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Abstract— Low-dose computed tomography (LDCT) has
drawn major attention in the medical imaging field due to
the potential health risks of CT-associated X-ray radiation
to patients. Reducing the radiation dose, however, decreases
the quality of the reconstructed images, which consequently
compromises the diagnostic performance. Over the past few
years, various deep learning techniques, especially generative
adversarial networks (GANs), have been introduced to improve
the image quality of LDCT images through denoising, achiev-
ing impressive results over traditional approaches. GAN-based
denoising methods usually leverage an additional classification
network, i.e., discriminator, to learn the most discriminate
difference between the denoised and normal-dose images and,
hence, regularize the denoising model accordingly; it often focuses
either on the global structure or local details. To better regularize
the LDCT denoising model, this article proposes a novel method,
termed DU-GAN, which leverages U-Net-based discriminators in
the GAN framework to learn both global and local differences
between the denoised and normal-dose images in both image and
gradient domains. The merit of such a U-Net-based discriminator
is that it can not only provide the per-pixel feedback to the
denoising network through the outputs of the U-Net but also focus
on the global structure in a semantic level through the middle
layer of the U-Net. In addition to the adversarial training in the
image domain, we also apply another U-Net-based discriminator
in the image gradient domain to alleviate the artifacts caused
by photon starvation and enhance the edge of the denoised CT
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images. Furthermore, the CutMix technique enables the per-pixel
outputs of the U-Net-based discriminator to provide radiologists
with a confidence map to visualize the uncertainty of the denoised
results, facilitating the LDCT-based screening and diagnosis.
Extensive experiments on the simulated and real-world datasets
demonstrate superior performance over recently published meth-
ods both qualitatively and quantitatively. Our source code is made
available at https://github.com/Hzzone/DU-GAN.

Index Terms— Artifact removal, convolutional neural network
(CNN), generative adversarial network (GAN), image transla-
tion, low-dose computed tomography (LDCT) denoising, U-Net,
uncertainty estimation.

I. INTRODUCTION

COMPUTED tomography (CT) can provide the cross-
sectional images of the internal body by the X-ray radi-

ation, which is one of the most important imaging modalities
in clinical diagnosis. Although CT plays an essential role in
diagnosing diseases, the widespread use of CT is raising more
and more public concerns toward its safety since CT-related
X-ray radiation may cause unavoidable damage to the health
of humans and induce cancers. Consequently, reducing the
radiation dose of CT as low as reasonably achievable (also
known as ALARA) is a well-accepted principle in CT-related
research over the past decades [1]. The reduction of radiation
dose, however, inevitably brings the noise and artifacts into
the reconstructed images, severely compromising the subse-
quent diagnosis and other tasks such as low-dose computed
tomography (LDCT)-based lung nodule classification [2].

A straightforward way to address this issue is to reduce
the noise in the LDCT image [3], [4]. However, it remains a
challenging problem due to its ill-posed nature. In recent years,
various deep learning-based methods have been proposed for
LDCT denoising [5]–[11], achieving impressive results. There
are two key components in designing a denoising model:
network architecture and loss function; the former one can
determine the capacity of the denoising model, while the
latter one can control how the denoised images visually look
like [7]. Although different network architectures, such as
2-D convolutional neural networks (CNNs) [5], 3-D CNNs [7],
[10], and residual encoder–decoder CNNs (RED-CNNs) [12],
have been explored for LDCT denoising, literature has shown
that the loss function is relatively more important than the
network architecture as it has a direct impact on the image
quality [7], [13].
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One of the most popular loss functions is the mean-squared
error (MSE), which computes the average of the squares of
the per-pixel errors between the denoised and normal-dose
images. Although gaining impressive performance in terms
of peak signal-to-noise ratio (PSNR), MSE usually leads to
oversmoothened images, which has been proven to poorly cor-
relate with the human perception of image quality [14], [15].
In view of this observation, alternative loss functions, such
as perceptual loss, �1 loss, and adversarial loss, have been
investigated for LDCT denoising. Among them, adversarial
loss has been shown to be a powerful one as it can dynamically
measure the similarity between the denoised and normal-
dose images during the training, which enables the denoised
images to preserve more texture information from normal-
dose one. The computation of the adversarial loss is based
on the discriminator, which is a classification network to learn
a representation differentiating the denoised images from the
normal-dose images; it can measure the most discriminant
difference either in a global or local level, depending on
that one unit of the output of discriminator corresponds to
the whole image or a local region. Such a discriminator is
prone to forgetting previous difference because the distribu-
tion of synthetics samples shifts as the generator constantly
changes through training, failing to maintain a powerful data
representation to characterize the global and local image
difference [16]. As a result, it often results in the generated
images with discontinued and mottled local structures [17] or
images with incoherent geometric and structural patterns [18].
In addition to the noise, LDCT images may contain severe
streak artifacts caused by photon starvation, which may not
be effectively removed through the loss function solely in the
image domain.

To learn a powerful data representation to regularize the
denoising model in the adversarial training, we propose a
U-Net-based [19] discriminator in the generative adversar-
ial network (GAN) framework for LDCT denoising, termed
DU-GAN, which can simultaneously learn the global and local
difference between the denoised and normal-dose images in
image and gradient domains. More specifically, our proposed
discriminator follows the U-Net architecture, including an
encoder and a decoder network, where the encoder encodes
the input to a scalar value focusing on the global structures,
whereas the decoder reconstructs a per-pixel confidence map
capturing the changes of local details between the denoised
and normal-dose images. In doing so, it can provide not only
the per-pixel feedback but also the global structural difference
to the denoising network. In addition to the adversarial training
in the image domain, we also apply another U-Net-based
discriminator in the image gradient domain to alleviate the
artifacts caused by photon starvation and enhance the edge of
the denoised images. Moreover, to regularize the U-Net-based
discriminator, we introduce the CutMix data augmentation
to mix the denoised and normal-dose images. Consequently,
the U-Net-based discriminator can provide radiologists with
the per-pixel outputs as a confidence map to visualize the
uncertainty of the denoised results, which can facilitate radi-
ologists’ screening and diagnosis when using the denoised
LDCT images.

The benefits of the proposed DU-GAN are as follows.
1) Unlike existing GAN-based denoising methods that

use a classification as the discriminator, the pro-
posed DU-GAN utilizes a U-Net-based discriminator for
LDCT denoising, which can simultaneously learn the
global and local differences between the denoised and
normal-dose images. Consequently, it can provide not
only the per-pixel feedback but also the global structural
difference to the denoising model.

2) In addition to adversarial training in the image domain,
the proposed DU-GAN also performs adversarial train-
ing in the image gradient domains, which can alleviate
the streak artifacts caused by photon starvation and
enhance the edge of the denoised images.

3) The proposed DU-GAN can provide radiologists with
a confidence map visualizing the uncertainty of the
denoised results through the CutMix technique, which
could facilitate radiologists’ screening and diagnosis
when using the denoised LDCT images.

4) Extensive experiments on simulated and real-world
datasets demonstrate the effectiveness of the pro-
posed method through both qualitative and quantitative
comparisons.

