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Abstract—This article proposes a proof-of-concept device to
continuously assess the usage of handheld power tools and
detect construction working tasks (e.g., different drilling works)
along with potential misusages, e.g., drops, with an energy-
efficient architecture design. The designed device is based
on Bluetooth low energy (BLE) and NFC connectivity. BLE is
used to exchange data with a gateway, whereas NFC has been
chosen as an energy-efficient wake-up mechanism. A temperature
and humidity sensor is embedded to monitor storage conditions
and an accelerometer for tool usage monitoring. The ARM
Cortex-M4 core embedded in the BLE module is exploited to
process the information at the edge. A Tiny Machine Learning
(TinyML) algorithm is proposed to process the data directly on
board and achieve low latency and high energy efficiency. The
TinyML algorithm has been developed embedded in the proposed
device to detect four different usage classes (tool transportation,
no-load, metal, and wood drilling). A dataset containing more
than 280 min of three-axis accelerations during different activities
has been acquired with the device attached to a construction
rotary hammer drill and used to train and validate the algorithm.
A neural architecture search has been performed to optimize
the trade-off between accuracy and complexity, achieving an
accuracy of 90.6% with a model size of roughly 30 kB. The
experimental results showed an ultralow power consumption
in sleep mode of 550 nA and a peak power consumption of
8 mA while running TinyML on the edge. This results in a
balanced combination of edge processing capabilities and low
power consumption, enabling to obtain a smart Internet of Things
(IoT) device in the field with a long lifetime of up to four years in
operation and 17 years in shelf mode with a standard 250-mAh
coin battery. This work enables a long battery lifetime operation
of device degradation and utility analysis, further closing the gap
between edge processing and fine granularity data evaluation.

Index Terms— Asset management, condition monitoring, con-
struction 4.0, energy efficiency, low-power design, smart sensors,
tool usage monitoring, wireless sensor networks.
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I. INTRODUCTION

OWER tools are used in every construction industry in

most of the working chain. Assessing power tools’ usage
can have a big impact on industry sustainability. Such informa-
tion can be used to optimize maintenance interventions, enable
prolonged tool life cycle, and improve productivity and safety.
In fact, a misuse or missed maintenance can interrupt the
workflow, or in the worst cases affect the safety of users [1].
In both the cases, it has a huge impact on the productivity
and indirectly on the overall sustainability [2]. One of the
challenging tasks when designing a product is achieving long
operating life, and to achieve such, correct handling and
targeted interventions are mandatory to be performed [3]-[5].
The construction industry is increasing its awareness of the
positive impact digitalization can have in maintaining a sus-
tainable business [6]-[9]. However, beyond a conservative
culture, many technical challenges and limitations still prevent
the adoption [10]. Regarding the conservative industry culture,
it is important not to disrupt the traditional workflow. Thus,
SmartTag has to be position-agnostic to allow the users to
position it wherever they feel is more convenient. Furthermore,
many power tools are corded, hence requiring additional volt-
age conversion circuits to supply the SmartTag. Considering
the technical limitations, lifetime of battery-operated devices
poses the biggest challenge [11] preventing the seamless use
of IoT as a truly digitalization enabler. The recent wave
of IoT [12], [13] and technological advances are enabling
the design and development of a new generation of pow-
erful, intelligent, low-energy, miniaturized, lightweight, and
wireless sensor devices. Among other wireless technologies,
Bluetooth Smart or BLE allows energy-efficient meter-distance
communication, achieving a few millwatt power budget [14].
The wireless capability combined with sensors and on-board
signal processing allows the development of a new generation
of IoT devices that are used for long-lasting monitoring of
industrial machinery, tools, and other devices [5], [15]-[18].
The performance evaluation and prediction of tools’ failure
and lifetime is becoming more and more an important problem
to address due to the complex and dynamic structure of
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their working operations [19]. Today, sensors are an accurate
technology to extract useful information of the performance,
condition, and use of machinery and tools [20], [21]. Espe-
cially microelectro-mechanical systems (MEMS) inertial sen-
sors [22], [23], as electronic devices designed to measure
vibration, acceleration, and orientation with gyroscopes are
used in many monitoring applications [5], [17], [18].

