in this article.
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Fig. 21. Estimated spectrum of a two-tone signal with frequencies 1.195 and
1.205 GHz, generated by a vector signal generator and acquired by a 4-GHz
DSO. The estimation is based on N = 100 002 samples. The inset shows
the two components in an expanded frequency interval. Notice both the
narrowband distortion components and the colored wideband noise.

Fig. 22. Experimental data of the two-tone signal with spectrum shown
in Fig. 21: estimation of the error PDF based on a kernel estimator. Errors
are calculated as the difference between the full-resolution signal and the
estimated sequence based on N = 900 binary samples. Plots are associated
with the usage of (a) two and (b) three estimation methods based on P = 2 and
P = 5 sinusoidal components, respectively. The more complex model results
in a reduced dispersion of the estimation error. (c) Usage of LINPARAM
with P = 2 under the setting including zero-mean Gaussian stochastic dither
with σ = 0.2. It is also shown the error performance of the BQBE proposed
in [34].

First, a model with P = 2 was set up, by assuming f1 and
f2 known. N = 900 samples were processed by two of
the three methods. The presence of unmodeled narrowband
components and wideband noise in the data made LINPARAM
inapplicable. After parametric estimation, the error sequences
were calculated as the difference between the reconstructed
and the full-resolution signal. The associated PDFs were
then estimated using a kernel-based approach. The results
are shown in Fig. 22(a) when using QUADPARAM and
QUADSIGNAL. By increasing the model order to P = 5 with
components having frequencies f3 = 1.2500, f4 = 1.1015,
and f5 = 1.3750 GHz, LINPARAM became applicable.
The related error PDFs are shown in Fig. 22(b). A lower
error dispersion results. However, the choice P = 5 requires
prior knowledge about the signal distortion that might not be
available to the user.

Finally, stochastic dither was used in generating binary
quantization, through simulation. Gaussian dither was used,
having zero-mean and σ = 0.2. The application of
LINPARAM, as explained in Section IV-E2, when assuming

P = 2 and N = 15 × 103 produced the error PDF shown in
Fig. 22(c). These results are characterized by a larger estima-
tion error variance with respect to errors in Fig. 22(a) and (b).

VII. USER-ORIENTED APPROACH

From a user perspective, the choice of which method to use
among those described in this article can initially be based
on the presence or absence of noise. If the SNR is large,
LINPARAM can possibly be considered as the best choice
in terms of computational complexity and accuracy of results.
Even though it assumes a noiseless sequence, it can account
for the presence of noise, if noise samples do not invalidate
the constraints, as shown in Section VI. Also, QUADPARAM
and QUADSIGNAL can be used. However, QUADPARAM is
characterized by a larger RMSE and QUADSIGNAL requires
higher computational complexity.

If the SNR is low, LINPARAM can no longer be applied.
If the number of samples is sufficiently small, e.g., less than
104, QUADSIGNAL provides the best results. Alternatively,
QUADPARAM becomes the only option. Moreover, if the
noise PDF is known, LINPARAM with stochastic constraints,
as described in Section IV-E1, becomes applicable and a
possible alternative to the usage of BQBE [34].

Similar reasoning applies in case of deterministic dither with
known samples. When the SNR is large, LINPARAM and
QUADSIGNAL are the best choices, while QUADPARAM
provides worse results. When the SNR decreases, QUADSIG-
NAL exhibits the best compromise between complexity and
estimation accuracy. Moreover, the usage of stochastic instead
of deterministic dither is equivalent to the case of wideband
noise with known PDF.

Finally, if sampling can be made asynchronous, an increase
in N may result in tighter constraints and thus in feasible
regions of reduced size, as shown in Fig. 3(a). Conversely,
if sampling is synchronous, increase in estimation accuracy
can be obtained through dithering or by increasing N , in case
LINPARAM with stochastic dithering is used. A list of the
estimators’ applicability under the various problem settings is
shown in Table II.

A. Limitations of the Presented Estimation Methods

Several assumptions were made throughout this article to
support the construction of the presented estimators. Estima-
tion is enabled even after one-bit severe quantization in any of
the considered settings, by the assumption that signal sampling
is asynchronous. In fact, when periodic signals are sampled
synchronously, the sample sequence becomes periodic and
parameters can be recovered only if deterministic or stochastic
dither is employed. However, if deterministic dither is obtained
by synchronous sampling of a periodic signal, then chaotic
patterns can arise if the signal and dither frequencies are not
synchronized. Stochastic dither can break the periodicity of
the synchronous samples signal, but it requires knowledge of
its PDF to ease estimation or prior information to be used for
its estimation [26].

When dither is not used, signal estimation is only based
on the estimation of times associated with the signal crossing
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the threshold. As discussed in Section III-H, the value of T
plays a significant role in determining the number of crossings
and thus the number of independent equations to be used for
estimation of the parameters of the signal components. The
estimation will still be possible when asynchronous sampling
is adopted and the number of samples goes to infinity since the
constraints reduce the size of the feasible region, as shown in
Fig. 3. Even unconstrained estimation will still be possible in
this case if a single component is assumed, as shown in [39].

Frequencies of processed components are assumed known
in this article. In practice, this might not be a severe limitation
when signals are generated by the user for, e.g., testing
purposes. Conversely, if no prior knowledge about the fre-
quency of signal components is available, but the number
of components is known, the discrete-time Fourier transform
of the one-bit sequence can be used to detect the most
powerful components. These can be processed one-by-one by
the estimators described in this article, as done, for instance,
in [37].

Signal recovery is based in this article on the knowledge of
the signal structure, e.g., a linear in the parameter sequence.
If this hypothesis is removed and signals are allowed not to be
bound to a defined model structure, the presented procedures
will not be applicable. Finally, observe that while knowledge
of the wideband noise PDF may be incorporated in the
estimators to improve their accuracy, some of the techniques
presented in this article allow estimation also without this
knowledge.

VIII. CONCLUSION

A framework was presented in this article to estimate the
amplitudes and phases of the sinusoidal components in a
periodic signal, based on binary quantized data. The analyzed
problem settings include the possible presence of stochastic
or deterministic dithering, the possibility to sample signals
synchronously or asynchronously, and the possible presence of
additive noise in quantizing signals. Three estimation methods
are illustrated. All methods are based on constrained opti-
mization. They exhibit complementary properties in terms of
accuracy, numerical complexity, and capability to account for
the possible presence of dither and noise.

Several application examples were described. Usage of
experimental data validates the described estimators and shows
their application limits in the presence of unmodeled signal
components.
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