The remainder of this article is organized as follows.
We briefly survey the developments of the LDCT denois-
ing methods and GANs in Section II. We present our
LDCT denoising framework DU-GAN with dual-domain
U-Net-based discriminators and then introduce the CutMix
regularization technique as well as the network architectures
and loss functions in our framework in Section III, followed by
both qualitative and quantitative comparisons with the state-
of-the-art methods on the simulated and real-world datasets in
Section IV. Finally, we conclude this article in Section V.

II. RELATED WORK

This section briefly surveys the development of LDCT
denoising and GANs.

A. LDCT Denoising

The noise reduction algorithms for LDCT can be summa-
rized into three categories: 1) sinogram filtration; 2) iterative
reconstruction; and 3) image postprocessing. As a signifi-
cant difference from routine CT, the LDCT acquires noisy
sinogram data from the scanner. A straightforward solution
is to perform the denoising process on the sinogram data
before image reconstruction, i.e., sinogram filtration-based
methods [20]–[22]. Iterative reconstruction methods combine
the statistics of raw data in the sinogram domain [23], [24]
and the prior information in the image domain, such as total
variation [25] and dictionary learning [26]; these pieces of
generic information can be effectively integrated into the
maximum likelihood and compressed sensing frameworks.
These two categories, however, require the access to raw data
that are typically unavailable from commercial CT scanner.

Different from the previous two categories, image post-
processing methods directly operate on the reconstructed
images that are publicly available after removing patient
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Fig. 1. Overall framework of our proposed DU-GAN. The generator produces denoised LDCT images, and two independent branches with U-Net-based
discriminators perform at the image and gradient domains. The U-Net-based discriminator provides both global structure and local per-pixel feedback to the
generator. Furthermore, the image discriminator encourages the generator to produce photorealistic CT images, while the gradient discriminator is utilized for
better edge and alleviating streak artifacts caused by photon starvation. (a) Denoising Process, (b) Image Domain Branch, and (c) Gradient Domain Branch.

privacy. Traditional methods, such as nonlocal means [27]
and block-matching 3-D [28], however, lead to the loss of
some critical structural details and result in oversmoothened
denoised LDCT images. The rapid development of deep
learning techniques has advanced many medical applica-
tions. In LDCT denoising, deep learning-based models have
achieved impressive results [5], [7], [9], [10], [12], [29]. There
are two critical components in designing a deep learning-
based denoising model: network architecture and loss func-
tion; the former one determines the capacity of a denoising
model, whereas the latter one controls how the denoised
images visually look like. Although the literature has proposed
several different network architectures for LDCT denoising
such as 2-D CNNs [5], 3-D CNN [7], [10], RED-CNN [5],
and cascaded CNN [12], the literature has shown that the
loss function plays a relatively more important role than
network architecture as it has a direct impact on the image
quality [7], [13]. The simplest loss function is the MSE,
which, however, has been shown to poorly correlate with the
human perception of image quality [14], [15]. In view of this
observation, alternative loss functions, such as perceptual loss,
�1 loss, adversarial loss, or mixed loss functions, have been
investigated for LDCT denoising. Among them, the adversarial
loss has been shown to be a powerful one as it can dynamically
measure the similarity between the denoised and normal-dose
images during the training, which enables the denoised images
to preserve more texture information from normal-dose one.
The adversarial loss reflects either global or local similarity,
depending on the design of discriminator.

Unlike the conventional adversarial loss, the adversarial loss
used in this study is based on a U-Net-based discriminator,
which can simultaneously characterize the global and local
differences between the denoised and normal-dose images,
better regularizing the denoising model, that is, DU-GAN
enjoys both advantages of the per-pixel discriminator capturing
the changes at pixel level and traditional classification dis-
criminator focusing on global structures. In addition to the

adversarial loss in the image domain, the adversarial loss in
the image gradient domain proposed in this article can alleviate
the streak artifacts caused by photon starvation and enhance
the edge of the denoised images.

B. Generative Adversarial Networks

As one of the most hot research topics in recent years,
GANs [14] and their variants have been successfully applied
to various tasks [30]–[32]. They typically consist of two
networks: 1) a generator learning to capture the data distri-
bution of training data and produce new samples that are
indistinguishable from the real ones and 2) a discriminator
attempting to distinguish real samples from fake ones pro-
duced by the generator. These two networks are trained alter-
natively, ending once the balance is achieved. In the context of
LDCT denoising, the generator aims to produce photorealistic
denoised results to fool the discriminator, whereas the discrim-
inator tries to distinguish the real normal-dose CT (NDCT)
images and denoised ones. To foster the stability of training
GANs, various variants of GANs have been proposed, such
as Wasserstein GAN (WGAN) [33], WGAN with gradient
penalty (WGAN-GP) [34], and least-squares GANs [35].

In this article, we adopt the least-squares GANs [35], spec-
tral normalization [36], and U-Net-based discriminator [16] to
form the GANs framework for LDCT denoising. As a signif-
icant difference, our DU-GAN performs adversarial training
in both image and gradient domains, which can reduce noise
and alleviate streak artifacts simultaneously. We note that the
proposed DU-GAN is also suitable for other variants of GANs,
such as WGAN and WGAN-GP.

III. METHODOLOGY

Fig. 1 presents the proposed DU-GAN for LDCT denois-
ing, which contains a denoising model as a generator and
two U-Net-based discriminators in both image and gradient
domains. We highlight that the U-Net-based discriminator is
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Fig. 2. Difference between (a) traditional classification discriminator and
(b) U-Net-based discriminator. U-Net-based discriminator extends traditional
one to capture the global and local information simultaneously.

able to learn the global and local differences between denoised
and normal-dose images. Next, we present all components,
network architecture, and loss functions in detail, followed by
their complexity.

A. Denoising Process

The denoising process is to learn a generative model G that
maps an LDCT image ILD ∈ R

w×h of size w×h to its normal-
dose CT (NDCT) counterpart IND ∈ R

w×h by removing the
noise in LDCT image. Formally, it can be written as

Iden = G(ILD) ≈ IND (1)

where Iden denotes the denoised LDCT image. Typically,
LDCT denoising can be seen as a specific image translation
problem. Therefore, the GAN-based methods [7]–[9], [37] uti-
lize the GANs to improve the visual quality of denoised LDCT
images due to its strong capability of GANs in generating
high-quality images. Different from the conventional GANs
that take a noise vector to generate an image, our denoising
model serves as the generator that only takes the LDCT image
as the input. In this study, we used the RED-CNN [6] as the
denoising model to demonstrate the effectiveness of the dual-
domain U-Net-based discriminators in the adversarial training.

B. Dual-Domain U-Net-Based Discriminator

The GAN-based methods [7]–[9], [37] for LDCT denoising
usually maintain the competition of GANs under the structural
level, whose discriminator progressively downsamples the
input into a scalar value and are trained with Wasserstein
GANs [33], [34], as shown in Fig. 2(a). However, the dis-
criminator is prone to forgetting previous samples because the
distribution of synthetics samples shifts as the generator con-
stantly changes during training, failing to maintain a powerful
data representation to characterize the global and local image
differences [16], [38].