Tracking the state of a mobile and relatively small device is
of increasing importance, as tools become more complex and
expensive. However, the existing sensors alone are not smart
enough to extract useful information from the acquired data.
Data gathered by current sensors have to be streamed out by
a node to be processed further in the cloud. This approach
increases the energy required by the communication and the
latency of detection and additionally poses security and privacy
risks. For this reason, today’s sensor systems mostly focus on
monitoring medium- to large-sized stationary machinery or
tools [24]. On the other side, designing a truly intelligent IoT
node for such tools brings challenges on both the size and the
life cycle, mainly due to limited batteries that supply the smart
sensor node [25]. This operating lifetime limitation today
prevents the widespread adoption of smart and miniaturized
IoT sensor nodes for this kind of monitoring tool. In fact,
short battery life impacts the usability, as a battery replacement
in these circumstances is difficult, expensive, and a time-
consuming activity. Such a monitoring application requires a
thorough low-power system design to achieving a satisfactory
lifetime. The design of those IoT sensor nodes requires careful
selection of components to achieve low-power and heavy-duty
cycles (i.e., high fraction of inactive state) given the small
battery size requirements and the expected long life time of
many months or years. Moreover, wireless connectivity plays
a crucial role in this application, and a trade-off must be made
between power consumption and bandwidth [14].

Such a smart IoT device could in fact be manufactured and
stored for a long time before being applied to a tool and,
once activated, an operational lifetime of only a few weeks
or months could discourage the user to adopt such solutions.
The operation itself could then be divided into two different
scenarios: one in which the tool, and so the device, is stored
on a shelf, and one in which the tool is operated. Moreover,
the application scenario of such a device can experience an
unpredictable variety of work operations (drilling, hammering,
chiseling, grinding, transportation, etc.), accidental drops, and
atmospheric circumstances, bringing it to dynamic and harsh
operating conditions, as experienced in construction sites.
Different quantities should thus be evaluated for each of the
scenarios: temperature and humidity can be measured to mon-
itor atmospheric conditions, while vibrations, and so accelera-
tions, can be exploited for activity/operation/drop recognition.

This work builds on top of [26]. In particular, this article
presents the design, implementation, and experimental evalu-
ation of a long-lasting SmartTag for remote power tools mon-
itoring with embedded sensors and intelligence at the edge.
The main target is the monitoring of industry tools in terms
of use and conditions, thus enabling device degradation and
utilization accounting. The SmartTag is built around a BLE
system on a chip that hosts an ARM Cortex-M4 core, which
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is particularly suited for onboard information processing and
data analytics with inertial sensors. This node lends itself to
perform both standard signal processing pipelines, exploiting
the optimized CMSIS-DSP [27] libraries, and novel machine
learning (ML) and deep learning tasks. In this work, a neural
network to perform activity recognition and drilling material
classification is proposed and evaluated. A dataset of more
than 2700 s of drilling accelerations against different materials
has been collected and used to train and validate the introduced
model. The neural network has been ported to the device
using the TensorFlow Lite for Microcontrollers (TFLM) [28]
framework, with enhanced CMSIS-NN [29] kernels.

The main contributions of this article are summarized as

follows:

1) hardware—software codesign of a novel smart IoT node
capable of recording three-axis accelerations, tempera-
ture, and humidity with ML capabilities in an ultralow-
power fashion;

2) field data collection of accelerations from the prototype
attached to a construction power tool during drilling,
no-load, and transportation tasks;

3) network architecture search (NAS) for an efficient and
accurate tool activity recognition;

4) porting of the designed ML model at the edge with
extreme size optimization of the kernels allowing to run
on the battery-powered designed device;

5) analysis of feasibility and performance evaluation on
real construction power tool data;

6) experimental evaluation of functionality, power con-
sumption, and battery lifetime.

II. RELATED WORK

A similar approach regarding the application scenario was
followed in [5], albeit the authors exploited a different radio
technology (Zigbee versus BLE [14]), a different power source
(thermoelectric generator (TEG) harvester versus Lithium
battery), and they do not provide ambient temperature and
humidity measurements.

A tool for device monitoring is presented in [4], but it has
a different scope. It is intended to monitor large machinery,
as CNCs and lathes, from which it harvests energy in the form
of vibration. Such energy scavenging methodology is clearly
not viable for handheld devices, due to both their magnitude
and on-time of the tool.

CNC machines are also targeted in [30]. The authors assess
the tool wear by analyzing forces applied to different CNC
axes, as well as drive currents for the axis and the spindle,
exploiting a decision tree, a different ML algorithm. Contrarily
to SmartTag, the acquisition system is composed of laboratory
signal acquisition units, and the sensors were integrated inside
the tool and signals could not be acquired with an external
device such as the SmartTag.