To address the problems above, we introduce the U-Net-
based discriminators in both image and gradient domains.

1) U-Net-Based Discriminator in the Image Domain: To
learn a powerful data representation that can characterize both
global and local differences, we design an LDCT denoising
framework based on GANs to deal with LDCT denoising.
Traditionally, U-Net contains an encoder, a decoder, and
several skip connections copying the feature-maps from the
encoder to the decoder to preserve high-resolution features,

Fig. 3. Gradients of horizontal and vertical directions from a pair of LDCT
and NDCT images. The streak artifacts can be easily captured in the gradient
domain.

which has demonstrated its state-of-the-art performance in
many semantic segmentation tasks [39], [40] and image trans-
lation tasks [16], [31]. In the context of LDCT denoising,
we highlight that U-Net and its variants are only used as
the denoising model, which have not been explored as the
discriminator. We adopt the U-Net to replace the standard
classification discriminator in GANs to have a U-Net style
discriminator that allows the discriminator to maintain both
global and local data representation. Fig. 2(b) details the
architecture of U-Net-based discriminator.

Here, we use Dimg to denote the U-Net-based discriminator
in the image domain. The encoder of Dimg, Dimg

enc , follows
the traditional discriminator that progressively downsamples
the input using several convolutional layers, capturing the
global structure context. On the other hand, the decoder
Dimg

dec performs progressive upsampling with skip connections
from encoder Dimg

enc in a reverse order, further enhancing the
ability of discriminator to draw the local details of real and
fake samples. Furthermore, the discriminator loss is com-
puted from the outputs of both Dimg

enc and Dimg
dec , while the

traditional discriminator used in previous works [7], [8], [37]
only classifies the inputs into being real and fake from the
encoder. In doing so, the U-Net-based discriminator can
provide more informative feedback to the generator, including
both local per-pixel and global structural information. In this
article, we employ the least-squares GANs [35] rather than
conventional GANs [14] for the discriminators to stabilize the
training process and improve the visual quality of denoised
LDCT. Formally, the discriminator loss for Dimg from both
Dimg

enc and Dimg
dec can be written as

LDimg = EIND

�
Dimg

enc (IND) − 1
�2 + EILD

�
Dimg

enc (Iden)
�2

� �� �
global adversarial

+ EIND

�
Dimg

dec (IND) − 1
	2 + EILD

�
Dimg

dec (Iden)
	2

� �� �
local adversarial

(2)

where 1 is the decision boundary of least-squares GANs.
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2) U-Net-Based Discriminator in the Gradient Domain:
However, the competition in the image domain alone is only
able to force the generator toward generating photorealistic
denoised LDCT images; it is insufficient to encourage better
edge for keeping the pathological changes of original NDCT
images and alleviate the streak artifacts caused by photon
starvation in LDCT. Previous methods such as [9] measure
the different MSE in the gradient domain, which may be
insufficient to enhance the edge as MSE tends to blur image.
To this end, we propose to perform an additional GANs
competition in the gradient domain, where our motivation is
presented in Fig. 3. Specifically, the streaks and edge in CT
images are highlighted in their horizontal and vertical gra-
dient magnitudes. Therefore, another branch of the gradients
estimated by a Sobel operator [41] is performed aside from the
image branch, which encourages better edge information and
alleviates streak artifacts. Similar to (2), we can define the
discriminator loss in the gradient domain LDgrd , where Dgrd

represents the discriminator in the gradient domain.
3) Dual-Domain U-Net-Based Discriminators: Combining

the U-Net-based discriminators in the image and gradient
domains, two independent GANs competitions are maintained
during training. The overall framework of our proposed LDCT
denoising model is shown in Fig. 1. In detail, the generator
is to denoise an LDCT image, which is then fed into two
independent discriminators operating in the image and gradient
domains. The discriminator Dimg in the image domain branch
penalizes the generator generating photorealistic denoised
LDCT, whereas the discriminator Dgrd in the gradient domain
branch encourages better edge while alleviating streak artifacts
caused by photon starvation. In addition, the discriminator in
each branch employs a U-Net-based architecture to encourage
the generator focusing both global structure and local details,
which can also boost the interpretability of the denoising
process with the per-pixel confidence map output by Dimg

dec and
Dgrd

dec. Finally, the dual-domain U-Net-based discriminator loss
can be defined as follows:

LDdud = LDimg + LDgrd . (3)

C. CutMix Regularization

The discriminator Dimg suffers from the decreasing capa-
bility in recognizing the local differences between real and
fake samples as the training goes, which may unexpectedly
harm the denoising performance. Besides, the discriminator
is supposed to focus on structure change at the global level
and local details at the per-pixel level. To address these issues,
we adopt the CutMix augmentation technique to regularize the
discriminator inspired by [16] and [42], which can empower
the discriminator to learn the intrinsic difference between real
and fake samples. Specifically, CutMix technique generates
a new training image from two images by cutting patches
from the one and pasting them to another. We define this
augmentation technique in the context of LDCT denoising as
follows:

Imix = mix(IND, Iden, M)

= M � IND + (1 − M) � Iden (4)

where M ∈ {0, 1}w×h is a binary mask controlling how to
mix the NDCT and denoised images and � represents the
elementwise multiplication.

The mixed samples should be regarded as fake samples
globally by the encoder Dimg

enc since the CutMix operation
has destroyed the global context of NDCT image; otherwise,
the CutMix may be introduced to denoise LDCT images
during the training of GANs, causing undesirable denoising.
Similarly, Dimg

dec should be able to recognize the mixed area
to provide the generator with accurate per-pixel feedback.
Therefore, the regularization loss of CutMix can be formulated
as

Lreg = EImix


�
Dimg

enc (Imix)
�2 +

�
Dimg

dec (Imix) − M
	2

�
(5)

where M used in CutMix also serves as the ground truth for
Dimg

dec .
Furthermore, to penalize the outputs of discriminator to

be consistent with the per-pixel predictions after the CutMix
operation, we further introduce another consistency loss
following [16] to regularize the discriminator with CutMix
operation, which can be written as

Lcon =
���Dimg

dec (Imix) − mix



Dimg
dec (IND), Dimg

dec (Iden), M
����2

F

(6)

where �·�F represents the Frobenius norm.
During training, the binary mask M is generated following

the same pipeline as [42] and [43]. Specifically, we first sample
the combination ratio r from beta distribution Beta(1, 1) and
then uniformly sample the top-left coordinates of the bounding
box of cropping regions from IND to Iden, with preserving
the r ratio. Similar to [42] and [43], we employ a probability
pmix to control whether to apply the CutMix regularization
technique for each mini-batch samples, which is empirically
set to 0.5. Fig. 4 shows the visual results of Dimg with CutMix
regularization technique. It can be observed that the outputs
of Dimg

dec are the spatial combination of the real and gener-
ated patches with respect to the real/fake classification score.
Therefore, the results have demonstrated the strong discrimina-
tive capability of the U-Net-based discriminator in accurately
learning per-pixel differences between real and generated
samples, even though they are cut and mixed together to fool
the discriminator. Besides learning the per-pixel local details,
Dimg

enc can accurately predict the proportion of real patches, i.e.,
the mixed ratio, as it is to focus on the global structures.