Zanelli et al. [16] presented a structural health monitoring
node with similar capabilities to our design, but it must rely
on solar energy harvesting to achieve a satisfactory battery
lifetime. This could represent a problem when such energy
is not present, as in warehouses or indoor, where the light
conditions are very challenging.
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A similar neural network approach has been proposed
in [31], where the authors classify different types of rocks
while drilling. However, the authors elaborate signals from
five different physical quantities, while in this work we
demonstrate that drilling material classification is possible with
only acceleration. Moreover, as previously stated for [32], the
sensors used must be integrated in the drill body, and the
signals are collected by external equipment, as opposed to
SmartTag where the acquisition, as well as the classification,
is performed in a compact and battery-powered device attached
to the drill body. Moreover, the model proposed in [31] uses
only dense layers, while our proposed model takes advantage
of the convolutional layers, achieving comparable accuracy
with an extremely optimized model size, capable of running
on resource-constrained devices.

The work in [33] tackles a similar problem. An angle
grinder and a cordless screwdriver are analyzed, on which
data are gathered from three-axis accelerometers, gyroscopes,
and magnetometers and a series of algorithms are proposed
to extract the activity performed. Our work focuses on the
material rather than activity recognition, allowing for tool
degradation accounting and achieves a similar accuracy with
a deep learning model requiring only accelerometer data.
This significantly reduces the system complexity, the signal
processing overhead, and the power consumption.

In our work, the data gathered by the sensor node are further
elaborated at the edge. A highly efficient signal processing
pipeline is proposed, featuring the fast Fourier transformation
(FFT) and a neural network. The FFT is applied on accelerom-
eter data to detect tool usage; then, if the tool is currently
operated, an efficient neural network can be run to classify the
drilling material. Previous work demonstrated how accelerom-
eters are a good fit for devices’ health assessment [34]-[36],
and the aforehand mentioned signal processing techniques,
used isolated, are proven to extract useful information from
accelerometer data. In particular, Maruthi and Hegde [22]
detected mechanical bearing fault using the FFT, while in [37]
and [38] a convolutional neural network (CNN) is exploited
to detect bolt-nut alignment. In our work, both FFT and deep
learning methods are leveraged to further optimize the energy
efficiency of the proposed solution. In particular, the data are
preprocessed with FFT so that the neural network, which is
an energy-intensive task, is run only when needed.

A good reasoning about wake-up radios can be found in [39]
and [40]. The concept has been adopted also in SmartTag as
the wake-up is performed via NFC. Wake-up radios are a valid
solution for use-case scenarios like the SmartTag: a short-range
wireless activation procedure has been chosen to overcome
the absence of physical buttons on the final products. Not
exposing any mechanical parts improves the reliability, and
indirectly the sustainability, of the sensor node, especially in
the dusty and harsh environments the SmartTag is thought to
operate.

Motion monitoring has also been used to assess workers’
productivity. In particular, [41] reviews productivity assess-
ment methodologies for the construction field, in an industry
4.0 scenario. With the recent advancement of deep learn-
ing, a push in the direction of deep activity recognition
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has been occurring. Most famously in the field of human
activity recognition (HAR) [42]-[45], where gyroscopic and
accelerometer data of either smartphones or smartwatches are
used to classify human activity. The current state-of-the-art
deep learning method to do so incorporates large and heavy
neural networks [45] to process the wearable devices’ data.
In the most complex scenarios, even long short-term memory
(LSTM) neural networks [45] are being used. Regarding HAR,
the application scenario of the SmartTag to classify the drilling
tools activity for degradation and utilization accounting is
fairly similar. However, the key difference lies in the com-
putational capabilities of the device the neural network is
deployed to. While wearables such as smartphones might be
capable of inferring a complex recurrent model, the underlying
microcontroller unit (MCU) of SmartTag is not capable of
inferring a large and recurrent network. Yet this work shows
that in cases of simpler activity recognition tasks such as
tool monitoring, a feed-forward nonrecurrent CNN can achieve
good results while being feasible on an extremely power and
computationally constrained device, allowing for ML on the
edge benefits.

The rise of tiny machine learning (TinyML), albeit
recent, has seen extensive coverage in literature. Neural
networks are usually trained on dedicated servers, while
inference can be computed on the edge, even on very
resource-constrained devices [46]. Recent developments are
introducing continuous learning techniques [47], often using
custom-designed architectures [48]. TinyML systems are
gaining more and more traction, and to support this expansion
benchmarking [49], [50] tools have been developed to assess
ML performances at the edge.

Sustainability and efficiency were founding principles when
designing the SmartTag and key topics in the work of [51].
The authors review several article in the IoT field, with special
attention to Smart Cities. An important question regarding
the sustainability of IoT nodes themself is risen and has
been an important point of reflection while designing the
SmartTag.