D. Network Architecture

As we described above, our proposed method follows the
GANs framework to optimize the generator effectively for
LDCT denoising, with the U-Net-based discriminator focusing
on both global structures and local details, and an extra
gradient branch encouraging better boundaries and details.
In this section, we describe the network architectures of the
generator and U-Net-based discriminator.

1) RED-CNN-Based Generator: In this article, we employ
RED-CNN [6] as the generator of our framework for LDCT
denoising since this article mainly focuses on the adversarial
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Fig. 4. Illustration of the CutMix regularization for the U-Net-based discrim-
inator, i.e., Dimg. We randomly sample the ratio r and top-left coordinates
of the bounding box to form the mask M controlling where to crop. Dimg

dec is
able to effectively capture the pixel differences between NDCT and denoised
LDCT images, while Dimg

enc can predict the mixed ratio. Note that the blue
color of Dimg

dec indicates the lower confidence score. Therefore, a well-trained
discriminator can provide radiologists with a confidence map showing the
uncertainty of the denoised results.

loss from dual-domain U-Net-based discriminators. The main
difference from [6] is that our framework is optimized in
GANs manner, while the vanilla RED-CNN suffers the prob-
lem of oversmoothened LDCT images with MSE. Specifically,
RED-CNN employs the U-Net architecture but removes the
downsampling/upsampling operations to prevent information
loss. We stack ten (de)convolutional layers at both encoder
and decoder, each of which has 32 filters for the sake of
the computation cost, followed by a rectified linear unit
(ReLU) activation function. There are in total ten residual skip
connections. It is important to note that although RED-CNN
is adopted as the generator in our framework, the proposed
method can also be adapted to other GAN-based methods such
as CPCE [7] and WGAN-VGG [8] with only changing the
discriminators.

2) U-Net-Based Discriminator: As detailed in
Section III-B, there are two independent discriminators
in both image and gradient domains, each of which follows a
U-Net architecture. Specifically, Denc has six downsampling
ResBlocks [44] with increasing number of filters, i.e., 64,
128, 256, 512, 512, and 512. At the bottom of Denc, a fully
connected layer is used to output the global confidence score.
Similarly, Ddec used the same number of ResBlocks in a
reverse order to process the bilinearly upsampled features
and the skip residuals of the same resolution, followed by a
1 × 1 convolutional layer to output the per-pixel confidence

map. Most importantly, a spectral normalization layer [36]
and a leaky ReLU activation with a slope of 0.2 for negative
input follow each convolutional layer of D except the last
one.

We note that the network architectures of the generator
and discriminator were proposed in the literature; we did not
propose a new network architecture to achieve the performance
gain. One of our key contributions is to use the U-net as the
discriminator in dual domain to capture both local details and
global structures for LDCT denoising.

E. Loss Functions

1) Adversarial Loss: In this section, we employ the sum of
these two branches as the adversarial loss, which is defined in
the context of least-squares GANs as follows:

Ladv = E

⎡
⎢⎢⎣�

Dimg
enc (Iden) − 1

�2 +
�

Dimg
dec (Iden) − 1

	2

� �� �
image domain

+ �
Dgrd

enc(∇(Iden)) − 1
�2 +

�
Dgrd

dec(∇(Iden)) − 1
	2

� �� �
gradient domain

⎤
⎥⎥⎦

(7)

where ∇ denotes the Sobel operator to obtain the image
gradient.

2) Pixelwise Loss: To encourage the generator output of the
denoised LDCT images that match the NDCT images with
both pixel level and gradient level, we adopt an pixelwise
loss between the NDCT images and denoised LDCT images,
which includes a pixel loss and gradient loss for each branch,
as shown in Fig. 1. The additional gradient loss can encourage
to better preserve edge information at the pixel level. The two
losses can be written as

Limg = E(ILD,IND)�Iden − IND�2
F (8)

Lgrd = E(ILD,IND)|∇(Iden) − ∇(IND)|. (9)

Note that we employ the MSE in pixel level rather than the
feature level using the pretrained model [7], [8] for the sake
of computation cost, and the absolute mean error in gradient
level as the gradients is much sparser than pixels.

3) Final Loss: To encourage the generator to generate
photorealistic denoised LDCT images with better edge infor-
mation and alleviate streak artifacts, the final loss function to
optimize the generator G is expressed as

LG = λadvLadv + λimgLimg + λgrdLgrd (10)

where λadv, λimg, and λgrd are the weights for Ladv, Limg,
and Lgrd, respectively. Here, we empirically determine the
hyperparameters in a sequential way. First, with only pixelwise
loss, our proposed DU-GAN reduces to RED-CNN since
discriminators are not included during training. Although fast
convergence, only optimizing the MSE loss leads to over-
smoothing and blurred results, causing the loss of structural
details. We set λimg to be 1. Second, we tune λadv to control the
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importance of adversarial loss to capture the texture details.
We start from a small value for λadv and then gradually
increase the importance of the adversarial loss and visualize
the denoising results. Finally, we tune λgrd to capture edge
information with a large value as the gradients are much
sparser than pixels.

The discriminators Dimg and Dgrd are optimized by mini-
mizing the following mixed loss:

LD = LDdud + Lreg + Lcon. (11)

Note that we employ the same loss function in (11) to
optimize both Dimg and Dgrd, but they are independent to each
other and Dgrd has an additional Sobel operator to compute
the gradients.

F. Complexity of DU-GAN

Next, we discuss the complexity of the DU-GAN in terms
of hyperparameters and computational costs. First, compared
to MSE-based methods that directly optimize mean-squared
loss, DU-GAN is a GAN-based method that introduces an
additional adversarial loss to the training process. Compared
to vanilla GAN-based methods with a traditional classification
discriminator, DU-GAN proposed to use the U-Net-based
discriminator to focus on both local details and global struc-
tures. Furthermore, DU-GAN also introduces another gradient
branch along the original pixel branch to encourage clear
boundaries. Therefore, there is only one extra hyperparameter
to control the importance of the gradient branch. Second, the
main computational costs of DU-GAN come from the pro-
posed U-Net-based discriminator and gradient branch. How-
ever, such computational costs are affordable considering the
better denoising quality and performance for our DU-GAN
and only happen during the training stage, that is, the inference
efficiency is still the same as the traditional ones.

IV. EXPERIMENTS

This section presents the datasets, implementation details,
qualitative and quantitative evaluations, uncertainty visualiza-
tion, and ablation study.

A. Datasets

1) Simulated Dataset: The LDCT dataset used in this study
was originally for the 2016 NIHAAPM-Mayo Clinic LDCT
Grand Challenge and lately released in [45]. It provides scans
from three regions of the body with different simulated low
doses, i.e., head with 25% of normal-dose, abdomen with
25%, and chest with 10%. In our experiments, we used the
25% abdomen and 10% chest datasets, named Mayo-25%
and Mayo-10%, respectively. We evaluated our method on
abdomen scans for comparisons with most previous works
and conducted experiments on chest scans since 10% of
normal-dose at chest is rather challenging compared to 25% of
normal-dose at abdomen. For each dataset, we randomly select
20 patients for training and another 20 patients for testing,
no identity overlapping between training and testing. In detail,
300k and 64k image patches were randomly selected from
each set. For more information about this dataset, please refer
to [45].