Concluding, this article presents a novel solution to the
problem of asset tracking and usage analysis. An efficient
neural network, which uses only accelerometer data, has been
introduced for drilling material classification (thus enabling
tool degradation and utilization analysis) and has been suc-
cessfully ported on a resource-constrained device to perform
inference on the edge, optimizing accuracy against model
size and inference energy. Moreover, an ultralow-power sensor
node has been introduced, with an expected battery lifetime
of more than four years in operation and 17 years on the shelf
powered by a small coin cell battery.

III. SYSTEM ARCHITECTURE

The proposed sensor node was designed to achieve ultralow-
power consumption and energy efficiency. A schematic view
of the proposed solution can be seen in Fig. 1, while our
reference implementation can be seen in Fig. 2. The high-level
wireless sensor network architecture is shown in Fig. 3 and a
real-world application of the SmartTag on a Combi Hummer
drill can be seen in Fig. 4.
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High-level overview of SmartTag.

Fig. 2. Implementation of SmartTag for experimental evaluation.

Fig. 3. High-level overview of the wireless sensor network.

A. System Components

The SmartTag architecture was designed to be flexible
toward different workloads and allows to easily exchange dif-
ferent system on a chip (SoC) of the same family. The Nordic
NRF52 SoC family was selected as the best trade-off in terms
of computing power, BLE capabilities, and power manage-
ment features. Two physical prototypes of the SmartTag were
designed, one hosting the Nordic NRF52810 SoC and another
with NRF52832. The two SoC, being pin-to-pin-compatible,
can be swapped without adding any complexity from the
schematic and PCB perspective. Moreover, the Nordic SDK
allows writing code seamlessly for both SoC. In particular,
the Nordic NRF52810 is preferred when power consumption
is the utmost priority, while NRF52832 is the choice when
demanding edge ML tasks are desired. This distinction arises
from the different power consumption and different memory
configurations of the chips: NRF52810 has only 192 kB of
flash and 24 kB of RAM, while NRF52832 allows for up to
512 kB of flash and 64 kB of RAM. Both are based on an
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Fig. 4. Sensor node applied on a Combi Hummer.

ARM Cortex-M4, have BLE 5.2, and provide good computing
power, with a core clock up to 64 MHz. NRF52810’s operating
current can be as low as 35 4 A/MHz when running code from
Flash, against 60 uA/MHz of the NRF52832. In the System
OFF mode, the lowest power mode is as low as 0.5 ¢ A with full
RAM retention for both SoCs. These metrics are summarized
in Tables IV and V, differentiating between sleep and active
mode. Both SoCs boost up to —96-dBm sensitivity for BLE
reception, with about 5 mA of current consumption in the RX
mode and a configurable TX gain from —20 to +4 dBm.

Two I2C-enabled sensors were then chosen, one for
temperature and humidity sensing and one for acceleration
measurement, which is the most important sensor for evaluat-
ing the use and the condition of tools and machinery. The
former is SHTC3 from Sensirion, which features a typical
relative humidity accuracy of £2% and temperature accuracy
of £0.2 °C. It is compatible with the low-voltage rail used
in our node, fixed to 1.8 V to optimize power consump-
tion and has an operating current during measurement of
around 500 pA. To further reduce the power consumption
when not in use, the sensor has been power gated. The
accelerometer of selection is IIS2DLPC from ST Microelec-
tronics. It features four different scales of acceleration mea-
surement, from 2G to 16G, with a sensitivity of 3% mG/digit
on all the scales and a noise density as low as 90 uG/+/Hz
in the 2G range. The power figures are impressive as well,
with a current consumption of a few pA for measurements
acquired in low-power mode and of 50 nA in the lowest power
mode. Since no physical buttons are thought to be present
on the final design, to wake up the MCU from deep sleep,
going from shelf mode to operating mode, we exploit an NFC
chip. NT2H1611FODTLH from NXP toggles a pin when in
the presence of an NFC RF field, from which it harvests the
needed energy and exchanges information.
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Fig. 5. Flowchart of the firmware.