2) Real-World Dataset: The real-world dataset from [37]
includes 850 CT scans of a deceased piglet obtained by a
GE scanner (Discovery CT750 HD). The dataset provides
CT scans of the normal dose, 50%, 25%, 10%, and 5%
dose with a size of 512 × 512, 708 of which is served
for training while the left for testing. We evaluated our
method on 5% LDCTs as it is the most challenging dose,
where the dataset is named Piglet-5%. We randomly selected
60k and 12k image patches from training and testing sets,
respectively. For more information about this dataset, please
refer to [37].

B. Implementation Details

Following [7], [8], and [46], we employed the image patches
with a size of 64 × 64 and a window of [−300, 300] to train
all models with emphasis on tissue CT window, which are
then directly applied to the whole image for visualization and
testing. Note that we excluded those image patches that were
mostly air. During training, all images are linearly normalized
to [0, 1].

During training, we trained the model with a maximum
of 100k iterations and with a mini-batch of size 64 on one
NVIDIA V100 GPU. All networks in the proposed framework
are initialized with the He initialization [48] and optimized
by the Adam optimization method [49] with a fixed learning
rate of 10−4. The hyperparameters in the loss functions were
empirically set as follows: λadv was 0.1, λimg was 1, and λgrd

was 20. We implemented four deep learning-based methods,
including RED-CNN [6], WGAN-VGG [8], CPCE-2D [7],
Q-AE [46], and CNCL [47] with the reference of official
source code.

C. Qualitative Evaluations

To demonstrate the effectiveness of the proposed method in
generating photorealistic denoised results with faithful details,
Fig. 5 shows the representative results from three different
datasets, and Fig. 6 shows the results of one neck CT slice with
strong streak artifacts. The regions of interest (ROIs) marked
by the red rectangles are zoomed below.

All methods present visually well-denoised results to some
degrees. However, RED-CNN and Q-AE oversmoothed and
blurred the LDCT images as they are optimized by the MSE
loss that tends to average the results, causing the loss of
structural details. Although WGAN-VGG and CPCE-2D have
greatly improved the visual fidelity, as expected, due to the use
of adversarial loss, minor streak artifacts can still be observed
since their traditional classification discriminator only provide
the generator with global structure feedback. Besides, they
employed the perceptual loss in the high-level feature space to
suppress the blurriness resulting from MSE loss. The percep-
tual loss, however, can only preserve the structures of NDCT
images since some local details may be lost after processed by
a pretrained model. For example, the low attenuation lesions in
Fig. 5 and the bones in Fig. 6 are less clear by WGAN-VGG
and CPCE-2D, while they can be easily observed in NDCT
as well as the results of our methods. Most importantly,
the small structures with their boundaries are consistently
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Fig. 5. Transverse CT images from the Mayo-10%, Mayo-25%, and Piglet-5%: (a) LDCT, (b) NDCT, (c) RED-CNN, (d) WGAN-VGG, (e) CPCE-2D,
(f) Q-AE, (g) CNCL, and (h) DU-GAN (ours). Zoomed ROI of the red rectangle is shown below the full-size one. The display window is [−160, 240] HU
for better visualization. Red arrow indicates low attenuation lesion. Green arrow indicates the white edge artifacts shown in some baseline algorithms while
not shown in our method.

Fig. 6. Transverse neck CT images from the Mayo-10%: (a) LDCT, (b) NDCT, (c) RED-CNN, (d) WGAN-VGG, (e) CPCE-2D, (f) Q-AE, (g) CNCL, and
(h) DU-GAN (ours). Zoomed ROI of the red rectangle is shown in the second row. The display window is [−160, 240] HU for better visualization. Red
arrow indicates bone area, while green arrow indicates a small structure.

preserved with a clear visual fidelity. This benefits from the
well-designed dual-domain U-Net-based discriminators, which
can provide feedback of both global structures and local details
to the generator, compared to the traditional classification

discriminator used in WGAN-VGG and CPCE-2D with only
structure information. Besides, the gradient domain branch can
also encourage the denoising model to better preserve edge
information.
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TABLE I

QUANTITATIVE COMPARISONS OF DIFFERENT METHODS ON THE TESTING SETS OF TWO SIMULATED DATASETS AND ONE REAL-WORLD DATASET. THE
BEST RESULTS AMONG MSE- AND GAN-BASED METHODS ARE MARKED IN BOLD

Fig. 7. Uncertainty visualization of applying the trained discriminator to the outputs of different methods: (a) LDCT, (b) NDCT, (c) RED-CNN,
(d) WGAN-VGG, (e) CPCE-2D, (f) Q-AE, (g) CNCL, and (h) DU-GAN (ours). The display window is [−160, 240] HU for better visualization. Note
that the blue color of Dimg

dec indicates the lower confidence score, while red color indicates higher confidence score.

Beyond encouraging better edge, Fig. 6 also shows its
impressive performance in dealing with the LDCT images with
strong streak artifacts caused by photon starvation. Compared
to the baseline methods that produce strongly blurry and
ghosted denoised results, our method can effectively address
this problem in the following aspects.

1) Streak artifacts can be easily detected by the gradient
domain branch.

2) Once detected, the dual-domain U-Net discriminators
can fill the occlusion area by adversarial training to
alleviate the impact of streak artifacts.

In summary, all of these results further validate the superiority
of our methods.

D. Quantitative Evaluations

For quantitative evaluations, we adopted three widely used
metrics, including PSNR, structural similarity (SSIM), and
root-mean-square error (RMSE). More specifically, PSNR and
RMSE measure the denoising performance at pixel level, while
SSIM computes the SSIM within a window. Table I presents
the results of different methods. First, RED-CNN and Q-AE
are MSE-based denoising methods as they are directly trained
with solely MSE loss. Although they achieve better PSNR and
RMSE results, the visual results in Figs. 5 and 6 confirm that
MSE-based methods produce oversmoothed results compared
to the NDCT images, leading to lose of structural informa-
tion [7], [8], [50]. Note that the oversmoothed denoising results
lead to a lower SSIM score. Second, WGAN-VGG, CPCE-2D,

and our DU-GAN are GAN-based methods. CPCE-2D per-
formed better than WGAN-VGG due to the conveying path
since WGAN-VGG has to reconstruct the denoised results
from the input LDCT images. Obviously, our method performs
the best in terms of SSIM score with high visual fidelity, while
the PSNR and RMSE are also better than WGAN-VGG and
CPCE-2D, indicating the superior denoising performance of
our method while better structural fidelity.

Though DU-GAN used the same network architecture of
the RED-CNN as the denoising model, their qualitative and
quantitative differences directly come from the adversarial
training and dual-domain U-Net-based discriminators. The
results of DU-GAN preserve more structural details that are
important for diagnosis, at the cost of compromising the
quantitative metrics such as PSNR and RMSE. We note that
PSNR and RMSE are pixelwise metrics, poorly correlating
with human perception of image quality [14].