B. Firmware

The first entry point in memory is the Softdevice: it is
the proprietary wireless stack of the Nordic semiconductor,
provided as a binary package. The MCU boots from the
Softdevice, proceeding then to execute the bootloader. The
bootloader is based on the Nordic Secure Device Firmware
Update (DFU) Bootloader and will be further explained in
Section III-C. To summarize, the bootloader checks whether
a new app image should be flashed or whether it should
start the already present application. Supposing this is the
case, the focus will now be put on the application firmware.
An overview of the firmware’s flowchart can be found in
Fig. 5. Two different operational modes can be distinguished:
a shelf mode and an operational mode. In the shelf mode, the
device is in a power-off state. This mode will be active from
production until the activation of the SmartTag is performed by
a potential user wirelessly via NFC. In this mode, the temper-
ature and humidity sensor is power gated, the accelerometer
is put in the power-down mode and the MCU is put in the
system OFF mode. From this state, it is sufficient to put the
device in an NFC field so that the NFC module will assert
a pin of the MCU low, waking up the SmartTag. Waking up
from System OFF, the lowest power mode of the MCU of
choice mandates a system reset. After the reset, the SmartTag
will then no longer be powered off and the system will cycle
endlessly into the operational mode of the firmware. The
operational mode takes care of achieving the lowest power
consumption, reading sensors, detecting potentially harmful
events, and sending the data to a gateway on request. The
operational mode starts with the node advertising itself over
Bluetooth, with an advertising period of 7 s to keep the energy
footprint as low as possible. Once connected to a gateway,
it can either enter the bootloader mode, to update the firmware,
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or issue sensor readings. For temperature and humidity, single
measurements can be issued, while for the accelerometer,
either a single measure or a set of measurements at a
given sample rate can be acquired. Moreover, there are two
asynchronous interrupts, “Drop detection” and “Shake detec-
tion.” When either of these occur, the SmartTag is woken up
and the current time is registered in a buffer, which can then
be sent over BLE to a gateway.

To further optimize power consumption and run the clas-
sifier only when necessary, an FFT, which is highly opti-
mized on Cortex-M4 devices, can be run on accelerometer
data. As better explained in Section IV-A, from the FFT a
simple threshold can be used to detect whether the tools are
operated or simply being transported, and thus a decision can
be taken to proceed to compute the edge-optimized neural
network proposed in this work. The FFT is computed directly
on the SmartTag in an optimized way via the CMSIS-DSP
library using 16-bit fixed-point data. The neural network,
explained more in depth in Section IV, takes full advan-
tage of the enhanced CMSIS-NN [29] kernels to speed up
inference.

In addition, two different kinds of event recognition can
be enabled by the user via BLE commands: drop detection,
and motion detection. From these two modes, an interrupt is
generated and the node wakes up accordingly.

A breakdown of the power consumption in the different
modes is given in Tables IV and V.

C. Bootloader

The bootloader flashed on the node is an improved version
of the Secure DFU bootloader from Nordic. Since no physical
buttons are planned to be included in the design, the boot-
loader’s activation is implemented over Bluetooth. To guar-
antee security during Firmware updates, an asymmetrically
encrypted firmware image needs to be sent to the device over
Bluetooth. In particular, when a certain BLE command is
received, a flag is asserted in the Flash (nonvolatile memory) of
the device, and the device is subsequently reset via software.
At startup, the bootloader always checks whether the flash
memory deputed to the application firmware is empty or
whether the already mentioned flag is asserted. If that is the
case, the bootloader starts its Bluetooth advertising and waits
for a new firmware image to be sent. If the bootloader was
entered via the flag, it then proceeds to erase the flash page in
which the flag is contained, taking care of loading in RAM and
restoring the data already present on the memory page. If no
new firmware image is received in a predetermined amount of
time, the bootloader proceeds to start the application.

IV. EDGE ML

Edge computing has a series of benefits [52], as lowering
latency, which enables applications with strict time require-
ments. Transmitting only the important features extracted from
the data means drastically lowering the bandwidth require-
ments and on-air collisions. Moreover, wireless communica-
tion is usually the most power-consuming activity of a sensor
node and limiting the data reflects directly on the battery life
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of the node. Clear benefits can also be found in data security
and privacy: as only processed data are transmitted, the raw
data never leave the sensor node, eradicating the susceptibility
to eavesdropping.

Among the many use-cases where TinyML at the edge
can bring value, within the scope of this work we defined
a narrow, yet very relevant, use-case to experiment with the
capabilities of the proposed SmartTag. Specifically, a four-
class ML algorithm was designed and ported to detect/
distinguish the following working conditions.

1) Transport: The tool is being transported in either a car

or hand-carried.

2) No-Load: The tool is running with no load applied.

3) Metal Drilling: Tool used to drill metal.

4) Wood Drilling: Tool used to drill wood.

Altogether, the above classes allow for a more finely grained
resolution with regards to how the tool is being used. The
TinyML algorithm running at the edge serves as a highly
efficient data compression, thus saving battery and wireless
bandwidth. Combined with the temperature and humidity
measurements, the edge ML estimations can in turn be further
processed in the cloud with more advanced ML algorithms
obtaining more insights to optimize maintenance, productivity,
and overall sustainability of industries like the construction
sector.

A. Data Collection and Analysis

An infield accelerometer drilling activity dataset has been
acquired to train and validate the ML algorithm. The following
type of data was obtained with the SmartTag attached to a
professional drilling tool (Hilti TE 30-A36).

1) Transport: The SmartTag was attached to the tool and
transported in its carrying box in either the hood of a
car or hand-carried. The car was driven in gravel, urban,
and motorway paths.

2) No-Load: The tool was running with no load applied
(not touching any material) with a 10 mm x 170 mm
drill bit. To have a more representative dataset, both the
drilling and hammering modes have been included in
the no-load data acquisition.

3) Metal: Tool was used to drill a hole into steel material
with a 10 mm x 90 mm drill bit. The tool was set to
drilling mode since no hammering function is required
for this type of material.

4) Wood: Tool was used to drill a hole into wooden material
with a 10 mm x 90 mm drill bit. The tool was set to the
drilling mode since no hammering function is required
for this type of material.

The accelerometer signal was collected from the SmartTag
with a sampling frequency of 800 Hz. A total of 45 min,
equivalent to 3.04 GB, of raw accelerometer data has been
collected.

Fig. 6 depicts the FFT of the superimposed x-, y-, and
z-axes of the collected drilling activity accelerometer data,
always considering a 448 samples window. The full line
represents the mean, while the faded area represents the
standard deviation of the FFT dataset. It suggests that the
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Fig. 6. Data analysis of infield drilling experiments in the investigated usage
scenarios. The magnitude of the FFT applied on recorded data is plotted
against frequency. Full line depicts the mean, and faded area depicts the
standard deviation of the superimposed x, y, and z accelerometer axes.

Transport class can be easily distinguished from the other
classes with the simple FFT threshold. On the other hand,
it is immediately noticeable that the variance of Wood, Metal,
and No-load signals is nonnegligible. If one were to overlay
the aforementioned three classes, the signals would heavily
overlap each other. Thus, it can be argued that a simple
thresholding of the FFT frequencies will not suffice to classify
between Wood, Metal, and No-load. Furthermore, it can be
seen that both Wood and Metal signals display large vari-
ance at frequencies where the mean seems distinguishable
from each other. On the other hand, No-load shows a clear
peak at ~225 Hz with low variance. Thus, one can assume
No-load to be simpler (yet still non trivial) to distinguish from
Wood and Metal.

To tackle this complex classification task, a neural network
is being used. From this analysis, one can derive a system that
applies simple FFT thresholding to binary classify between
Transport and Other. If the Other class applies, a neural
network will perform the challenging task of classifying
between the three problematic classes of Wood, Metal, and
No-load. This makes sense from a computational cost per-
spective, as the simple FFT threshold is computationally
inexpensive (compared with the neural network inference)
and the system is expected to be in a nonworking state
(i.e., no drilling activity) most of the time. As soon as the
system enters a drilling state (which occurs relatively seldom),
the more computationally expensive neural network operation
will be performed as in Fig. 5.

B. Neural Network Architecture

In this section, the neural network architecture is introduced.
Its task is to classify a sliding window of accelerometer data
into the previously mentioned three problematic classes of
Wood, Metal, and No-load. The sliding window and thus the
model’s input has a shape of (448, 3), corresponding to a
vector of length 448 with three channels, namely, the x-, y-,
and z-axes of the raw accelerometer data.
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Fig. 7. Architecture of the neural network.

TABLE I
ONE VERSUS ALL FULL PRECISION MODEL METRICS

Class Precision | Recall | FPR

Wood 100% 80% 0%

Metal 83.3%% 100% 10%
No-load 100% 100% 0%

It is important to remember that the neural network will
have to run on an extremely computationally constrained
device, thus making the model size of central importance.
To maximize the neural network performance while fitting
it on the MCU is a nontrivial task that demands careful
architecture tuning and design.

In Fig. 7, the proposed neural network architecture is
depicted. It consists of two sequential 1-D convolutions, fol-
lowed by a fully connected layer that feeds into the final classi-
fication head. The deep convolutions allow the model to extract
features across the channels in a very parameter-efficient way
and have proven throughout the training process to be a very
effective architecture choice. The convolution filter depths,
kernel size, and the number of necessary fully connected
neurons have been evaluated by a hyperparameter sweep using
the Weights and Biases [53] tool. From this, one can assess the
mentioned parameters in terms of validation loss and number
of parameter minimization. Thus, resulting in the architecture
of Fig. 7 with a total model size of 93.2 kB.