E. Uncertainty Visualization

Fig. 4 shows the proposed discriminator with the U-Net
architecture and CutMix regularization can robustly learn the
per-pixel differences of local details between NDCT and
denoised LDCT images by the decoder and also focus on
the global structures by the encoder. With this well-trained
discriminator, we can provide the radiologist with a confidence
map showing the uncertainty of the denoised results since it is
to learn the distribution of real samples, i.e., NDCT images.
Therefore, we directly applied the trained discriminator Dimg
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TABLE II

ABLATION STUDY OF COMPONENT ANALYSIS. OUR METHOD IS THE
BASELINE METHOD WITH U-NET DISCRIMINATOR IN THE IMAGE

DOMAIN, CUTMIX REGULARIZATION, AND THE U-NET DISCRIM-
INATOR IN THE GRADIENT DOMAIN (DUAL-DOMAIN). THE

BEST RESULTS ARE MARKED IN BOLD

to the LDCT, NDCT, and the denoised LDCT images of
different methods.

Fig. 7 shows the uncertainty visualization. Obviously, the
discriminator can accurately distinguish the LDCT from
NDCT images on both global score and per-pixel confidence.
As both RED-CNN and Q-AE oversmoothen the LDCT
images, the abdomen area of transverse CT image becomes
better than LDCT images on the confidence map, according
to the results of Dimg

dec . This also explains why RED-CNN and
Q-AE have the lowest global score of Dimg

enc , which indicates
that the discriminator can robustly detect the blurriness in
the CT images. Furthermore, although CPCE-2D can produce
more clear denoised results than RED-CNN, the streak arti-
facts significantly compromised the quality of the denoised
results. Similarly, the WGAN-VGG has learned more local
details than CPCE-2D, but it still cannot handle the impact
of the streak artifacts. On the contrary, the proposed method
can produce the most photorealistic denoised results with
the highest global score. Compared to the traditional classi-
fication discriminator used in CPCE-2D and WGAN-VGG,
our DU-GAN can provide the generator with the per-pixel
feedback by learning the local detail differences. It can be seen
from the per pixel of Dimg

dec . In other words, we achieve a more
smooth per-pixel confidence, indicating that the discriminator
cannot distinguish the real and fake samples at the per-pixel
level.

F. Ablation Study

In this section, we conducted the ablation study of our
method to fully explore the proposed method in terms of
the importance of different components, the architectures of
discriminator, and the different patch sizes. The ablation study
was done on the testing set of Mayo-10% dataset, which
includes a total of 6590 slices from 20 patients.

1) Components Analysis: We investigate the impact of
the U-Net-based discriminator in the image domain, CutMix
regularization, and dual-domain training (i.e., with gradient
branch) by gradually applying them to the baseline method.
Similar to WGAN-VGG and CPCE-2D, the baseline method
only includes the traditional classification discriminator with
the same hyperparameters for a fair comparison.

Table II presents the quantitative results for ablation study.
First, replacing the traditional classification discriminator with
a U-Net-based discriminator can simultaneously provide the
generator with both global structure and local per-pixel feed-
back, which leads to a significant increase in terms of SSIM.

TABLE III

ABLATION STUDY OF DIFFERENT DISCRIMINATORS ON TESTING SET OF
MAYO-10% DATASET. THE BEST RESULTS ARE MARKED IN BOLD

Second, when we further use the CutMix technique to regu-
larize the U-Net-based discriminator, the mixed samples can
boost the discriminant capacity of discriminator and make the
discriminator more focus on the local details, leading to the
increased SSIM score and a slightly decreased PSNR and
RMSE. Finally, further adding the U-net-based discriminator
in the gradient domain into the method above forming the
dual-domain training yields our method. Specifically, the addi-
tional gradient-domain training can help our method remove
the streak artifacts and encourage more clear edge in the
denoised LDCT images. As a result, it can effectively improve
all metrics, including the PSNR and RMSE in pixel space and
SSIM in visual similarity.

2) Architectures of Discriminator: Since the architectures
of discriminator play a critical role in the training of GANs,
it is worthwhile studying the advantage of the U-Net-based
discriminator over other classical discriminator architectures,
such as patch discriminator [31], pixel discriminator [31], and
traditional global discriminator. Compared to the traditional
classification discriminator that classifies the real and fake
samples at the image level, the patch discriminator focuses on
the image patches. Due to the patch training of LDCT denois-
ing, this discriminator architecture can be seen as the patch dis-
criminator. The discriminator with seven convolutional layers
and one fully connected layer is regarded as the global discrim-
inator. On the other hand, the pixel discriminator [31] contains
7 1 × 1 convolutional layers to penalize the generator at per-
pixel level. For fair comparisons, we trained patch and pixel
discriminator with image patches and trained the global dis-
criminator with the whole images with the size of 512 × 512,
respectively. Table III shows that the combination of global
and pixel information in a U-Net-based discriminator produces
the best SSIM score. This indicates the advantage of U-net-
based discriminator for LDCT denoising over other classical
discriminator architectures, such as patch discriminator, pixel
discriminator, and traditional global discriminator. Instead of
pixel discriminator only capturing per-pixel difference and
traditional classification discriminator only focusing on global
structure, the U-Net-based discriminator has the advantages of
both worlds, yielding better quantitative results and denoising
quality.

3) Patch Size: Due to the U-Net architecture of the discrimi-
nator, it is also important to analyze the influence of the patch
size during training. However, it is very difficult to directly
train the denoising model from scratch. Therefore, we trained
our model with the image size of 64 × 64, 128 × 128, 256 ×
256, and 512 × 512, and we fine-tuned the generator based



HUANG et al.: DU-GAN: GENERATIVE ADVERSARIAL NETWORKS WITH DUAL-DOMAIN U-Net-BASED DISCRIMINATORS 4500512

TABLE IV

ABLATION STUDY OF PATCH SIZES ON THE TESTING SET OF MAYO-10%
DATASET. THE BEST RESULTS ARE MARKED IN BOLD

on the model trained on previous smaller size. Table IV shows
that a small patch size can achieve better performance because
the larger patch sizes may introduce training difficulties with
less training samples.

V. CONCLUSION AND DISCUSSION

In this article, we proposed a novel DU-GAN for LDCT
denoising. The introduced U-Net-based discriminator can not
only provide the per-pixel feedback to the denoising network
but also focus on the global structure. We further add an extra
U-Net-based discriminator into the gradient domain, which
can enhance the edge information and alleviate the streak
artifacts caused by photon starvation. We also examined that
the CutMix technique can boost the training of discriminator,
which can provide the radiologists with a confidence map
on the uncertainty of the denoised results. Extensive exper-
iments demonstrated the effectiveness of the proposed method
through visual comparison and quantitative comparison.

Although a different architecture or model size could
certainly affect results, our DU-GAN has demonstrated its
generalization ability on two simulated LDCT datasets of
different doses and one real-world dataset, with the same
network architecture and hyperparameters. Our ablation study
validates each component and their relative importance of all
components should be consistent on a new dataset, which
indicates that our DU-GAN can be easily adapted to different
scenarios.

We acknowledge some limitations in this work. First,
we used the qualitative and quantitative comparisons to evalu-
ate the image quality. A human reader study may be needed to
further validate its potential in clinical diagnosis, though there
are significant differences between the proposed and other
baseline methods. Second, the U-net-based discriminator can
provide radiologists with a confidence map of the denoised
images. How this helps radiologists in clinical routine could
be examined with specific tasks such as liver lesion diagnosis,
which can be further studied as a future direction. Third,
DU-GAN could introduce slightly more computational cost
during training since it employs the U-Net as the discrimi-
nator and adopts a dual-domain training strategy. However,
we emphasize that the extra computational cost is relatively
affordable as DU-GAN trains the whole framework based on
the 64 × 64 image patches instead of the original image
size 512 × 512. Therefore, we believe that the computational
cost can be significantly reduced. We note that the extra
computational cost only happens for the training stage, that
is, the inference efficiency is still the same as the traditional
one as the dual-domain discriminators are not involved during

the testing stage. Finally, we only validated DU-GAN with
two dose levels in this article and it is worth further validating
DU-GAN with lower radiation dose.

In conclusion, the proposed DU-GAN achieves better
denoising performance than other GAN-based models and has
great potential for clinical use with uncertainty visualization.

REFERENCES

[1] N. B. Shah and S. L. Platt, “ALARA: Is there a cause for alarm? Reduc-
ing radiation risks from computed tomography scanning in children,”
Current Opinion Pediatrics, vol. 20, no. 3, pp. 243–247, 2008.

[2] Y. Lei, Y. Tian, H. Shan, J. Zhang, G. Wang, and M. K. Kalra, “Shape
and margin-aware lung nodule classification in low-dose CT images
via soft activation mapping,” Med. Image Anal., vol. 60, Feb. 2020,
Art. no. 101628.

[3] F. Attivissimo, G. Cavone, A. M. L. Lanzolla, and M. Spadavecchia,
“A technique to improve the image quality in computer tomography,”
IEEE Trans. Instrum. Meas., vol. 59, no. 5, pp. 1251–1257, May 2010.

[4] G. Wang, J. C. Ye, and B. De Man, “Deep learning for tomographic
image reconstruction,” Nature Mach. Intell., vol. 2, no. 12, pp. 737–748,
Dec. 2020.

[5] H. Chen et al., “Low-dose CT via convolutional neural network,”
Biomed. Opt. Exp., vol. 8, no. 2, pp. 679–694, 2017.

[6] H. Chen, Y. Zhang, M. K. Kalra, F. Lin, Y. Chen, P. Liao, J. Zhou, and
G. Wang, “Low-dose CT with a residual encoder-decoder convolutional
neural network (red-CNN),” IEEE Trans. Med. Imag., vol. 36, no. 12,
pp. 2524–2535, Jun. 2017.

[7] H. Shan et al., “3-D convolutional encoder-decoder network for low-
dose CT via transfer learning from a 2-D trained network,” IEEE Trans.
Med. Imag., vol. 37, no. 6, pp. 1522–1534, Jun. 2018.

[8] Q. Yang et al., “Low-dose CT image denoising using a generative
adversarial network with Wasserstein distance and perceptual loss,”
IEEE Trans. Med. Imag., vol. 37, no. 6, pp. 1348–1357, Jun. 2018.

[9] H. Shan et al., “Competitive performance of a modularized deep neural
network compared to commercial algorithms for low-dose CT image
reconstruction,” Nature Mach. Intell., vol. 1, no. 6, pp. 269–276, 2019.

[10] J. M. Wolterink, T. Leiner, M. A. Viergever, and I. Išgum, “Generative
adversarial networks for noise reduction in low-dose CT,” IEEE Trans.
Med. Imag., vol. 36, no. 12, pp. 2536–2545, Dec. 2017.

[11] G. Wang, J. C. Ye, K. Mueller, and J. A. Fessler, “Image reconstruction
is a new frontier of machine learning,” IEEE Trans. Med. Imag., vol. 37,
no. 6, pp. 1289–1296, Jun. 2018.

[12] D. Wu, K. Kim, G. El Fakhri, and Q. Li, “A cascaded convolu-
tional neural network for X-ray low-dose CT image denoising,” 2017,
arXiv:1705.04267.

[13] H. Zhao, O. Gallo, I. Frosio, and J. Kautz, “Loss functions for image
restoration with neural networks,” IEEE Trans. Comput. Imag., vol. 3,
no. 1, pp. 47–57, Mar. 2017.

[14] I. Goodfellow et al., “Generative adversarial nets,” in Proc. Adv. Neural
Inf. Process. Syst., 2014, pp. 2672–2680.

[15] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” IEEE
Trans. Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[16] E. Schonfeld, B. Schiele, and A. Khoreva, “A U-Net based discriminator
for generative adversarial networks,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., Jun. 2020, pp. 8207–8216.

[17] C. H. Lin, C.-C. Chang, Y.-S. Chen, D.-C. Juan, W. Wei, and H.-T. Chen,
“COCO-GAN: Generation by parts via conditional coordinating,” in
Proc. IEEE/CVF Int. Conf. Comput. Vis., Oct. 2019, pp. 4512–4521.

[18] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, “Self-attention
generative adversarial networks,” in Proc. Int. Conf. Mach. Learn., 2019,
pp. 7354–7363.

[19] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional
networks for biomedical image segmentation,” in Proc. Int. Conf.
Med. Image Comput. Comput. Assist. Intervent. Munich, Germany:
Springer, 2015, pp. 234–241.

[20] J. Wang, H. Lu, T. Li, and Z. Liang, “Sinogram noise reduction for
low-dose CT by statistics-based nonlinear filters,” Proc. SPIE, vol. 5747,
p. 2059, Apr. 2005.

[21] J. Wang, T. Li, H. Lu, and Z. Liang, “Penalized weighted least-squares
approach to sinogram noise reduction and image reconstruction for low-
dose X-ray computed tomography,” IEEE Trans. Med. Imag., vol. 25,
no. 10, pp. 1272–1283, Oct. 2006.



4500512 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 71, 2022

[22] A. Manduca et al., “Projection space denoising with bilateral filtering
and CT noise modeling for dose reduction in CT,” Med. Phys., vol. 36,
no. 11, pp. 4911–4919, 2009.

[23] S. Ramani and J. A. Fessler, “A splitting-based iterative algorithm
for accelerated statistical X-ray CT reconstruction,” IEEE Trans. Med.
Imag., vol. 31, no. 3, pp. 677–688, Mar. 2012.

[24] W. Wu, J. Shi, H. Yu, W. Wu, and V. Vardhanabhuti, “Tensor gradi-
ent L0-norm minimization-based low-dose CT and its application to
COVID-19,” IEEE Trans. Instrum. Meas., vol. 70, pp. 1–12, 2021.

[25] X. Zheng, S. Ravishankar, Y. Long, and J. A. Fessler, “PWLS-ULTRA:
An efficient clustering and learning-based approach for low-dose 3D
CT image reconstruction,” IEEE Trans. Med. Imag., vol. 37, no. 6,
pp. 1498–1510, Jun. 2018.