The derived neural network architecture has been evaluated
on a held out balanced test set of 150 accelerometer data
windows of 448 samples each. Fig. 8 shows the classification
performance metrics of the model in the three classes of
interest. On the left side of Fig. 8, the precision and recall
of each class are evaluated in a One vs All fashion while
overlaying the F1-score isobars. On the right side of Fig. 8, the
One vs All receiver operating characteristic (ROC) plot is given
with the dashed diagonal indicating the no-skill threshold.
It is important to mention that while the test set is balanced
in each class, the One vs All evaluation is unbalanced by
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Fig. 9. Confusion matrix of the full precision neural network.
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Fig. 10. Confusion matrix of the quantized neural network.

a ratio of 1:2. Thus, precision and recall are the relevant
metrics to focus on, while ROC is depicted for completeness.
From model evaluation, one concludes the metrics depicted
in Table L.

Finally, the confusion matrix of the test set evaluation is
shown in Fig. 9 to demonstrate an unbiased and complete
model evaluation. By viewing Table I and Fig. 9, it can
be confirmed that from the three classes of interest, Wood
and Metal seem to be the most difficult to distinguish. Thus
affirming the assumption of Section IV-A that Wood and Metal
are harder to distinguish between each other than No-load,
based on the FFT data analysis. To conclude, the proposed
architecture shows to be very well-suited for the classification
task of drilling activities in Wood, Metal, or No-load. 1t yields
an accuracy of 93.3% on the balanced test set, allowing
for a more sophisticated analysis of the drilling tool utiliza-
tion and degradation by incorporating the neural network on
the SmartTag.
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TABLE 11
TFLITE MICRO MEMORY FOOTPRINT

Ops ROM [kB] | RAM [kB]
All ops 347.5 11.5kB
Custom ops 111.3 11.5kB
TABLE III

MODEL DIMENSION

Model Size [kB]
Floating point 93.2
Quantized int8 30.5

C. ML MCU Deployment

To deploy the actual neural network on the MCU, the
TFLM framework [54], a resource-optimized C porting of
Tensorflow, has been integrated into the application firmware
running on the SmartTag. The TFLM core runtime takes
as little as 80.8 kB on the Cortex-M4 MCU memory (op
included) and does not require any OS support. Thus, it can
simply be integrated as a standalone library in the SmartTag
firmware. Hence, integer quantized neural networks following
the TFLM supported operations can now be used to perform
inference on the SmartTag, as long as they adhere to the
memory size limitations of the MCU. In particular, only
Conv2D, FullyConnected, Relu, Reshape, Softmax, Quantize,
Dequantize, and Add operations were loaded at runtime,
to optimize the memory footprint. As reported in Table II,
selecting only the used OPs leads to a 300% improvement
on nonvolatile memory footprint, as well as an improvement
in RAM usage. Moreover, the kernels offered by TFLM
were enhanced with the ones offered by the CMSIS-NN,
offering a faster computing time up to 4X over the supported
operations [29].

1) Quantization: post training quantization was applied to
the aforementioned full precision neural network after training,
allowing to convert the 32-bit floating-point weights to 8-bit
integers. This has been realized with the TensorFlow Lite
converter. The primary reason of this step is to further decrease
the model size, which in this case shrinks from the full
precision neural network of 93.2 kB down to the quantized
size of 30.5 kB, as summarized in Table III. The quantized
model achieves a model size decrease by a factor of ~4, with
a rather small tradeoff in accuracy. As reported in Fig. 10, the
confusion matrix of the fully inf8 quantized neural network
shows that the model performance has only been degraded
slightly, as it still yields an accuracy of 90.6% on the same
test set. A comparison between int8 quantized and float point
model can be seen in Table III.

V. POWER CONSUMPTION

The SmartTag has been tested both in the shelf mode and
operational mode to assess both power consumption and cor-
rect operation. Both FFT and neural network data processing
approaches are evaluated in this section.

Table IV reports the current consumption of both the imple-
mentations in shelf mode, where all the components are in a
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TABLE IV
SLEEP CHARACTERISTICS OF COMPONENTS

Component | Current/Efficiency
NRF52810 500nA
NRF52832 500nA
1IS2DLPC 55nA
SHTC3 Power gated
BD70522 65%
TABLE V

ON-STATE CHARACTERISTICS

Component Current/Efficiency
Sensor reading (max) 3.0mA
NRF52810 @64MHz Adbvertising (max) 11.1mA
Model inference (max) 8.3mA
NRF52832 @64MHz Advertising (max) 12.8mA
1IS2DLPC 0.9mA
SHTC3 0.5mA
BD70522 > 85%
TABLE VI
ENERGY PROFILING
FFT profiling Int8 quantized model
Cycles 44.7k Cycles 20.1M
Latency 0.7ms Latency 319ms
Energy 0.02mJ Energy 8.7mJ
Float model
Cycles 56.4M
Latency 881ms
Energy | 24.1mJ

power-off state and the node waits to be awoken by NFC. The
MCU accounts for the majority of power consumption, while
the humidity and temperature sensor has a power consumption
in low-power mode comparable with the MCU and has thus
been power gated. The accelerometer’s power footprint is
one order of magnitude lower than the SoC and has been
thus kept powered to reduce system complexity. In Table V,
a breakdown of the current consumption in the operating
mode for the main hardware components is presented. Again,
the SoC accounts for the majority of power consumption,
especially in the neural network case.

In Fig. 11, the power profiling of the NRF52810-based
sensor node is plotted while executing the typical workload
of sensor acquisition, FFT computation, and BLE advertising.
In total, 1024 samples are collected from the accelerometer
at a sampling rate of 800 Hz, the FFT is run shortly after
on the node, and then the BLE advertises. The raw data are
reported in shaded blue, while a moving average is reported in
orange.

A breakdown of latency and energy for both FFT computa-
tion and per inference of the NRF52832-based implementation
of the SmartTag can be seen in Table VI. From the numbers,
it can be evinced that the FFT is almost 500x faster and
less energy hungry than the neural network. Therefore, it is
very convenient to use the FFT as a decision mechanism for
neural network inference. Moreover, the floating point model
has been tested on hardware as well. Data report a speed-up
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Fig. 12. Expected lifetime changing daily wake-ups and battery dimension.

of 2.8 x in favor of the quantized version, at the expense of a
decrease in accuracy of only 2.7%.

In Fig. 12, we report the computed expected lifetime of the
sensor node against different battery sizes and the number of
daily wake-ups. The solid bars refer to the NRF52810-based
implementation without any ML task being run, while the
hatched part of the plot reports the expected battery lifetime
of the NRF52832-based implementation running the neural
network described in this work on newly recorded data. Both
the NRF52810 and NRF52832 versions achieve more than
17 years in the shelf mode. In operating mode, the difference
between running the ML algorithm or not becomes noticeable
only with a higher number of wakes per day. This observation
remarks the energy efficiency of the proposed neural network.
Looking at the battery lifetime while in operation mode, both
the NRF52810 and NRF52832 implementations can last more
than four years with a small coin cell battery of 250 mAh
with up to ten wakes and inferences per day. Moreover,
an intelligent triggering mechanism for the neural network can
be implemented to run inference only when strictly necessary,
for example, combining with the less energy demanding FFT
threshold-based method to detect when the tool is either
transported or actively used. Therefore, although the neural
network inference is a relative energy-intensive task, long
battery life can still be obtained.
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VI. CONCLUSION

In this work, an ultralow-power IoT wireless sensor node
has been designed, implemented, and evaluated to enable
condition and usage monitoring of machinery and mobile
power tools in construction fields. The device was tested by
collecting real-world data when attached to a professional
construction power tool during drilling operations. This article
shows that it is possible to obtain a smart node that reaches
more than four years of lifetime on a small coin battery of
250 mAh while recording accelerations, ambient storing condi-
tions, and performing inference at the edge via neural network
models. The ported TinyML neural network shows that power
tool activities, such as different drilling operations, can be
correctly classified with a small wireless node attached to the
tool with an accuracy of 90.6%. The results of this work enable
to obtain more fine-grained utility monitoring of power tools,
processing information directly on the edge and preserving
long battery life. Such results are possible, thanks to an aggres-
sive power management that brought the node to consume
only 3 W in the sleep mode, and wake up the system only
when it is strictly necessary. To be able to further fine-grain the
degradation and utility accounting of the investigated power
tool, it might be helpful to differentiate between more classes
(e.g., concrete drilling, chiseling). Within this work, to obtain
a proof of concept, the analysis was limited to the four
classes described in Fig. 6 and the data collected attaching the
SmartTag always on the same location of the tool. Thus, future
research direction can lie on addressing the generalization
capability of the ML algorithm to different attaching positions
of the SmartTag on the power tool and investigate which data
and what working classes are necessary to optimally estimate
degradation and utility analysis of the tools.
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