[26] Q. Xu, H. Yu, X. Mou, L. Zhang, J. Hsieh, and G. Wang, “Low-dose
X-ray CT reconstruction via dictionary learning,” IEEE Trans. Med.
Imag., vol. 31, no. 9, pp. 1682–1697, Sep. 2012.

[27] J. Ma et al., “Low-dose computed tomography image restoration
using previous normal-dose scan,” Med. Phys., vol. 38, no. 10,
pp. 5713–5731, 2011.

[28] P. F. Feruglio, C. Vinegoni, J. Gros, A. Sbarbati, and R. Weissleder,
“Block matching 3D random noise filtering for absorption optical
projection tomography,” Phys. Med. Biol., vol. 55, no. 18, p. 5401, 2010.

[29] M. Li, W. Hsu, X. Xie, J. Cong, and W. Gao, “SACNN: Self-attention
convolutional neural network for low-dose CT denoising with self-
supervised perceptual loss network,” IEEE Trans. Med. Imag., vol. 39,
no. 7, pp. 2289–2301, Jul. 2020.

[30] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of
GANs for improved quality, stability, and variation,” in Proc. Int. Conf.
Learn. Represent., 2018, pp. 1–26.

[31] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 1125–1134.

[32] A. Guo, L. Fang, M. Qi, and S. Li, “Unsupervised denoising of opti-
cal coherence tomography images with nonlocal-generative adversarial
network,” IEEE Trans. Instrum. Meas., vol. 70, pp. 1–12, 2021.

[33] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adver-
sarial networks,” in Proc. Int. Conf. Mach. Learn., 2017, pp. 214–223.

[34] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
“Improved training of Wasserstein GANs,” in Proc. Adv. Neural Inf.
Process. Syst., 2017, pp. 5769–5779.

[35] X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. P. Smolley,
“Least squares generative adversarial networks,” in Proc. IEEE Int. Conf.
Comput. Vis. (ICCV), Oct. 2017, pp. 2794–2802.

[36] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normal-
ization for generative adversarial networks,” in Proc. Int. Conf. Learn.
Represent., 2018, pp. 1–26.

[37] X. Yi and P. Babyn, “Sharpness-aware low-dose CT denoising using
conditional generative adversarial network,” J. Digit. Imag., vol. 31,
no. 5, pp. 655–669, Oct. 2018.

[38] T. Chen, X. Zhai, M. Ritter, M. Lucic, and N. Houlsby, “Self-supervised
GANs via auxiliary rotation loss,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 12154–12163.

[39] Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “UNet++:
A nested U-Net architecture for medical image segmentation,” in Deep
Learning in Medical Image Analysis and Multimodal Learning for
Clinical Decision Support. Granada, Spain: Springer, 2018, pp. 3–11.

[40] Y. Han and J. C. Ye, “Framing U-Net via deep convolutional framelets:
Application to sparse-view CT,” IEEE Trans. Med. Imag., vol. 37, no. 6,
pp. 1418–1429, Jun. 2018.

[41] N. Kanopoulos, N. Vasanthavada, and R. L. Baker, “Design of an image
edge detection filter using the Sobel operator,” IEEE J. Solid-State
Circuits, vol. SSC-23, no. 2, pp. 358–367, Apr. 1988.

[42] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, “CutMix: Reg-
ularization strategy to train strong classifiers with localizable features,”
in Proc. IEEE Int. Conf. Comp. Vis., Oct. 2019, pp. 6023–6032.

[43] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond
empirical risk minimization,” in Proc. Int. Conf. Learn. Represent., 2018,
pp. 1–13.

[44] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2016, pp. 770–778.

[45] T. R. Moen et al., “Low-dose CT image and projection dataset,” Med.
Phys., vol. 48, no. 2, pp. 902–911, Feb. 2021.

[46] F. Fan et al., “Quadratic autoencoder (Q-AE) for low-dose CT denois-
ing,” IEEE Trans. Med. Imag., vol. 39, no. 6, pp. 2035–2050, Jun. 2020.

[47] M. Geng et al., “Content-noise complementary learning for medical
image denoising,” IEEE Trans. Med. Imag., early access, Sep. 16, 2021,
doi: 10.1109/TMI.2021.3113365.

[48] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Sur-
passing human-level performance on ImageNet classification,” in Proc.
IEEE Int. Conf. Comput. Vis., Dec. 2015, pp. 1026–1034.

[49] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

[50] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time
style transfer and super-resolution,” in Proc. Eur. Conf. Comp. Vis.
Amsterdam, The Netherlands: Springer, 2016, pp. 694–711.

Zhizhong Huang (Graduate Student Member,
IEEE) received the B.S. degree from Sichuan Uni-
versity, Chengdu, China, in 2019. He is currently
pursuing the Ph.D. degree with the School of Com-
puter Science, Fudan University, Shanghai, China.

His research interests include machine/deep learn-
ing, computer vision, face aging, and image
translation.

Junping Zhang (Member, IEEE) received the B.S.
degree in automation from Xiangtan University,
Xiangtan, China, in 1992, the M.S. degree in control
theory and control engineering from Hunan Univer-
sity, Changsha, China, in 2000, and the Ph.D. degree
in intelligent systems and pattern recognition from
the Institution of Automation, Chinese Academy of
Sciences, Beijing, China, in 2003.

He has been a Professor with the School of Com-
puter Science, Fudan University, Shanghai, China,
since 2006. His research interests include machine

learning, image processing, biometric authentication, and intelligent trans-
portation systems.

Dr. Zhang was an Associate Editor of IEEE Transactions on Intelligent
Transportation Systems from 2010 to 2018. He has been an Associate Editor
of IEEE INTELLIGENT SYSTEMS since 2009.

Yi Zhang (Senior Member, IEEE) received the bach-
elor’s, master’s, and Ph.D. degrees from the College
of Computer Science, Sichuan University, Chengdu,
China, in 2005, 2008, and 2012, respectively.

From 2014 to 2015, he was with the Department
of Biomedical Engineering, Rensselaer Polytech-
nic Institute, Troy, NY, USA, as a Post-Doctoral
Researcher. He is currently a Full Professor with the
College of Computer Science, Sichuan University,
where he is also the Director of the Deep Imaging
Group (DIG). His research interests include medical

imaging, compressive sensing, and deep learning.

Hongming Shan (Member, IEEE) received the
B.S. degree in information and computing science
from the Shandong University of Technology, Zibo,
China, in 2011, and the Ph.D. degree in machine
learning from Fudan University, Shanghai, China,
in 2017.

From 2017 to 2020, he was a Post-Doctoral
Research Associate with the Rensselaer Polytech-
nic Institute, Troy, NY, USA. He is currently an
Associate Professor with the Institute of Science and
Technology for Brain-Inspired Intelligence, Fudan

University, and a “Qiusuo” Research Leader with the Shanghai Center for
Brain Science and Brain-Inspired Technology, Shanghai. His research interests
include machine/deep learning, computer vision, biomedical imaging, and
brain-inspired intelligence.

http://dx.doi.org/10.1109/TMI.2021.3113365


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


